1
|
Lo M, Doan YH, Mitra S, Saha R, Miyoshi SI, Kitahara K, Dutta S, Oka T, Chawla-Sarkar M. Comprehensive full genome analysis of norovirus strains from eastern India, 2017-2021. Gut Pathog 2024; 16:3. [PMID: 38238807 PMCID: PMC10797879 DOI: 10.1186/s13099-023-00594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Worldwide, noroviruses are the leading cause of acute gastroenteritis (AGE) in people of all age groups. In India, norovirus rates between 1.4 to 44.4% have been reported. Only a very few complete norovirus genome sequences from India have been reported. OBJECTIVE To perform full genome sequencing of noroviruses circulating in India during 2017-2021, identify circulating genotypes, assess evolution including detection of recombination events. METHODOLOGY Forty-five archived norovirus-positive samples collected between October 2017 to July 2021 from patients with AGE from two hospitals in Kolkata, India were processed for full genome sequencing. Phylogenetic analysis, recombination breakpoint analysis and comprehensive mutation analysis were also performed. RESULTS Full genome analysis of norovirus sequences revealed that strains belonging to genogroup (G)I were genotyped as GI.3[P13]. Among the different norovirus capsid-polymerase combinations, GII.3[P16], GII.4 Sydney[P16], GII.4 Sydney[P31], GII.13[P16], GII.16[P16] and GII.17 were identified. Phylogenetic analysis confirmed phylogenetic relatedness with previously reported norovirus strains and all viruses were analyzed by Simplot. GII[P16] viruses with multiple residue mutations within the non-structural region were detected among circulating GII.4 and GII.3 strains. Comprehensive mutation analysis and selection pressure analysis of GII[P16] viruses showed positive as well as negative selection sites. A GII.17 strain (NICED-BCH-11889) had an untypeable polymerase type, closely related to GII[P38]. CONCLUSION This study highlights the circulation of diverse norovirus strains in eastern India. These findings are important for understanding norovirus epidemiology in India and may have implications for future vaccine development.
Collapse
Affiliation(s)
- Mahadeb Lo
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-Murayama, Tokyo, Japan
| | - Suvrotoa Mitra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India
| | - Ritubrita Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Center of Okayama University for Infectious Diseases in India, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kei Kitahara
- Collaborative Research Center of Okayama University for Infectious Diseases in India, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Regional Virus Research and Diagnostic Laboratory, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, West Bengal, India
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-Murayama, Tokyo, Japan.
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India.
| |
Collapse
|
2
|
Artman C, Idegwu N, Brumfield KD, Lai K, Hauta S, Falzarano D, Parreño V, Yuan L, Geyer JD, Goepp JG. Feasibility of Polyclonal Avian Immunoglobulins (IgY) as Prophylaxis against Human Norovirus Infection. Viruses 2022; 14:v14112371. [PMID: 36366469 PMCID: PMC9698945 DOI: 10.3390/v14112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Human norovirus (HuNoV) is the leading viral cause of diarrhea, with GII.4 as the predominant genotype of HuNoV outbreaks globally. However, new genogroup variants emerge periodically, complicating the development of anti-HuNoV vaccines; other prophylactic or therapeutic medications specifically for HuNoV disease are lacking. Passive immunization using oral anti-HuNoV antibodies may be a rational alternative. Here, we explore the feasibility of using avian immunoglobulins (IgY) for preventing HuNoV infection in vitro in a human intestinal enteroid (HIE) model. METHODS Hens were immunized with virus-like particles (VLP) of a GII.4 HuNoV strain (GII.4/CHDC2094/1974/US) by intramuscular injection. The resulting IgY was evaluated for inhibition of binding to histo-blood group antigens (HBGA) and viral neutralization against representative GII.4 and GII.6 clinical isolates, using an HIE model. RESULTS IgY titers were detected by three weeks following initial immunization, persisting at levels of 1:221 (1:2,097,152) from 9 weeks to 23 weeks. Anti-HuNoV IgY significantly (p < 0.05) blocked VLP adhesion to HBGA up to 1:12,048 dilution (0.005 mg/mL), and significantly (p < 0.05) inhibited replication of HuNoV GII.4[P16] Sydney 2012 in HIEs up to 1:128 dilution (0.08 mg/mL). Neutralization was not detected against genotype GII.6. CONCLUSIONS We demonstrate the feasibility of IgY for preventing infection of HIE by HuNoV GII.4. Clinical preparations should cover multiple circulating HuNoV genotypes for comprehensive effects. Plans for animal studies are underway.
Collapse
Affiliation(s)
- Chad Artman
- Scaled Microbiomics, LLC, Hagerstown, MD 21740, USA
| | | | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park Campus, College Park, MD 20742, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park Campus, College Park, MD 20742, USA
| | - Ken Lai
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Shirley Hauta
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Viviana Parreño
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- INCUINTA, IVIT, National Institute of Agricultural Technology (INTA, Argentina), Buenos Aires 1712, Argentina
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - James D. Geyer
- Institute for Rural Health Research, College of Community Health Science, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Julius G. Goepp
- Scaled Microbiomics, LLC, Hagerstown, MD 21740, USA
- Correspondence: ; Tel.: +1-585-820-9937
| |
Collapse
|
3
|
Estienney M, Tarris G, Abou-Hamad N, Rouleau A, Boireau W, Chassagnon R, Ayouni S, Daval-Frerot P, Martin L, Bouyer F, Le Pendu J, de Rougemont A, Belliot G. Epidemiological Impact of GII.17 Human Noroviruses Associated With Attachment to Enterocytes. Front Microbiol 2022; 13:858245. [PMID: 35572680 PMCID: PMC9094630 DOI: 10.3389/fmicb.2022.858245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 01/19/2023] Open
Abstract
For the last 30 years, molecular surveys have shown that human norovirus (HuNoV), predominantly the GII.4 genotype, is one of the main causative agents of gastroenteritis. However, epidemiological surveys have revealed the worldwide emergence of GII.17 HuNoVs. Genetic analysis confirmed that GII.17 strains are distributed into three variants (i.e., Kawasaki 308, Kawasaki 323, and CS-E1). Here, virus-like particles (VLPs) were baculovirus-expressed from these variants to study putative interactions with HBGA. Qualitative analysis of the HBGA binding profile of each variant showed that the most recent and predominant GII.17 variant, Kawasaki 308, possesses a larger binding spectrum. The retrospective study of GII.17 strains documented before the emergence of the dominant Kawasaki 308 variant showed that the emergence of a new GII.17 variant could be related to an increased binding capacity toward HBGA. The use of duodenal histological sections confirmed that recognition of enterocytes involved HBGA for the three GII.17 variants. Finally, we observed that the relative affinity of recent GII.17 VLPs for HBGA remains lower than that of the GII.4-2012 variant. These observations suggest a model whereby a combination of virological factors, such as polymerase fidelity and increased affinity for HBGA, and immunological factors was responsible for the incomplete and non-persistent replacement of GII.4 by new GII.17 variants.
Collapse
Affiliation(s)
- Marie Estienney
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France
| | - Georges Tarris
- Department of Pathology, University Hospital of Dijon, Dijon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Nicole Abou-Hamad
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France.,Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | - Alain Rouleau
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, Besançon, France
| | - Wilfrid Boireau
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, Besançon, France
| | - Rémi Chassagnon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | - Siwar Ayouni
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - Philippe Daval-Frerot
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France
| | - Laurent Martin
- Department of Pathology, University Hospital of Dijon, Dijon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Frédéric Bouyer
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France
| | - Gael Belliot
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne, Franche-Comté/AgroSup Dijon, Dijon, France
| |
Collapse
|
4
|
Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021; 13:v13081541. [PMID: 34452406 PMCID: PMC8402810 DOI: 10.3390/v13081541] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.
Collapse
|
5
|
Chen C, Wu B, Zhang H, Li KF, Liu R, Wang HL, Yan JB. Molecular evolution of GII.P17-GII.17 norovirus associated with sporadic acute gastroenteritis cases during 2013-2018 in Zhoushan Islands, China. Virus Genes 2020; 56:279-287. [PMID: 32065329 DOI: 10.1007/s11262-020-01744-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
In this study, we investigated the molecular characteristics and spatio-temporal dynamics of GII.P17-GII.17 norovirus in Zhoushan Islands during 2013-2018. We collected 1849 samples from sporadic acute gastroenteritis patients between January 2013 and August 2018 in Zhoushan Islands, China. Among the 1849 samples, 134 (7.24%) samples were positive for human norovirus (HuNoV). The complete sequence of GII.17 VP1 gene was amplified from 31 HuNoV-positive samples and sequenced. A phylogenetic tree was constructed based on the full-length sequence of the VP1 gene. Phylogenetic analysis revealed that the GII.17 genotype detected during 2014-2018 belongs to the new GII.17 Kawasaki variant. Divergence analysis revealed that the time of the most recent common ancestor (TMRCA) of GII.17 in Zhoushan Islands was estimated to be between 1997 and 1998. The evolutionary rate of the VP1 gene of the GII.17 genotype norovirus was 1.14 × 10-3 (95% HPD: 0.62-1.73 × 10-3) nucleotide substitutions/site/year. The spatio-temporal diffusion analysis of the GII.17 genotype identified Hong Kong as the epicenter for GII.17 dissemination. The VP1 gene sequence of Zhoushan Island isolates correlated with that of Hong Kong and Japan isolates.
Collapse
Affiliation(s)
- Can Chen
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affifiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Wu
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Hui Zhang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Ke-Feng Li
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Rong Liu
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Ling Wang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.
| | - Jian-Bo Yan
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Abstract
Noroviruses are a very diverse group of viruses that infect different mammalian species. In humans, norovirus is a major cause of acute gastroenteritis. Multiple norovirus infections can occur in a lifetime as the result of limited duration of acquired immunity and cross-protection among different strains. A combination of advances in sequencing methods and improvements on surveillance has provided new insights into norovirus diversification and emergence. The generation of diverse norovirus strains has been associated with (1) point mutations on two different genes: ORF1, encoding the non-structural proteins, and ORF2, encoding the major capsid protein (VP1); and (2) recombination events that create chimeric viruses. While both mechanisms are exploited by all norovirus strains, individual genotypes utilize each mechanism differently to emerge and persist in the human population. GII.4 noroviruses (the most prevalent genotype in humans) present an accumulation of amino acid mutations on VP1 resulting in the chronological emergence of new variants. In contrast, non-GII.4 noroviruses present co-circulation of different variants over long periods with limited changes on their VP1. Notably, genetic diversity of non-GII.4 noroviruses is mostly related to the high number of recombinant strains detected in humans. While it is difficult to determine the precise mechanism of emergence of epidemic noroviruses, observations point to multiple factors that include host-virus interactions and changes on two regions of the genome (ORF1 and ORF2). Larger datasets of viral genomes are needed to facilitate comparison of epidemic strains and those circulating at low levels in the population. This will provide a better understanding of the mechanism of norovirus emergence and persistence.
Collapse
Affiliation(s)
- Gabriel I Parra
- Division of Viral Products, Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1308, Silver Spring, MD 20993, USA
| |
Collapse
|
7
|
Matsushima Y, Mizukoshi F, Sakon N, Doan YH, Ueki Y, Ogawa Y, Motoya T, Tsukagoshi H, Nakamura N, Shigemoto N, Yoshitomi H, Okamoto-Nakagawa R, Suzuki R, Tsutsui R, Terasoma F, Takahashi T, Sadamasu K, Shimizu H, Okabe N, Nagasawa K, Aso J, Ishii H, Kuroda M, Ryo A, Katayama K, Kimura H. Evolutionary Analysis of the VP1 and RNA-Dependent RNA Polymerase Regions of Human Norovirus GII.P17-GII.17 in 2013-2017. Front Microbiol 2019; 10:2189. [PMID: 31611853 PMCID: PMC6777354 DOI: 10.3389/fmicb.2019.02189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023] Open
Abstract
Human norovirus (HuNoV) GII.P17-GII.17 (Kawasaki2014 variant) reportedly emerged in 2014 and caused gastroenteritis outbreaks worldwide. To clarify the evolution of both VP1 and RNA-dependent RNA polymerase (RdRp) regions of GII.P17-GII.17, we analyzed both global and novel Japanese strains detected during 2013-2017. Time-scaled phylogenetic trees revealed that the ancestral GII.17 VP1 region diverged around 1949, while the ancestral GII.P17 RdRp region diverged around 2010. The evolutionary rates of the VP1 and RdRp regions were estimated at ~2.7 × 10-3 and ~2.3 × 10-3 substitutions/site/year, respectively. The phylogenetic distances of the VP1 region exhibited no overlaps between intra-cluster and inter-cluster peaks in the GII.17 strains, whereas those of the RdRp region exhibited a unimodal distribution in the GII.P17 strains. Conformational epitope positions in the VP1 protein of the GII.P17-GII.17 strains were similar, although some substitutions, insertions and deletions had occurred. Strains belonging to the same cluster also harbored substitutions around the binding sites for the histo-blood group antigens of the VP1 protein. Moreover, some amino acid substitutions were estimated to be near the interface between monomers and the active site of the RdRp protein. These results suggest that the GII.P17-GII.17 virus has produced variants with the potential to alter viral antigenicity, host-binding capability, and replication property over the past 10 years.
Collapse
Affiliation(s)
- Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, Sendai, Japan
| | - Yasutaka Ogawa
- Division of Virology, Saitama Institute of Public Health, Saitama, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi, Japan
| | | | - Naoki Shigemoto
- Hiroshima Prefectural Technology Research Institute Public Health and Environment Center, Hiroshima, Japan
| | - Hideaki Yoshitomi
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | | | - Rieko Suzuki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Rika Tsutsui
- Aomori Prefecture Public Health and Environment Center, Aomori, Japan
| | - Fumio Terasoma
- Wakayama Prefectural Research Center of Environment and Public Health, Wakayama, Japan
| | - Tomoko Takahashi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku, Japan
| | - Hideaki Shimizu
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Nobuhiko Okabe
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | | | - Jumpei Aso
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Qian Y, Song M, Jiang X, Xia M, Meller J, Tan M, Chen Y, Li X, Rao Z. Structural Adaptations of Norovirus GII.17/13/21 Lineage through Two Distinct Evolutionary Paths. J Virol 2019; 93:e01655-18. [PMID: 30333166 PMCID: PMC6288326 DOI: 10.1128/jvi.01655-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (huNoVs), which cause epidemic acute gastroenteritis, recognize histo-blood group antigens (HBGAs) as host attachment factors affecting host susceptibility. HuNoVs are genetically diverse, containing at least 31 genotypes in the two major genogroups (genogroup I [GI] and GII). Three GII genotypes, GII genotype 17 (GII.17), GII.13, and GII.21, form a unique genetic lineage, in which the GII.17 genotype retains the conventional GII HBGA binding site (HBS), while the GII.13/21 genotypes acquire a completely new HBS. To understand the molecular bases behind these evolutionary changes, we solved the crystal structures of the HBGA binding protruding domains of (i) an early GII.17 variant (the 1978 variant) that does not bind or binds weakly to HBGAs, (ii) the new GII.17 variant (the 2014/15 variant) that binds A/B/H antigens strongly via an optimized GII HBS, and (iii) a GII.13 variant (the 2010 variant) that binds the Lewis a (Lea) antigen via the new HBS. These serial, high-resolution structural data enable a comprehensive structural comparison to understand the evolutionary changes of the GII.17/13/21 lineage, including the emergence of the new HBS of the GII.13/21 sublineage and the possible HBS optimization of the recent GII.17 variant for an enhanced HBGA binding ability. Our study elucidates the structural adaptations of the GII.17/13/21 lineage through distinct evolutionary paths, which may allow a theory explaining huNoV adaptations and evolutions to be put forward.IMPORTANCE Our understanding of the molecular bases behind the interplays between human noroviruses and their host glycan ligands, as well as their evolutionary changes over time with alterations in their host ligand binding capability and host susceptibility, remains limited. By solving the crystal structures of the glycan ligand binding protruding (P) domains with or without glycan ligands of three representative noroviruses of the GII.17/13/21 genetic lineage, we elucidated the molecular bases of the human norovirus-glycan interactions of this special genetic lineage. We present solid evidence on how noroviruses of this genetic lineage evolved via different evolutionary paths to (i) optimize their glycan binding site for higher glycan binding function and (ii) acquire a completely new glycan binding site for new ligands. Our data shed light on the mechanism of the structural adaptations of human noroviruses through different evolutionary paths, facilitating our understanding of human norovirus adaptations, evolutions, and epidemiology.
Collapse
Affiliation(s)
- Ying Qian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohan Song
- College of Life Science, Nankai University, Tianjin, China
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jarek Meller
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Tohma K, Lepore CJ, Ford-Siltz LA, Parra GI. Evolutionary dynamics of non-GII genotype 4 (GII.4) noroviruses reveal limited and independent diversification of variants. J Gen Virol 2018; 99:1027-1035. [DOI: 10.1099/jgv.0.001088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Cara J. Lepore
- Division of Viral Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Lauren A. Ford-Siltz
- Division of Viral Products, Food and Drug Administration, Silver Spring, MD, USA
| | - Gabriel I. Parra
- Division of Viral Products, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
10
|
Phylogenetic Analyses Suggest that Factors Other Than the Capsid Protein Play a Role in the Epidemic Potential of GII.2 Norovirus. mSphere 2017; 2:mSphere00187-17. [PMID: 28529975 PMCID: PMC5437133 DOI: 10.1128/mspheredirect.00187-17] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/20/2022] Open
Abstract
Norovirus is the leading cause of acute gastroenteritis worldwide. For over two decades, a single genotype (GII.4) has been responsible for most norovirus-associated cases. However, during the winter of 2014 to 2015, the GII.4 strains were displaced by a rarely detected genotype (GII.17) in several countries of the Asian continent. Moreover, during the winter of 2016 to 2017, the GII.2 strain reemerged as predominant in different countries worldwide. This reemerging GII.2 strain is a recombinant virus that presents a GII.P16 polymerase genotype. In this study, we investigated the evolutionary dynamics of GII.2 to determine the mechanism of this sudden emergence in the human population. The phylogenetic analyses indicated strong linear evolution of the VP1-encoding sequence, albeit with minor changes in the amino acid sequence over time. Without major genetic differences among the strains, a clustering based on the polymerase genotype was observed in the tree. This association did not affect the substitution rate of the VP1. Phylogenetic analyses of the polymerase region showed that reemerging GII.P16-GII.2 strains diverged into a new cluster, with a small number of amino acid substitutions detected on the surface of the associated polymerase. Thus, besides recombination or antigenic shift, point mutations in nonstructural proteins could also lead to novel properties with epidemic potential in different norovirus genotypes. IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide. Currently, there is no vaccine or specific antiviral available to treat norovirus disease. Multiple norovirus strains infect humans, but a single genotype (GII.4) has been regarded as the most important cause of viral gastroenteritis outbreaks worldwide. Its persistence and predominance have been explained by the continuous replacement of variants that present new antigenic properties on their capsid protein, thus evading the herd immunity acquired to the previous variants. Over the last three seasons, minor genotypes have displaced the GII.4 viruses as the predominant strains. One of these genotypes, GII.2, reemerged as predominant during 2016 to 2017. Here we show that factors such as minor changes in the polymerase may have driven the reemergence of GII.2 during the last season. A better understanding of norovirus diversity is important for the development of effective treatments against noroviruses.
Collapse
|