1
|
Gao F, Liu P, Huo Y, Bian L, Wu X, Liu M, Wang Q, He Q, Dong F, Wang Z, Xie Z, Zhang Z, Gu M, Xu Y, Li Y, Zhu R, Cheng T, Wang T, Mao Q, Liang Z. A screening study on the detection strain of Coxsackievirus A6: the key to evaluating neutralizing antibodies in vaccines. Emerg Microbes Infect 2024; 13:2322671. [PMID: 38390796 PMCID: PMC10906128 DOI: 10.1080/22221751.2024.2322671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
The increasing incidence of diseases caused by Coxsackievirus A6 (CV-A6) and the presence of various mutants in the population present significant public health challenges. Given the concurrent development of multiple vaccines in China, it is challenging to objectively and accurately evaluate the level of neutralizing antibody response to different vaccines. The choice of the detection strain is a crucial factor that influences the detection of neutralizing antibodies. In this study, the National Institutes for Food and Drug Control collected a prototype strain (Gdula), one subgenotype D1, as well as 13 CV-A6 candidate vaccine strains and candidate detection strains (subgenotype D3) from various institutions and manufacturers involved in research and development. We evaluated cross-neutralization activity using plasma from naturally infected adults (n = 30) and serum from rats immunized with the aforementioned CV-A6 strains. Although there were differences between the geometric mean titer (GMT) ranges of human plasma and murine sera, the overall trends were similar. A significant effect of each strain on the neutralizing antibody test (MAX/MIN 48.0 ∼16410.3) was observed. Among all strains, neutralization of the S112 strain by 15 different sera resulted in higher neutralizing antibody titers (GMTS112 = 132.0) and more consistent responses across different genotypic immune sera (MAX/MIN = 48.0). Therefore, S112 may serve as a detection strain for NtAb testing in various vaccines, minimizing bias and making it suitable for evaluating the immunogenicity of the CV-A6 vaccine.
Collapse
Affiliation(s)
- Fan Gao
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Pei Liu
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yaqian Huo
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
- Department of Research & Development, Shanghai Institute of Biological Products Co., Ltd, Shanghai, People’s Republic of China
| | - Lianlian Bian
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Xing Wu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Mingchen Liu
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Qian Wang
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Fangyu Dong
- Department of Research & Development, Taibang Biologic Group, Beijing, People’s Republic of China
| | - Zejun Wang
- Department of R&D, Wuhan Institute of Biological Products Co., LTD, Wuhan, People’s Republic of China
| | - Zhongping Xie
- Department of Production Management, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China
| | - Zhongyang Zhang
- The Second Research Laboratory, National Vaccine and Serum Institute, Beijing, People’s Republic of China
| | - Meirong Gu
- R&D Center, Minhai Biotechnology Co., LTD, Beijing, People’s Republic of China
| | - Yingzhi Xu
- R&D Center, Minhai Biotechnology Co., LTD, Beijing, People’s Republic of China
| | - Yajing Li
- R&D Center, Sinovac Biotech Co., LTD, Beijing, People’s Republic of China
| | - Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People’s Republic of China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, People’s Republic of China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Chen J, Chu Z, Zhang M, Liu Y, Feng C, Li L, Yang Z, Ma S. Molecular characterization of a novel clade echovirus 3 isolated from patients with hand-foot-and-mouth disease in southwest China. J Med Virol 2023; 95:e29202. [PMID: 37909741 DOI: 10.1002/jmv.29202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Echovirus 3 (E3) belongs to the species Enterovirus B. Currently, three nearly whole-genome sequences of E3 are available in GenBank in China. In this study, we determined the whole genomic sequences of six E3 strains isolated from the stools of patients with hand-foot-and-mouth disease in Southwest China in 2022. Their nucleotide and amino acid sequences shared 82.1%-86.4% and 96.6%-97.2% identity with the prototype Morrisey strain, respectively, and showed 87.1% and 97.2% mutual identity. The six E3 strains are not clustered with other Chinese strains and formed a novel subgenotype (C6) with the recent American and British strains. Recombination analyses revealed that intertype recombination had occurred in the 2 C and 3D regions of the six E3 strains with coxsackieviruses B5 and B4, respectively. This study augments the nearly whole-genome sequences of E3 in the GenBank database and extends the molecular characterization of this virus in China.
Collapse
Affiliation(s)
- Junwei Chen
- School of Life Sciences, Yunnan University, Kunming, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Zhaoyang Chu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Yuhan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Li Li
- Department of Clinical Laboratory Kunming Maternal and Child Health hospital, Kunming, China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| |
Collapse
|
3
|
Zhang M, He D, Liu Y, Gong Y, Dong W, Chen Y, Ma S. Complete genome analysis of echovirus 30 strains isolated from hand-foot-and-mouth disease in Yunnan province, China. Virol J 2023; 20:215. [PMID: 37730633 PMCID: PMC10510139 DOI: 10.1186/s12985-023-02179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Echovirus 30 is prone to cause hand-foot-and-mouth disease in infants and children. However, molecular epidemiologic information on the spread of E30 in southwestern China remains limited. In this study, we determined and analyzed the whole genomic sequences of E30 strains isolated from the stools of patients with hand-foot-and-mouth disease in Yunnan Province, China, in 2019. METHODS E30 isolates were obtained from fecal samples of HFMD patients. The whole genomes were sequenced by segmented PCR and analyzed for phylogeny, mutation and recombination. MEGA and DNAStar were used to align the present isolates with the reference strains. The VP1 sequence of the isolates were analyzed for selection pressure using datamonkey server. RESULTS The complete genome sequences of four E30 were obtained from this virus isolation. Significant homologous recombination signals in the P2-3'UTR region were found in all four isolates with other serotypes. Phylogenetic analysis showed that the four E30 isolates belonged to lineage H. Comparison of the VP1 sequences of these four isolates with other E30 reference strains using three selection pressure analysis models FUBAR, FEL, and MEME, revealed a positive selection site at 133rd position. CONCLUSIONS This study extends the whole genome sequence of E30 in GenBank, in which mutations and recombinations have driven the evolution of E30 and further improved and enriched the genetic characteristics of E30, providing fundamental data for the prevention and control of diseases caused by E30. Furthermore, we demonstrated the value of continuous and extensive surveillance of enterovirus serotypes other than the major HFMD-causing viruses.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650118, PR China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Daqian He
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China
| | - Yuhan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650118, PR China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China
| | - Yue Gong
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China
| | - Wenxun Dong
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Hospital,Yunnan Cancer Center), Kunming, 650118, China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650118, PR China.
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, PR China.
| |
Collapse
|
4
|
Guo W, Xu D, Cong S, Du Z, Li L, Zhang M, Feng C, Bao G, Sun H, Yang Z, Ma S. Co-infection and enterovirus B: post EV-A71 mass vaccination scenario in China. BMC Infect Dis 2022; 22:671. [PMID: 35927711 PMCID: PMC9354358 DOI: 10.1186/s12879-022-07661-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common child infectious disease caused by more than 20 enterovirus (EV) serotypes. In recent years, enterovirus A71 (EV-A71) has been replaced by Coxsackievirus A6 (CV-A6) to become the predominant serotype. Multiple EV serotypes co-circulate in HFMD epidemics, and this study aimed to investigate the etiological epidemic characteristics of an HFMD outbreak in Kunming, China in 2019. METHODS The clinical samples of 459 EV-associated HFMD patients in 2019 were used to amplify the VP1 gene region by the three sets of primers and identify serotypes using the molecular biology method. Phylogenetic analyses were performed based on the VP1 gene. RESULTS Three hundred and forty-eight cases out of 459 HFMD patients were confirmed as EV infection. Of these 191 (41.61%) were single EV infections and 34.20% had co-infections. The EVs were assigned to 18 EV serotypes, of which CV-A6 was predominant (11.33%), followed by CV-B1 (8.93%), CV-A4 (5.23%), CV-A9 (4.58%), CV-A 16 (3.49%) and CV-A10 and CVA5 both 1.96%. Co-infection of CV-A6 with other EVs was present in 15.25% of these cases, followed by co-infection with CV-A16 and other EVs. The VP1 sequences used in the phylogenetic analyses showed that the CV-A6, CV-B1 and CV-A4 sequences belonged to the sub-genogroup D3 and genogroups F and E, respectively. CONCLUSION Co-circulation and co-infection of multiple serotypes were the etiological characteristic of the HFMD epidemic in Kunming China in 2019 with CV-A-6, CV-B1 and CV-A4 as the predominant serotypes. This is the first report of CV-B1 as a predominant serotype in China and may provide valuable information for the diagnosis, prevention and control of HFMD.
Collapse
Affiliation(s)
- Wei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zengqing Du
- Department of Infectious Diseases, Kunming Children's Hospital, Kunming, China
| | - Li Li
- Department of Clinical Laboratory, Kunming Maternal and Child Health Hospital, Kunming, 650031, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Guohong Bao
- First People's Hospital of Yunnan Province, Kunming, 650032, People's Republic of China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| |
Collapse
|
5
|
Li J, Teng P, Yang F, Ou X, Zhang J, Chen W. Bioinformatics and Screening of a Circular RNA-microRNA-mRNA Regulatory Network Induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells. Int J Mol Sci 2022; 23:ijms23094628. [PMID: 35563023 PMCID: PMC9101002 DOI: 10.3390/ijms23094628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) caused by Coxsackievirus Group B5 (CVB5) is one of the most common herpetic diseases in human infants and children. The pathogenesis of CVB5 remains unknown. Circular RNAs (CircRNAs), as novel noncoding RNAs, have been shown to play a key role in many pathogenic processes in different species; however, their functions during the process of CVB5 infection remain unclear. In the present study, we investigated the expression profiles of circRNAs using RNA sequencing technology in CVB5-infected and mock-infected human rhabdomyosarcoma cells (CVB5 virus that had been isolated from clinical specimens). In addition, several differentially expressed circRNAs were validated by RT-qPCR. Moreover, the innate immune responses related to circRNA-miRNA-mRNA interaction networks were constructed and verified. A total of 5461 circRNAs were identified at different genomic locations in CVB5 infections and controls, of which 235 were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that the differentially expressed circRNAs were principally involved in specific signaling pathways related to ErbB, TNF, and innate immunity. We further predicted that novel_circ_0002006 might act as a molecular sponge for miR-152-3p through the IFN-I pathway to inhibit CVB5 replication, and that novel_circ_0001066 might act as a molecular sponge for miR-29b-3p via the NF-κB pathway and for the inhibition of CVB5 replication. These findings will help to elucidate the biological functions of circRNAs in the progression of CVB5-related HFMD and identify prospective biomarkers and therapeutic targets for this disease.
Collapse
|
6
|
Zhang M, Guo W, Xu D, Feng C, Bao G, Sun H, Yang Z, Ma S. Molecular characterization of echovirus 9 strains isolated from hand-foot-and-mouth disease in Kunming, Yunnan Province, China. Sci Rep 2022; 12:2293. [PMID: 35145190 PMCID: PMC8831506 DOI: 10.1038/s41598-022-06309-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Echovirus 9 (E9) belongs to the species Enterovirus B. So far, 12 whole genome sequences of E9 are available in GenBank. In this study, we determined the whole genomic sequences of five E9 strains isolated from the stools of patients with hand-foot-and-mouth disease in Kunming, Yunnan Province, China, in 2019. Their nucleotide and amino acid sequences shared 80.8–80.9% and 96.4–96.8% identity with the prototype Hill strain, respectively, and shared 99.3–99.9% and 99.1–99.8% mutual identity, respectively. Recombination analyses revealed that intertype recombination had occurred in the 2C and 3D regions of the five Yunnan E9 strains with coxsackieviruses B5 and B4, respectively. This study augmented the whole genome sequences of E9 in the GenBank database and extended the molecular characterization of this virus in China.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, 650118, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Wei Guo
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, 650118, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Danhan Xu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, 650118, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Changzeng Feng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, 650118, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Guohong Bao
- First People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Hao Sun
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, 650118, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zhaoqing Yang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, 650118, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Shaohui Ma
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, 650118, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| |
Collapse
|
7
|
Liu H, Zhang M, Feng C, Cong S, Xu D, Sun H, Yang Z, Ma S. Characterization of Coxsackievirus A6 Strains Isolated From Children With Hand, Foot, and Mouth Disease. Front Cell Infect Microbiol 2021; 11:700191. [PMID: 34490141 PMCID: PMC8418080 DOI: 10.3389/fcimb.2021.700191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Coxsackievirus A6 (CVA6) is a key pathogen causing hand, foot and mouth disease (HFMD). However, there are currently no specific antiviral drugs or vaccines for treating infections caused by CVA6. In this study, human rhabdomyosarcoma (RD), African green monkey kidney (Vero), and human embryonic lung diploid fibroblast (KMB17) cells were used to isolate CVA6 from 327 anal swab and fecal samples obtained during HFMD monitoring between 2009 and 2017. The VP1 genes of the isolates were sequenced and genotyped, and the biological characteristics of the representative CVA6 strains were analyzed. A total of 37 CVA6 strains of the D3 gene subtypes were isolated from RD cells, all of which belonged to the epidemic strains in mainland China. Using the adaptive culture method, 10 KMB17 cell-adapted strains were obtained; however, no Vero cell-adapted strains were acquired. Among the KMB17 cell-adapted strains, only KYN-A1205 caused disease or partial death in suckling mice, and its virulence was stronger than its RD cell-adapted strain. The pathogenic KYN-A1205 strain caused strong tropism to the muscle tissue and led to pathological changes, including muscle necrosis and nuclear fragmentation in the forelimb and hindlimb. Sequence analysis demonstrated that the KYN-A1205 strain exhibited multiple amino acid mutations after KMB17 cell adaptation. Moreover, it showed strong pathogenicity, good immunogenicity and genetic stability, and could be used as an experimental CVA6 vaccine candidate.
Collapse
Affiliation(s)
- Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China.,Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
8
|
Jiang L, Jiang H, Tian X, Xia X, Huang T. Epidemiological characteristics of hand, foot, and mouth disease in Yunnan Province, China, 2008-2019. BMC Infect Dis 2021; 21:751. [PMID: 34348655 PMCID: PMC8336324 DOI: 10.1186/s12879-021-06462-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Since 2016, enterovirus 71 (EV71) vaccines have been approved for market entry, and little is known about how the epidemiology of hand, foot, and mouth disease (HFMD) has been affected by the introduction of the vaccines in Yunnan Province. The study describes the epidemiological characteristics of HFMD before and after the introduction of EV71 vaccination in Yunnan Province. METHODS Surveillance data collected between 2008 and 2019 were analyzed to produce epidemiological distribution on cases, etiologic composition, and EV71 vaccination coverage, as well as to compare these characteristics before and after EV71 vaccination. RESULTS A total of 1,653,533 children received EV71 vaccines from 2016 through 2019 in Yunnan. The annual EV71 vaccination coverage rate ranged from 5.53 to 15.01% among children ≤5 years old. After the introduction of EV71 vaccines, the overall incidence of HFMD increased and reached over 200 cases per 100,000 population-years in 2018 and 2019. However, the case severity and case fatality rate decreased and remained lower than 1 and 0.005% after 2016, respectively. EV71-associated mild, severe and fatal cases sharply decreased. The predominant viral serotype changed to non-EV71/non-CV-A16 enteroviruses which were detected across the whole province. CONCLUSIONS Non-EV71/non-CV-A16 enteroviruses became the predominant strain and led to a higher incidence in Yunnan. Expanding EV71 vaccination and strengthening laboratory-based surveillance could further decrease the burden of severe HFMD and detect and monitor emerging enteroviruses.
Collapse
Affiliation(s)
- Li Jiang
- Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China
| | - Hongchao Jiang
- Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China
| | - Xin Tian
- Kunming Children's Hospital, Kunming, Yunnan, People's Republic of China
| | - Xueshan Xia
- Kunming University of Science and Technology, Kunming, Yunnan, People's Republic of China
| | - Tian Huang
- Yunnan Provincial Center for Disease Control and Prevention, 158 Dongsi Street, Kunming, Yunnan, 650022, People's Republic of China.
| |
Collapse
|
9
|
Li M, Li YP, Deng HL, Wang MQ, Wang WJ, Wang J, Wu FP, Dang SS. Association of gene polymorphisms of CD55 with susceptibility to and severity of hand, foot, and mouth disease caused by enterovirus 71 in the Han Chinese population. J Med Virol 2020; 92:3119-3124. [PMID: 32470169 DOI: 10.1002/jmv.26088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/23/2020] [Indexed: 12/13/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) can lead to high morbidity and mortality, and genetic background plays an important role during the disease process. We investigated the association between the single-nucleotide polymorphism (SNP) rs2564978 of the CD55 gene and susceptibility to and severity of HFMD using the SNPs can multiple SNP typing methods. Soluble CD55 (sCD55) expression was significantly lower in the EV71 HFMD group than in the control group and lower in severe cases than in mild cases (P < .001). Moreover, CD55 rs2564978 (C vs T OR = 1.300, 95% CI, 1.120-1.509) was associated with the risk of EV71 infection, and genotype TC was related to the severity of the infection (TC vs TT OR = 4.523, 95% CI, 2.033-10.066). Our results suggest that sCD55 expression and the CD55 polymorphism rs2564978 may influence the susceptibility to and severity of EV71 infection.
Collapse
Affiliation(s)
- Mei Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya-Ping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui-Ling Deng
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Mu-Qi Wang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen-Jun Wang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jun Wang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Feng-Ping Wu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Hoa-Tran TN, Dao ATH, Nguyen AT, Kataoka C, Takemura T, Pham CH, Vu HM, Hong TTT, Ha NTV, Duong TN, Thanh NTH, Shimizu H. Coxsackieviruses A6 and A16 associated with hand, foot, and mouth disease in Vietnam, 2008-2017: Essential information for rational vaccine design. Vaccine 2020; 38:8273-8285. [PMID: 33223308 DOI: 10.1016/j.vaccine.2020.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Development of multivalent hand, foot, and mouth disease (HFMD) vaccines against enterovirus A71 (EV-A71) and several non-EV-A71 enteroviruses is needed for this life-threatening disease with a huge economic burden in Asia-Pacific countries. Comprehensive studies on the molecular epidemiology and genetic and antigenic characterization of major causative enteroviruses will provide information for rational vaccine design. Compared with molecular studies on EV-A71, that for non-EV-A71 enteroviruses remain few and limited in Vietnam. Therefore, we conducted a 10-year study on the circulation and genetic characterization of coxsackievirus A16 (CV-A16) and CV-A6 isolated from patients with HFMD in Northern Vietnam between 2008 and 2017. Enteroviruses were detected in 2228 of 3212 enrolled patients. Of the 42 serotypes assigned, 28.4% and 22.4% accounted for CV-A6 and CV-A16, being the second and the third dominant serotypes after EV-A71 (31.7%), respectively. The circulation of CV-A16 and CV-A6 showed a wide geographic distribution and distinct periodicity. Phylogenetic analyses revealed that the majority of Vietnamese CV-A6 and CV-A16 strains were located within the largest sub-genotypes or sub-genogroups. These comprised strains isolated from patients with HFMD worldwide during the past decade and the Vietnamese strains have been evolving in a manner similar to the strains circulating worldwide. Amino acid sequences of the putative functional loops on VP1 and other VPs among Vietnamese CV-A6 and CV-A16 isolates were highly conserved. Moreover, the functional loop patterns of VP1 were similar to the dominant patterns found worldwide, except for the T164K substitution on the EF loop in Vietnamese CV-A16. The findings suggest that the development of a universal HFMD vaccine, at least in Vietnam, must target CV-A6 and CV-A16 as two of the three major HFMD-causing serotypes. Vietnamese isolates or their genome sequences can be considered for rational vaccine design.
Collapse
Affiliation(s)
| | - Anh Thi Hai Dao
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Anh The Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Chikako Kataoka
- The Research Foundation for Microbial Diseases of Osaka University, Japan
| | - Taichiro Takemura
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Chau Ha Pham
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hung Manh Vu
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Ta Thi Thu Hong
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Nguyen Thi Viet Ha
- Hanoi Medical University, Hanoi, Viet Nam; National Children's Hospital, Hanoi, Viet Nam
| | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | | | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
11
|
Han Y, Chen Z, Zheng K, Li X, Kong J, Duan X, Xiao X, Guo B, Luan R, Long L. Epidemiology of Hand, Foot, and Mouth Disease Before and After the Introduction of Enterovirus 71 Vaccines in Chengdu, China, 2009-2018. Pediatr Infect Dis J 2020; 39:969-978. [PMID: 32433221 DOI: 10.1097/inf.0000000000002745] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) has posed a serious threat to children's health. Three inactivated monovalent enterovirus 71 (EV71) vaccines are proved to be highly efficacious in phase III clinical trials and are now available in China. METHODS We analyzed the citywide surveillance data on HFMD cases in Chengdu during 2009-2018, and estimated cumulative first-dose EV71 vaccination coverage among children eligible to EV71 vaccination after August 2016 in Chengdu. Time series susceptible-infected-recovered model was developed to analyze basic reproduction number and herd immunity threshold of HFMD. Overall and serotype-specific HFMD incidences and severity risks were compared before and after the EV71 vaccination. RESULTS Among 3 laboratory-identified serotype categories, i.e. EV71, coxsackievirus A16 (CV-A16), and other enteroviruses, the major serotype attributed to HFMD has been changing across years. The cumulative first-dose EV71 vaccination coverage rate was estimated as 60.8% during the study period in Chengdu. By contrast, herd immunity threshold for EV71-related HFMD was 94.0%. After introduction of EV71 vaccines, the overall incidence of HFMD increased 60.8%, mainly driven by 173.7% and 11.8% increased in HFMD caused by other enteroviruses and CV-A16, respectively, which offset a significant reduction in the incidence of HFMD caused by EV71. The overall case-severity risk decreased from 1.4% to 0.3%, with significantly declined presented in all serotype categories. CONCLUSIONS The incidence and severity of EV71-related HFMD decreased following implementation of EV71 vaccination. Developing multivalent vaccines and strengthening laboratory-based surveillance could further decline burden of HFMD.
Collapse
Affiliation(s)
- Yutong Han
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Zhenhua Chen
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Ke Zheng
- Department of Immunization Planning, Chengdu Municipal Center for Disease Control and Prevention, Sichuan, China
| | - Xianzhi Li
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Jinwang Kong
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Xiaoxia Duan
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Xiong Xiao
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Bing Guo
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Rongsheng Luan
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| | - Lu Long
- Department of Epidemiology and Biostatitics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
12
|
Gao W, Yue L, Yang T, Li H, Song X, Xie T, He X, Xie Z. A comparative study on biological characteristics of ten coxsackievirus A10 virus strains. Virology 2020; 555:1-9. [PMID: 33418337 DOI: 10.1016/j.virol.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022]
Abstract
In this study, we analyzed ten CVA10 strains were genotyped and cultured for 10 generations to detect plaque morphology, pathogenicity, growth and other characteristics. Mice were injected with live and inactivated virus to detect neutralizing antibody titers. The results suggested that all CVA10 strains fell into Genotype C. Each strain cultured on KMB17 and Vero cells, increased from 1st generation onwards to peak in the 3rd and 4th, and the titer at which each became infectious ranged from 5.0 to 6.5 and 6.0 to 7.0 lgCCID50/ml, respectively. Two-day-old BALB/c mice were selected and inoculated intracerebral with the CVA10 strains, Limb paralysis was significant as early as 3 d; paralysis of all limbs for 50% of affected mice. LT50 was approximately 6 d, all died within 8 d. Ten strains induced good immune response, the GMT value of booster immunizations was higher than that of initial immunization. This provide reference points for selecting CVA10 vaccine candidates.
Collapse
Affiliation(s)
- Weijie Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences, China
| | - Ting Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, China
| | - Hua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, China
| | - Xia Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences, China
| | - Tianhong Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences, China
| | - Xing He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, China
| | - Zhongping Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences, China; Key Laboratory for Vaccine Research and Development of Major Infectious Diseases in Yunnan Province, Kunming, Yunnan, 650118, China.
| |
Collapse
|
13
|
Chen L, Xu SJ, Yao XJ, Yang H, Zhang HL, Meng J, Zeng HR, Huang XH, Zhang RL, He YQ. Molecular epidemiology of enteroviruses associated with severe hand, foot and mouth disease in Shenzhen, China, 2014-2018. Arch Virol 2020; 165:2213-2227. [PMID: 32666145 PMCID: PMC7360124 DOI: 10.1007/s00705-020-04734-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the epidemiology and molecular characteristics of enteroviruses associated with severe hand, foot and mouth disease (HFMD) in Shenzhen, China, during 2014-2018. A total of 137 fecal specimens from patients with severe HFMD were collected. Enterovirus (EV) types were determined using real-time reverse transcription polymerase chain reaction (RT-PCR), RT nested PCR, and sequencing. Sequences were analyzed using bioinformatics programs. Of 137 specimens tested, 97 (70.8%), 12 (8.8%), and 10 (7.3%) were positive for EV-A71, coxsackievirus A6 (CVA6), and CVA16, respectively. Other pathogens detected included CVA2 (2.9%, 4/137), CVA10 (2.9%, 4/137), CVA5 (0.7%, 1/137), echovirus 6 (E6) (0.7%, 1/137) and E18 (0.7%, 1/137). The most frequent complication in patients with proven EV infections was myoclonic jerk, followed by aseptic encephalitis, tachypnea, and vomiting. The frequencies of vomiting and abnormal eye movements were higher in EV-A71-infected patients than that in CVA6-infected or CVA16-infected patients. Molecular phylogeny based on the complete VP1 gene revealed no association between the subgenotype of the virus and disease severity. Nevertheless, 12 significant mutations that were likely to be associated with virulence or the clinical phenotype were observed in the 5’UTR, 2Apro, 2C, 3A, 3Dpol and 3’UTR of CVA6. Eight significant mutations were observed in the 5’UTR, 2B, 3A, 3Dpol and 3’UTR of CVA16, and 10 significant mutations were observed in the 5’UTR, VP1, 3A and 3Cpro of CVA10. In conclusion, EV-A71 is still the main pathogen causing severe HFMD, although other EV types can also cause severe complications. Potential virulence or phenotype-associated sites were identified in the genomes of CVA6, CVA16, and CVA10.
Collapse
Affiliation(s)
- Long Chen
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Shao-Jian Xu
- District Key Laboratory for Infectious Disease Prevention and Control, Longhua District Center for Disease Control and Prevention, Shenzhen, 518109, China
| | - Xiang-Jie Yao
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hong Yang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hai-Long Zhang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jun Meng
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Han-Ri Zeng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xu-He Huang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Ren-Li Zhang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ya-Qing He
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Zhang Z, Zhang X, Carr MJ, Zhou H, Li J, Liu S, Liu T, Xing W, Shi W. A neonatal murine model of coxsackievirus A4 infection for evaluation of vaccines and antiviral drugs. Emerg Microbes Infect 2020; 8:1445-1455. [PMID: 31595827 PMCID: PMC6792045 DOI: 10.1080/22221751.2019.1673135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coxsackievirus A4 (CVA4) infection can cause hand, foot and mouth disease (HFMD), an epidemic illness affecting neonatal and paediatric cohorts, which can develop to severe neurological disease with high mortality. In this study, we established the first ICR mouse model of CVA4 infection for the evaluation of inactivated vaccines and antiviral drug screening. The CVA4 YT226R strain was selected to infect the neonatal mice and three infectious factors were optimized to establish the infection model. The 3-day-old neonatal mice exhibited clinical symptoms such as hind limb paralysis and death. The severe inflammatory reactions were closely related to the abnormal expression of the acute phase response proinflammatory cytokine IL-6 and an imbalance in the IFN-γ/IL-4 ratio. Importantly, the inactivated CVA4 whole-virus vaccine induced humoral immune responses in adult females and the maternal antibodies afforded mice complete protection against lethal dose challenges of homologous or heterologous CVA4 strains. Both IFN-α2a and antiserum inhibited the replication of CVA4 and increased the survival rates of neonatal mice during the early stages of infection. This neonatal murine model of CVA4 infection will be useful for the development of prophylactic and therapeutic vaccines and for screening of antiviral drugs targeting CVA4 to decrease morbidity and mortality.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Xingcheng Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China.,School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin , Dublin , Ireland.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University , Sapporo , Japan
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Shaoqiong Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Tao Liu
- Department of Obstetrics and Gynecology, Central Hospital of Taian , Taian , People's Republic of China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences , Taian , People's Republic of China
| |
Collapse
|
15
|
Zhang S, Yu X, Meng X, Huo W, Su Y, Liu J, Liu Y, Zhang J, Wang S, Yu J. Coxsackievirus A6 Induces Necroptosis for Viral Production. Front Microbiol 2020; 11:42. [PMID: 32117097 PMCID: PMC7011610 DOI: 10.3389/fmicb.2020.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a febrile exanthematous disease with typical or atypical symptoms. Typical HFMD is usually caused by enterovirus 71 (EV71) or coxsackievirus A16, while atypical HFMD is usually caused by coxsackievirus A6 (CA6). In recent years, worldwide outbreaks of CA6-associated HFMD have dramatically increased, although the pathogenic mechanism of CA6 is still unclear. EV71 has been established to induce caspase-dependent apoptosis, but in this study, we demonstrate that CA6 infection promotes a distinct pathway of cell death that involves loss of cell membrane integrity. Necrostatin-1, an inhibitor of necroptosis, blocks the cell death induced by CA6 infection, but Z-DEVD-FMK, an inhibitor of caspase-3, has no effect on CA6-induced cell death. Furthermore, CA6 infection up-regulates the expression of the necroptosis signaling molecule RIPK3. Importantly, necrostatin-1 inhibits CA6 viral production, as assessed by its ability to inhibit levels of VP1 protein and genomic RNA and infectious particles. CA6-induced necroptosis is not dependent on the generation of reactive oxygen species; however, viral 3D protein can directly bind RIPK3, which is suggestive of a direct mechanism of necroptosis induction. Therefore, these results indicate that CA6 induces a mechanism of RIPK3-dependent necroptosis for viral production that is distinct from the mechanism of apoptosis induced by typical HFMD viruses.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
16
|
Zhao Y, Zhou D, Ni T, Karia D, Kotecha A, Wang X, Rao Z, Jones EY, Fry EE, Ren J, Stuart DI. Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nat Commun 2020; 11:38. [PMID: 31911601 PMCID: PMC6946704 DOI: 10.1038/s41467-019-13936-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/07/2019] [Indexed: 01/12/2023] Open
Abstract
Coxsackievirus A10 (CV-A10) is responsible for an escalating number of severe infections in children, but no prophylactics or therapeutics are currently available. KREMEN1 (KRM1) is the entry receptor for the largest receptor-group of hand-foot-and-mouth disease causing viruses, which includes CV-A10. We report here structures of CV-A10 mature virus alone and in complex with KRM1 as well as of the CV-A10 A-particle. The receptor spans the viral canyon with a large footprint on the virus surface. The footprint has some overlap with that seen for the neonatal Fc receptor complexed with enterovirus E6 but is larger and distinct from that of another enterovirus receptor SCARB2. Reduced occupancy of a particle-stabilising pocket factor in the complexed virus and the presence of both unbound and expanded virus particles suggests receptor binding initiates a cascade of conformational changes that produces expanded particles primed for viral uncoating.
Collapse
MESH Headings
- Enterovirus A, Human/chemistry
- Enterovirus A, Human/genetics
- Enterovirus A, Human/physiology
- Enterovirus A, Human/ultrastructure
- Enterovirus Infections/genetics
- Enterovirus Infections/metabolism
- Enterovirus Infections/virology
- Foot-and-Mouth Disease Virus/genetics
- Foot-and-Mouth Disease Virus/physiology
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/metabolism
- Hand, Foot and Mouth Disease/virology
- Humans
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Virus Uncoating
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Daming Zhou
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Tao Ni
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Dimple Karia
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Abhay Kotecha
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Xiangxi Wang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, 100101, Beijing, China
| | - Zihe Rao
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, 100101, Beijing, China
| | - E Yvonne Jones
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Elizabeth E Fry
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - Jingshan Ren
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
| | - David I Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford, OX3 7BN, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
17
|
Effectiveness of enterovirus A71 vaccine in severe hand, foot, and mouth disease cases in Guangxi, China. Vaccine 2019; 38:1804-1809. [PMID: 31892446 DOI: 10.1016/j.vaccine.2019.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) is a major public health issue in China that poses severe risks to children's health, especially those under the age of 3. Since 2016, EV71 vaccines developed by three Chinese manufacturers have been approved for use, and clinical trials of these vaccines have demonstrated protection against EV-A71 infection. However, few studies have assessed the effectiveness of these vaccines in real-world settings. METHODS A test-negative design case-control study was used to estimate vaccine effectiveness (VE) in cases of severe HFMD. We obtained information including EV-A71 vaccination status from the Local Center for Disease Control and Prevention (CDC) on all severe HFMD cases under 12 years in age in Guangxi, China, from Jan. 1, 2017, to Dec. 31, 2018. Enterovirus infection was laboratory confirmed by local CDCs. Individuals with a positive EV-A71 nucleic acid test result were assigned to the case group, and those with negative EV-A71 nucleic acid test results were assigned to the control group. We estimated VE using logistic regression. RESULTS A total of 2779 severe HFMD cases were enrolled in the study; 838 children were EV-A71 positive cases, and 1941 children were EV-A71 negative controls. The proportion of EV-A71 positive cases aged 6-36 months was lower than that for EV-A71 negative controls. EV-A71 infection was associated with an increased risk of mortality (aOR, 8.8; 95% CI, 1.3-61.6). The adjusted VE was 81.4% and 88.3% for one dose and two doses, respectively. CONCLUSION Our findings suggest that the rate of EV-A71 has fallen among severe HFMD cases in Guangxi and that the risk for EV-A71 infection in 6-36-month-old children has been reduced by use of the vaccine. Inactivated vaccines performed well in severe HFMD cases in a real-world setting.
Collapse
|