1
|
Baryshnikova V, Turchenko Y, Tuchynskaya K, Belyaletdinova I, Butenko A, Dereventsova A, Ignatiev G, Kholodilov I, Larichev V, Lyapeykova E, Rogova A, Shakaryan A, Shishova A, Gmyl A, Karganova G. Recombinant TBEV Protein E of the Siberian Subtype Is a Candidate Antigen in the ELISA Test System for Differential Diagnosis. Diagnostics (Basel) 2023; 13:3277. [PMID: 37892100 PMCID: PMC10606673 DOI: 10.3390/diagnostics13203277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The tick-borne encephalitis virus (TBEV) is one of the most common members of the Orthoflavivirus genus, which comprises the causative agents of severe diseases in humans and animals. Due to the expanding areas of orthoflavivirus infection, its differential diagnosis is highly demanded. Commercial test kits based on inactivated TBEV may not provide reliable differentiation between flaviviruses because of serological crossover in this genus. Application of recombinant domains (sE and dIII) of the TBEV Sukhar-strain protein E as antigens in an ELISA test system allowed us to identify a wide range of antibodies specific to different TBEV strains. We tested 53 sera from human patients with confirmed TBE diagnosis (the efficacy of our test system based on sE protein was 98%) and 56 sera from patients with other orthoflavivirus infections in which no positive ones were detected using our ELISA test system, thus being indicative of its 100% specificity. We also tested mouse and rabbit sera containing antibodies specific to 17 TBEV strains belonging to different subtypes; this assay exhibited high efficacy and differentiation ability in detecting antibodies against TBEV from other orthoflaviviruses such as Omsk hemorrhagic fever, Powassan, yellow fever, dengue, West Nile, Zika, and Japanese encephalitis viruses.
Collapse
Affiliation(s)
- Victoria Baryshnikova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
| | - Yuriy Turchenko
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
| | - Ksenia Tuchynskaya
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
| | - Ilmira Belyaletdinova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
| | - Alexander Butenko
- D.I. Ivanovsky Institute of Virology Division of N.F. Gamaleya National Research Center of Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Alena Dereventsova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
| | - Georgy Ignatiev
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
| | - Ivan Kholodilov
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
| | - Victor Larichev
- D.I. Ivanovsky Institute of Virology Division of N.F. Gamaleya National Research Center of Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Ekaterina Lyapeykova
- Infectious Clinical Hospital No. 1 of the Moscow City Health Department, Moscow 125310, Russia;
| | - Anastasiya Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
| | - Armen Shakaryan
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
- Department of Infectious Diseases in Children, Faculty of Pediatrics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anna Shishova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Anatoly Gmyl
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
| | - Galina Karganova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia (Y.T.); (I.B.); (A.S.); (A.S.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
2
|
Litov AG, Okhezin EV, Kholodilov IS, Polienko AE, Karganova GG. Quantitative Polymerase Chain Reaction System for Alongshan Virus Detection. Methods Protoc 2023; 6:79. [PMID: 37736962 PMCID: PMC10514782 DOI: 10.3390/mps6050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
The recently discovered Jingmenvirus group includes viruses with a segmented genome, RNA of a positive polarity, and several proteins with distant homology to the proteins of the members of the genus Orthoflavivirus. Some Jingmenvirus group members, namely the Alongshan virus (ALSV) and Jingmen tick virus, are reported to be tick-borne human pathogens that can cause a wide variety of symptoms. The ALSV is widely distributed in Eurasia, yet no reliable assay that can detect it exists. We describe a qPCR system for ALSV detection. Our data showed that this system can detect as little as 104 copies of the ALSV in a sample. The system showed no amplification of the common tick-borne viruses circulating in Eurasia, i.e., the Yanggou tick virus-which is another Jingmenvirus group member-or some known members of the genus Orthoflavivirus. The qPCR system was tested and had no nonspecific signal for the Ixodes ricinus, I. persulcatus, Dermacentor reticulatus, D. marginatus, Haemaphysalis concinna, and H. japonica ticks. The qPCR system had no nonspecific signal for human and sheep serum as well. Overall, the qPCR system described here can be used for reliable and quantitative ALSV detection.
Collapse
Affiliation(s)
- Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Egor V. Okhezin
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS” (Institute of Poliomyelitis), 108819 Moscow, Russia; (E.V.O.); (I.S.K.); (A.E.P.); (G.G.K.)
| |
Collapse
|
3
|
Kubinski M, Beicht J, Zdora I, Biermann J, Puff C, Gerlach T, Tscherne A, Baumgärtner W, Osterhaus ADME, Sutter G, Prajeeth CK, Rimmelzwaan GF. A recombinant Modified Vaccinia virus Ankara expressing prME of tick-borne encephalitis virus affords mice full protection against TBEV infection. Front Immunol 2023; 14:1182963. [PMID: 37153588 PMCID: PMC10160477 DOI: 10.3389/fimmu.2023.1182963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Tick-borne encephalitis virus (TBEV) is an important human pathogen that can cause a serious disease involving the central nervous system (tick-borne encephalitis, TBE). Although approved inactivated vaccines are available, the number of TBE cases is rising, and breakthrough infections in fully vaccinated subjects have been reported in recent years. Methods In the present study, we generated and characterized a recombinant Modified Vaccinia virus Ankara (MVA) for the delivery of the pre-membrane (prM) and envelope (E) proteins of TBEV (MVA-prME). Results MVA-prME was tested in mice in comparison with a licensed vaccine FSME-IMMUN® and proved to be highly immunogenic and afforded full protection against challenge infection with TBEV. Discussion Our data indicate that MVA-prME holds promise as an improved next-generation vaccine for the prevention of TBE.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Jeannine Biermann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alina Tscherne
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Guus F. Rimmelzwaan,
| |
Collapse
|
4
|
Tuchynskaya K, Volok V, Illarionova V, Okhezin E, Polienko A, Belova O, Rogova A, Chernokhaeva L, Karganova G. Experimental Assessment of Possible Factors Associated with Tick-Borne Encephalitis Vaccine Failure. Microorganisms 2021; 9:1172. [PMID: 34072340 PMCID: PMC8229799 DOI: 10.3390/microorganisms9061172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Currently the only effective measure against tick-borne encephalitis (TBE) is vaccination. Despite the high efficacy of approved vaccines against TBE, rare cases of vaccine failures are well documented. Both host- and virus-related factors can account for such failures. In this work, we studied the influence of mouse strain and sex and the effects of cyclophosphamide-induced immunosuppression on the efficacy of an inactivated TBE vaccine. We also investigated how an increased proportion of non-infectious particles in the challenge TBE virus would affect the protectivity of the vaccine. The vaccine efficacy was assessed by mortality, morbidity, levels of viral RNA in the brain of surviving mice, and neutralizing antibody (NAb) titers against the vaccine strain and the challenge virus. Two-dose vaccination protected most animals against TBE symptoms and death, and protectivity depended on strain and sex of mice. Immunosuppression decreased the vaccine efficacy in a dose-dependent manner and changed the vaccine-induced NAb spectrum. The vaccination protected mice against TBE virus neuroinvasion and persistence. However, viral RNA was detected in the brain of some asymptomatic animals at 21 and 42 dpi. Challenge with TBE virus enriched with non-infectious particles led to lower NAb titers in vaccinated mice after the challenge but did not affect the protective efficacy.
Collapse
Affiliation(s)
- Ksenia Tuchynskaya
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Viktor Volok
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Illarionova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Egor Okhezin
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexandra Polienko
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Oxana Belova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Anastasia Rogova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Liubov Chernokhaeva
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Galina Karganova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Agudelo M, Palus M, Keeffe JR, Bianchini F, Svoboda P, Salát J, Peace A, Gazumyan A, Cipolla M, Kapoor T, Guidetti F, Yao KH, Elsterová J, Teislerová D, Chrdle A, Hönig V, Oliveira T, West AP, Lee YE, Rice CM, MacDonald MR, Bjorkman PJ, Růžek D, Robbiani DF, Nussenzweig MC. Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J Exp Med 2021; 218:e20210236. [PMID: 33831141 PMCID: PMC8040517 DOI: 10.1084/jem.20210236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI-EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Cells, Cultured
- Cohort Studies
- Cross Reactions/immunology
- Encephalitis Viruses, Tick-Borne/drug effects
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/virology
- Epitopes/immunology
- Female
- Humans
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- Sequence Homology, Amino Acid
- Survival Analysis
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Mice
Collapse
Affiliation(s)
- Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Filippo Bianchini
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Pavel Svoboda
- Veterinary Research Institute, Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiří Salát
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Tania Kapoor
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Francesca Guidetti
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Jana Elsterová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Aleš Chrdle
- Hospital České Budějovice, České Budějovice, Czech Republic
- Faculty of Social and Health Sciences, University of South Bohemia, České Budějovice, Czech Republic
- Royal Liverpool University Hospital, Liverpool, UK
| | - Václav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Davide F. Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
6
|
Deviatkin AA, Kholodilov IS, Belova OA, Bugmyrin SV, Bespyatova LA, Ivannikova AY, Vakulenko YA, Lukashev AN, Karganova GG. Baltic Group Tick-Borne Encephalitis Virus Phylogeography: Systemic Inconsistency Pattern between Genetic and Geographic Distances. Microorganisms 2020; 8:microorganisms8101589. [PMID: 33076346 PMCID: PMC7602664 DOI: 10.3390/microorganisms8101589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 10/26/2022] Open
Abstract
Tick-Borne Encephalitis Virus (TBEV) is a dangerous arbovirus widely distributed in Northern Eurasia. The area of this pathogen changes over time. At the beginning of the 2000s, the Ixodes tick populations in Karelia increased. At the same time, the area of I. persulcatus, the main vector of the Siberian TBEV subtype, also expanded. Herein, we sequenced 10 viruses isolated from ticks collected in three locations from the Karelia region in 2008-2018. PCR positive samples were passaged in suckling mice or pig embryo kidney cells (PEK). After the second passage in suckling, mice viral RNA was isolated and E-gene fragment was sequenced. Viral sequences were expected to be similar or nearly identical. Instead, there was up to a 4.8% difference in nucleotide sequence, comparable with the most diverse viruses belonging to the Baltic subgroup in Siberian TBEV subtype (Baltic TBEV-Sib). To reveal whether this was systemic or incidental, a comprehensive phylogeographical analysis was conducted. Interestingly, viruses within each geographic region demonstrated comparable diversity to the whole Baltic TBEV-Sib. Moreover, Baltic TBEV-Sib has a distribution area limited by three ecological regions. This means that active virus mixing occurs in the vast geographic area forming one common virus pool. The most plausible explanation is the involvement of flying animals in the TBEV spread.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Correspondence: (A.A.D.); (G.G.K.)
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.Y.I.)
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.Y.I.)
| | - Sergey V. Bugmyrin
- Laboratory for Animal and Plant Parasitology, Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (S.V.B.); (L.A.B.)
| | - Lubov A. Bespyatova
- Laboratory for Animal and Plant Parasitology, Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (S.V.B.); (L.A.B.)
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.Y.I.)
| | - Yulia A. Vakulenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.Y.I.)
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence: (A.A.D.); (G.G.K.)
| |
Collapse
|
7
|
Vorovitch MF, Grishina KG, Volok VP, Chernokhaeva LL, Grishin KV, Karganova GG, Ishmukhametov AA. Evervac: phase I/II study of immunogenicity and safety of a new adjuvant-free TBE vaccine cultivated in Vero cell culture. Hum Vaccin Immunother 2020; 16:2123-2130. [PMID: 32429733 PMCID: PMC7553679 DOI: 10.1080/21645515.2020.1757990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Approximately 10,000 cases of tick-borne encephalitis (TBE), a serious disease of the central nervous system caused by tick-borne encephalitis virus (TBEV), are registered worldwide every year. Vaccination against TBE remains the most essential measure of preventing the disease. Unlike available TBE vaccines, a new inactivated lyophilized candidate vaccine Evervac is produced in Vero continuous cell culture and its final formulation does not include aluminum-based adjuvants. To study the safety and immunogenicity of Evervac, healthy adults 18-60 y of age were immunized twice at 30-d intervals. The study was single-blind, randomized, comparative, controlled, and was conducted in TBE-endemic areas. The commercial lyophilized vaccine TBE-Moscow was used as a comparison treatment. The subjects were observed for incidence, severity, and duration of adverse reactions. It was shown that the severity of local and systemic reactions in the Evervac vaccine group was mild to moderate. There were no significant differences in the incidence of adverse reactions between the Evervac and TBE-Moscow vaccine groups. Immunization with Evervac produced a significant increase in geometric mean titer (GMT) of anti-TBEV antibodies in both initially seronegative and seropositive recipients. The seroconversion rate for the initially seronegative recipients was 69% (GMT = 1:214) after the first dose and reached 100% after the second dose. In these parameters, there were no significant differences between the study and control vaccine groups. Thus, the adjuvant-free Vero-based vaccine Evervac was well tolerated, had low reactogenicity, induced a pronounced immune response, and was overall non-inferior to the commercial adjuvanted TBE vaccine used as a control.
Collapse
Affiliation(s)
- Mikhail F. Vorovitch
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Karina G. Grishina
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Viktor P. Volok
- Laboratory of Biology of Arboviruses, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Liubov L. Chernokhaeva
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Konstantin V. Grishin
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aidar A. Ishmukhametov
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
8
|
Immunogenicity and safety of the tick-borne encephalitis vaccination (2009–2019): A systematic review. Travel Med Infect Dis 2020; 37:101876. [DOI: 10.1016/j.tmaid.2020.101876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
|
9
|
Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines (Basel) 2020; 8:E451. [PMID: 32806696 PMCID: PMC7564546 DOI: 10.3390/vaccines8030451] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is one of the most important tick-transmitted viruses in Europe and Asia. Being a neurotropic virus, TBEV causes infection of the central nervous system, leading to various (permanent) neurological disorders summarized as tick-borne encephalitis (TBE). The incidence of TBE cases has increased due to the expansion of TBEV and its vectors. Since antiviral treatment is lacking, vaccination against TBEV is the most important protective measure. However, vaccination coverage is relatively low and immunogenicity of the currently available vaccines is limited, which may account for the vaccine failures that are observed. Understanding the TBEV-specific correlates of protection is of pivotal importance for developing novel and improved TBEV vaccines. For affording robust protection against infection and development of TBE, vaccines should induce both humoral and cellular immunity. In this review, the adaptive immunity induced upon TBEV infection and vaccination as well as novel approaches to produce improved TBEV vaccines are discussed.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany;
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University (LMU) Munich, Veterinaerstr. 13, 80539 Munich, Germany;
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| |
Collapse
|
10
|
Deviatkin AA, Kholodilov IS, Vakulenko YA, Karganova GG, Lukashev AN. Tick-Borne Encephalitis Virus: An Emerging Ancient Zoonosis? Viruses 2020; 12:v12020247. [PMID: 32102228 PMCID: PMC7077300 DOI: 10.3390/v12020247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Tick-borne encephalitis (TBE) is one of the most important viral zoonosis transmitted by the bite of infected ticks. In this study, all tick-borne encephalitis virus (TBEV) E gene sequences available in GenBank as of June 2019 with known date of isolation (n = 551) were analyzed. Simulation studies showed that a sample bias could significantly affect earlier studies, because small TBEV datasets (n = 50) produced non-overlapping intervals for evolutionary rate estimates. An apparent lack of a temporal signal in TBEV, in general, was found, precluding molecular clock analysis of all TBEV subtypes in one dataset. Within all subtypes and most of the smaller groups in these subtypes, there was evidence of many medium- and long-distance virus transfers. These multiple random events may play a key role in the virus spreading. For some groups, virus diversity within one territory was similar to diversity over the whole geographic range. This is best exemplified by the virus diversity observed in Switzerland or Czech Republic. These two countries yielded most of the known European subtype Eu3 subgroup sequences, and the diversity of viruses found within each of these small countries is comparable to that of the whole Eu3 subgroup, which is prevalent all over Central and Eastern Europe. Most of the deep tree nodes within all three established TBEV subtypes dated less than 300 years back. This could be explained by the recent emergence of most of the known TBEV diversity. Results of bioinformatics analysis presented here, together with multiple field findings, suggest that TBEV may be regarded as an emerging disease.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Laboratory of Postgenomic Technologies, Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
- Correspondence: ; Tel.: +7-906-739-0860
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (G.G.K.)
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (G.G.K.)
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
11
|
Vorovitch MF, Maikova GB, Chernokhaeva LL, Romanenko VV, Karganova GG, Ishmukhametov AA. Comparison of the Immunogenicity and Safety of Two Pediatric TBE Vaccines Based on the Far Eastern and European Virus Subtypes. Adv Virol 2019; 2019:5323428. [PMID: 31933642 PMCID: PMC6942698 DOI: 10.1155/2019/5323428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/12/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
Up to 10,000 cases of tick-borne encephalitis are registered annually, 20% of which occur in children under 17 years of age. A comparison of the immunogenicity and safety between a new pediatric Tick-E-Vac vaccine based on the TBEV strain Sofjin and FSME-IMMUN Junior vaccine was performed in the Sverdlovsk region. The vaccine strains differ from strains of the Siberian subtype of TBEV that dominates in the region. The study was performed on 163 children aged 1 to 15, who received one of the vaccines according to either a conventional or rapid vaccination schedule. Immunogenicity was assessed based on the seroprotection rates and titers of virus-neutralizing antibodies. There were no significant differences in either the immunogenicity or reactogenicity of the pediatric vaccines based on strains of the Far Eastern or European subtypes of TBEV. Under both vaccination schedules, 30 days after the second injection, seroprotection rates were 100% for Tick-E-Vac and greater than 95% for FSME-IMMUN Junior, while the geometric mean titer of TBEV-neutralizing antibodies was at least 2,4 log10 (1 : 250) for either vaccine. Fourteen days after the second injection according to the rapid schedule, seroprotection rates were significantly lower, ranging from 50% to 63% regardless of the vaccine used. The observed adverse reactions were mild or moderate for both vaccines under both vaccination schedules, with total adverse event rates of less than 25%. Reactogenicity was not associated with the gender or age of the recipients. There were no statistically significant differences in the incidence of adverse reactions between the group of subjects who were baseline seronegative or seropositive. However, 14 days after the second vaccine injection according to the rapid schedule, a statistically significant difference in nAbs titers was identified between groups of children with and without reported reactions.
Collapse
Affiliation(s)
- Mikhail F. Vorovitch
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Galina B. Maikova
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Liubov L. Chernokhaeva
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Victor V. Romanenko
- Federal Budgetary Healthcare Institution “Center for Hygiene and Epidemiology in the Sverdlovsk Region”, 620078 Yekaterinburg, Russia
| | - Galina G. Karganova
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aydar A. Ishmukhametov
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019; 164:23-51. [PMID: 30710567 DOI: 10.1016/j.antiviral.2019.01.014] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis (TBE) is an illness caused by tick-borne encephalitis virus (TBEV) infection which is often limited to a febrile illness, but may lead to very aggressive downstream neurological manifestations. The disease is prevalent in forested areas of Europe and northeastern Asia, and is typically caused by infection involving one of three TBEV subtypes, namely the European (TBEV-Eu), the Siberian (TBEV-Sib), or the Far Eastern (TBEV-FE) subtypes. In addition to the three main TBEV subtypes, two other subtypes; i.e., the Baikalian (TBEV-Bkl) and the Himalayan subtype (TBEV-Him), have been described recently. In Europe, TBEV-Eu infection usually results in only mild TBE associated with a mortality rate of <2%. TBEV-Sib infection also results in a generally mild TBE associated with a non-paralytic febrile form of encephalitis, although there is a tendency towards persistent TBE caused by chronic viral infection. TBE-FE infection is considered to induce the most severe forms of TBE. Importantly though, viral subtype is not the sole determinant of TBE severity; both mild and severe cases of TBE are in fact associated with infection by any of the subtypes. In keeping with this observation, the overall TBE mortality rate in Russia is ∼2%, in spite of the fact that TBEV-Sib and TBEV-FE subtypes appear to be inducers of more severe TBE than TBEV-Eu. On the other hand, TBEV-Sib and TBEV-FE subtype infections in Russia are associated with essentially unique forms of TBE rarely seen elsewhere if at all, such as the hemorrhagic and chronic (progressive) forms of the disease. For post-exposure prophylaxis and TBE treatment in Russia and Kazakhstan, a specific anti-TBEV immunoglobulin is currently used with well-documented efficacy, but the use of specific TBEV immunoglobulins has been discontinued in Europe due to concerns regarding antibody-enhanced disease in naïve individuals. Therefore, new treatments are essential. This review summarizes available data on the pathogenesis and clinical features of TBE, plus different vaccine preparations available in Europe and Russia. In addition, new treatment possibilities, including small molecule drugs and experimental immunotherapies are reviewed. The authors caution that their descriptions of approved or experimental therapies should not be considered to be recommendations for patient care.
Collapse
|