1
|
Lundstig A, McDonald SL, Maziarz M, Weldon WC, Vaziri-Sani F, Lernmark Å, Nilsson AL. Neutralizing Ljungan virus antibodies in children with newly diagnosed type 1 diabetes. J Gen Virol 2021; 102. [PMID: 34020728 DOI: 10.1099/jgv.0.001602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ljungan virus (LV), a Parechovirus of the Picornavirus family, first isolated from a bank vole at the Ljungan river in Sweden, has been implicated in the risk for autoimmune type 1 diabetes. An assay for neutralizing Ljungan virus antibodies (NLVA) was developed using the original 87-012 LV isolate. The goal was to determine NLVA titres in incident 0-18 years old newly diagnosed type 1 diabetes patients (n=67) and school children controls (n=292) from Jämtland county in Sweden. NLVA were found in 41 of 67 (61 %) patients compared to 127 of 292 (44 %) controls (P=0.009). In the type 1 diabetes patients, NLVA titres were associated with autoantibodies to glutamic acid decarboxylase (GADA) (P=0.023), but not to autoantibodies against insulin (IAA) or islet antigen-2 (IA-2A). The NLVA assay should prove useful for further investigations to determine levels of LV antibodies in patients and future studies to determine a possible role of LV in autoimmune type 1 diabetes.
Collapse
Affiliation(s)
- Annika Lundstig
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden
| | - Sharia L McDonald
- IHRC, Inc, under contract to Polio and Picornavirus Laboratory Branch, Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta GA, USA
| | - Marlena Maziarz
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden
| | - William C Weldon
- Polio and Picornavirus Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fariba Vaziri-Sani
- Kristianstad University, Kristianstad, Sweden.,Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden
| | - Anna-Lena Nilsson
- Department of Paediatrics, Östersund Hospital, Östersund, Sweden.,Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
2
|
Tietäväinen J, Mäkelä S, Huhtala H, Pörsti IH, Strandin T, Vaheri A, Mustonen J. The Clinical Presentation of Puumala Hantavirus Induced Hemorrhagic Fever with Renal Syndrome Is Related to Plasma Glucose Concentration. Viruses 2021; 13:v13061177. [PMID: 34202952 PMCID: PMC8235586 DOI: 10.3390/v13061177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Puumala hantavirus (PUUV) causes a hemorrhagic fever with renal syndrome characterized by thrombocytopenia, increased capillary leakage, and acute kidney injury (AKI). As glucosuria at hospital admission predicts the severity of PUUV infection, we explored how plasma glucose concentration associates with disease severity. Plasma glucose values were measured during hospital care in 185 patients with PUUV infection. They were divided into two groups according to maximum plasma glucose concentration: P-Gluc < 7.8 mmol/L (n = 134) and P-Gluc ≥ 7.8 mmol/L (n = 51). The determinants of disease severity were analyzed across groups. Patients with P-Gluc ≥7.8 mmol/L had higher hematocrit (0.46 vs. 0.43; p < 0.001) and lower plasma albumin concentration (24 vs. 29 g/L; p < 0.001) than patients with P-Gluc < 7.8 mmol/L. They presented with higher prevalence of pulmonary infiltrations and pleural effusion in chest radiograph, higher prevalence of shock and greater weight change during hospitalization. Patients with P-Gluc ≥ 7.8 mmol/L were characterized by lower platelet count (50 vs. 66 × 109/L; p = 0.001), more severe AKI (plasma creatinine 272 vs. 151 µmol/L; p = 0.001), and longer hospital treatment (8 vs. 6 days; p < 0.001) than patients with P-Gluc < 7.8 mmol/L. Plasma glucose level is associated with the severity of capillary leakage, thrombocytopenia, inflammation, and AKI in patients with acute PUUV infection.
Collapse
Affiliation(s)
- Johanna Tietäväinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| | - Satu Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, 33520 Tampere, Finland;
| | - Ilkka H. Pörsti
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland; (T.S.); (A.V.)
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland; (T.S.); (A.V.)
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
3
|
Fevola C, Rossi C, Rosso F, Girardi M, Rosà R, Manica M, Delucchi L, Rocchini D, Garzon-Lopez CX, Arnoldi D, Bianchi A, Buzan E, Charbonnel N, Collini M, Ďureje L, Ecke F, Ferrari N, Fischer S, Gillingham EL, Hörnfeldt B, Kazimírová M, Konečný A, Maas M, Magnusson M, Miller A, Niemimaa J, Nordström Å, Obiegala A, Olsson G, Pedrini P, Piálek J, Reusken CB, Rizzolli F, Romeo C, Silaghi C, Sironen T, Stanko M, Tagliapietra V, Ulrich RG, Vapalahti O, Voutilainen L, Wauters L, Rizzoli A, Vaheri A, Jääskeläinen AJ, Henttonen H, Hauffe HC. Geographical Distribution of Ljungan Virus in Small Mammals in Europe. Vector Borne Zoonotic Dis 2020; 20:692-702. [PMID: 32487013 DOI: 10.1089/vbz.2019.2542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ljungan virus (LV), which belongs to the Parechovirus genus in the Picornaviridae family, was first isolated from bank voles (Myodes glareolus) in Sweden in 1998 and proposed as a zoonotic agent. To improve knowledge of the host association and geographical distribution of LV, tissues from 1685 animals belonging to multiple rodent and insectivore species from 12 European countries were screened for LV-RNA using reverse transcriptase (RT)-PCR. In addition, we investigated how the prevalence of LV-RNA in bank voles is associated with various intrinsic and extrinsic factors. We show that LV is widespread geographically, having been detected in at least one host species in nine European countries. Twelve out of 21 species screened were LV-RNA PCR positive, including, for the first time, the red vole (Myodes rutilus) and the root or tundra vole (Alexandromys formerly Microtus oeconomus), as well as in insectivores, including the bicolored white-toothed shrew (Crocidura leucodon) and the Valais shrew (Sorex antinorii). Results indicated that bank voles are the main rodent host for this virus (overall RT-PCR prevalence: 15.2%). Linear modeling of intrinsic and extrinsic factors that could impact LV prevalence showed a concave-down relationship between body mass and LV occurrence, so that subadults had the highest LV positivity, but LV in older animals was less prevalent. Also, LV prevalence was higher in autumn and lower in spring, and the amount of precipitation recorded during the 6 months preceding the trapping date was negatively correlated with the presence of the virus. Phylogenetic analysis on the 185 base pair species-specific sequence of the 5' untranslated region identified high genetic diversity (46.5%) between 80 haplotypes, although no geographical or host-specific patterns of diversity were detected.
Collapse
Affiliation(s)
- Cristina Fevola
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Chiara Rossi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Matteo Girardi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center for Agriculture Food Environment-C3A, University of Trento and Fondazione E. Mach, San Michele all'Adige, Italy
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Luca Delucchi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Duccio Rocchini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Center for Agriculture Food Environment-C3A, University of Trento and Fondazione E. Mach, San Michele all'Adige, Italy.,Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Povo, Italy
| | - Carol X Garzon-Lopez
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Ecology and Vegetation Physiology Group (EcoFiv), Universidad de los Andes, Bogotá, Colombia
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Alessandro Bianchi
- Istituto Zooprofilattico Sperimentale della Lombardia e Dell'Emilia Romagna "Bruno Ubertini," Brescia, Italy
| | - Elena Buzan
- Department of Biodiversity, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Margherita Collini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - L'udovít Ďureje
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Studenec, Czech Republic
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nicola Ferrari
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Stefan Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Emma L Gillingham
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Department of Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Salisbury, United Kingdom.,Department of Climate Change and Health, Public Health England, London, United Kingdom
| | - Birger Hörnfeldt
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mária Kazimírová
- Slovak Academy of Sciences (SAS), Institute of Zoology, Bratislava, Slovakia
| | - Adam Konečný
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Miriam Maas
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Magnus Magnusson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andrea Miller
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department for Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Jukka Niemimaa
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Åke Nordström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Anna Obiegala
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität, Munich, Germany.,Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Gert Olsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Paolo Pedrini
- Sezione Zoologia dei Vertebrati, MUSE-Museo delle Scienze, Trento, Italy
| | - Jaroslav Piálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Studenec, Czech Republic
| | - Chantal B Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Franco Rizzolli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudia Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität, Munich, Germany.,Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michal Stanko
- Slovak Academy of Sciences (SAS), Institute of Zoology, Bratislava, Slovakia.,Slovak Academy of Sciences (SAS), Institute of Parasitology, Košice, Slovakia
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Olli Vapalahti
- Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Lucas Wauters
- Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne J Jääskeläinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Virology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Heidi C Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|