1
|
Ni Z, Tan J, Luo Y, Ye S. Dynamic protein hydration water mediates the aggregation kinetics of amyloid β peptides at interfaces. J Colloid Interface Sci 2025; 679:539-546. [PMID: 39467365 DOI: 10.1016/j.jcis.2024.10.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Protein hydration water is essential for protein misfolding and amyloid formation, but how it directs the course of amyloid formation has yet to be elucidated. Here, we experimentally demonstrated that femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) and the femtosecond IR pump-SFG probe technique can serve as powerful tools for addressing this issue. Using amyloid β(1-42) peptide as a model, we determined the transient misfolding intermediates by probing the amide band spectral features and the local hydration water changes by measuring the ultrafast vibrational dynamics of the amide I band. For the first time, we established a correlation between the dynamic change in protein hydration water and aggregation propensity. The aggregation propensity depends on the dynamic change in the hydration water, rather than the static hydration water content of the initial protein state. Water expulsion enhances the aggregation propensity and promotes amyloid formation, while protein hydration attenuates the aggregation propensity and inhibits amyloid formation. The suppression of water expulsion and protein hydration can prevent protein aggregation and stabilize proteins. These findings contribute to a better understanding of the underlying effect of hydration water on amyloid formation and protein structural stability and provide a strategy for maintaining long-term stabilization of biomolecules.
Collapse
Affiliation(s)
- Zijian Ni
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
| |
Collapse
|
2
|
Chhabra N, Matore BW, Lakra N, Banjare P, Murmu A, Bhattacharya A, Gayen S, Singh J, Roy PP. Multilayered screening for multi-targeted anti-Alzheimer's and anti-Parkinson's agents through structure-based pharmacophore modelling, MCDM, docking, molecular dynamics and DFT: a case study of HDAC4 inhibitors. In Silico Pharmacol 2025; 13:16. [PMID: 39850265 PMCID: PMC11751275 DOI: 10.1007/s40203-024-00302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025] Open
Abstract
Abstract Alzheimer's disease (AD) and Parkinson's disease (PD) are neurological conditions that primarily impact the elderly having distinctive traits and some similarities in terms of symptoms and progression. The multifactorial nature of AD and PD encourages exploring potentiality of multi-target therapy for addressing these conditions to conventional, the "one drug one target" strategy. This study highlights the searching of potential HDAC4 inhibitors through multiple screening approaches. In this context, structure-based pharmacophore model, ligand profiler mapping and MCDM approaches were performed for target prioritization. Similarly, ligand profiler, MCDM and Docking studies were performed to prioritize multi-targeted HDAC4 inhibitors. These comprehensive approaches unveiled 5 common targets and 5 multi-targeted prioritized compounds consensually. MD simulations, DFT and binding free energy calculations corroborated the stability and robustness of propitious compound 774 across 5 prioritized targets. In conclusion, the screened compound 774 (ChEMBL 4063938) could be a promising multi-targeted therapy for managing AD and PD further rendering experimental validation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00302-4.
Collapse
Affiliation(s)
- Nikita Chhabra
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Balaji Wamanrao Matore
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Nisha Lakra
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Purusottam Banjare
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Anjali Murmu
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Arijit Bhattacharya
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Jagadish Singh
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Partha Pratim Roy
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| |
Collapse
|
3
|
Otawa M, Itoh SG, Okumura H. Nonequilibrium Molecular Dynamics Method to Generate Poiseuille-Like Flow between Lipid Bilayers. J Chem Theory Comput 2024; 20:10199-10208. [PMID: 39526585 DOI: 10.1021/acs.jctc.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
There are various flows inside and outside cells in vivo. Nonequilibrium molecular dynamics (NEMD) simulation is a useful tool for understanding the effects of these flows on the dynamics of biomolecules. We propose an NEMD method to generate a Poiseuille-like flow between lipid bilayers. We extended the conventional equilibrium MD method to produce a flow by adding constant external force terms to the water molecules. Using the Lagrange multiplier method, the center of mass of the lipid bilayer is constrained so that the flow does not sweep away the lipid bilayer, but the individual lipid molecules fluctuate. The temperature of the system is controlled properly in the solution and membrane by using the Nosé-Hoover thermostat. We found that the flow velocity increases linearly as the applied external force term increases. It is possible to estimate the appropriate value of acceleration to generate a flow with an arbitrary velocity using this proportional relation once a single short MD simulation is performed. We also found that the flow between two lipid bilayers is slower than the analytical solution of the Navier-Stokes equations between rigid parallel plates due to the interactions between water molecules and the membrane. This method can be applied not only to a flow on lipid membranes but also to a flow on soft surfaces generally.
Collapse
Affiliation(s)
- Masaki Otawa
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Satoru G Itoh
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
4
|
Choi ES, Hnath B, Sha CM, Dokholyan NV. Unveiling the double-edged sword: SOD1 trimers possess tissue-selective toxicity and bind septin-7 in motor neuron-like cells. Structure 2024; 32:1776-1792.e5. [PMID: 39208794 PMCID: PMC11455619 DOI: 10.1016/j.str.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Misfolded species of superoxide dismutase 1 (SOD1) are associated with increased death in amyotrophic lateral sclerosis (ALS) models compared to insoluble protein aggregates. The mechanism by which structurally independent SOD1 trimers cause cellular toxicity is unknown but may drive disease pathology. Here, we uncovered the SOD1 trimer interactome-a map of potential tissue-selective protein-binding partners in the brain, spinal cord, and skeletal muscle. We identified binding partners and key pathways associated with SOD1 trimers and found that trimers may affect normal cellular functions such as dendritic spine morphogenesis and synaptic function in the central nervous system and cellular metabolism in skeletal muscle. We discovered SOD1 trimer-selective enrichment of genes. We performed detailed computational and biochemical characterization of SOD1 trimer protein binding for septin-7. Our investigation highlights key proteins and pathways within distinct tissues, revealing a plausible intersection of genetic and pathophysiological mechanisms in ALS through interactions involving SOD1 trimers.
Collapse
Affiliation(s)
- Esther Sue Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA; Department of Chemistry, Penn State University, University Park, PA, USA.
| |
Collapse
|
5
|
Hong M, Bitan G. Recent advances and future therapy development for Alzheimer's disease and related disorders. Neural Regen Res 2024; 19:1877-1878. [PMID: 38227506 DOI: 10.4103/1673-5374.391182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/18/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Megan Hong
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Bhopatkar AA, Bhatt N, Haque MA, Xavier R, Fung L, Jerez C, Kayed R. MAPT mutations associated with familial tauopathies lead to formation of conformationally distinct oligomers that have cross-seeding ability. Protein Sci 2024; 33:e5099. [PMID: 39145409 PMCID: PMC11325167 DOI: 10.1002/pro.5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024]
Abstract
The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear. We sought to investigate the conformational properties of the aggregates of three tau mutants: A152T, P301L, and R406W, all implicated within FTD, and compare them to those of the native form (WT-Tau 2N4R). Our immunochemical analysis reveals that mutants and WT tau oligomers exhibit similar affinity for conformation-specific antibodies but have distinct morphology and secondary structure. Additionally, these oligomers possess different dye-binding properties and varying sensitivity to proteolytic processing. These results point to conformational variety among them. We then tested the ability of the mutant oligomers to cross-seed the aggregation of WT tau monomer. Using similar array of experiments, we found that cross-seeding with mutant aggregates leads to the formation of conformationally unique WT oligomers. The results discussed in this paper provide a novel perspective on the structural properties of oligomeric forms of WT tau 2N4R and its mutant, along with shedding some light on their cross-seeding behavior.
Collapse
Affiliation(s)
- Anukool A. Bhopatkar
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nemil Bhatt
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md Anzarul Haque
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rhea Xavier
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Leiana Fung
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Neuroscience Graduate Program, UT Southwestern Medical CenterDallasTexasUSA
| | - Cynthia Jerez
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
7
|
Mallesh R, Khan J, Gharai PK, Arshi MU, Garg S, Gupta S, Ghosh S. Hydrophobic C-Terminal Peptide Analog Aβ 31-41 Protects the Neurons from Aβ-Induced Toxicity. ACS Chem Neurosci 2024; 15:2372-2385. [PMID: 38822790 DOI: 10.1021/acschemneuro.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024] Open
Abstract
Spontaneous aggregation of amyloid beta (Aβ) leads to the formation of neurotoxic senile plaque considered as the most crucial event in Alzheimer's disease (AD) progression. Inhibition or disruption of this deadly aggregate formation is one of the most efficient strategies for the development of potential therapeutics, and extensive research is in progress by various research groups. In this direction, the development of a peptide analogous to that of the native Aβ peptide is an attractive strategy. Based on this rationale, β-sheet breakers were developed from the Aβ central hydrophobic core. These peptide derivatives will bind to the full length of the parent Aβ and interfere in self-recognition, thereby preventing the folding of the Aβ peptide into cross β-sheet neurotoxic aggregates. However, this approach is effective in the inhibition of fibrillar aggregation, but this strategy is ineffective in the Aβ neurotoxic oligomer formation. Therefore, an alternative and efficient approach is to use the Aβ peptide analogous to the C-terminal region, which arbitrates fibrillation and oligomerization. Herein, we developed the Aβ C-terminal fragment (ACT-1 to ACT-7) for inhibition of oligomerization as well as fibrillar aggregation. Screening of these seven peptides resulted in an efficient anti-Aβ peptide aggregative agent (ACT-7), which was evaluated by the ThT assay peptide. The ThT assay reveals complete inhibition and showed significant neuroprotection of PC-12-derived neurons from Aβ-induced toxicity and reduced cell apoptosis. Further, analysis using CD and FTIR spectroscopy reveals that the ACT-7 peptide efficiently inhibits the formation of the β-sheet secondary structure content. HR-TEM microscopic analysis confirmed the inhibition of formation. Therefore, the inhibition of β-sheet Aβ fibrillary aggregation by the protease-stable ACT-7 peptide may provide a beneficial effect on AD treatment to control the Aβ aggregates. Finally, we anticipate that our newly designed ACT peptides may also assist as a template molecular scaffold for designing potential anti-AD therapeutics.
Collapse
Affiliation(s)
- Rathnam Mallesh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, WB 700 032, India
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, WB 700 032, India
| | - Prabir Kumar Gharai
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, WB 700 032, India
| | - Mohammad Umar Arshi
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, WB 700 032, India
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
8
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
9
|
Agha MM, Aziziyan F, Uversky VN. Each big journey starts with a first step: Importance of oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:111-141. [PMID: 38811079 DOI: 10.1016/bs.pmbts.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein oligomers, widely found in nature, have significant physiological and pathological functions. They are classified into three groups based on their function and toxicity. Significant advancements are being achieved in the development of functional oligomers, with a focus on various applications and their engineering. The antimicrobial peptides oligomers play roles in death of bacterial and cancer cells. The predominant pathogenic species in neurodegenerative disorders, as shown by recent results, are amyloid oligomers, which are the main subject of this chapter. They are generated throughout the aggregation process, serving as both intermediates in the subsequent aggregation pathways and ultimate products. Some of them may possess potent cytotoxic properties and through diverse mechanisms cause cellular impairment, and ultimately, the death of cells and disease progression. Information regarding their structure, formation mechanism, and toxicity is limited due to their inherent instability and structural variability. This chapter aims to provide a concise overview of the current knowledge regarding amyloid oligomers.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United Staes.
| |
Collapse
|
10
|
Song C, Li H, Zhang T, Zheng C, Zhang Y. Synergetic effect of matrine on the catalytic scFv antibody HS72 in vitro and in mice with Alzheimer disease pathology. Neuropharmacology 2024; 242:109775. [PMID: 37913984 DOI: 10.1016/j.neuropharm.2023.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Single-chain variable fragment (scFv) HS72 is a catalytic antibody that specifically degrades amyloid β-protein 1-42 (Aβ42) aggregates in vitro or reduces the level or burden of Aβ42 deposits/plaques in the brains of mice with Alzheimer disease pathology. Its efficacy has been shown in protecting neural cells in vitro and improving the morphology of the cell population in the brain of mice with AD pathology (AD mice). Matrine (Mat) is a natural product capable of binding to Aβ42 or its aggregates and blocking their neurotoxicity at concentrations of at least 10 μM or greater. However, this study revealed a synergistic effect of Mat on the catalytic effect of HS72 at low concentrations (0.01-2.5 μM). This is evidenced by the fact that Mat synergistically enhances HS72's ability to degrade Aβ42 aggregates and protect neural cells (SH-SY5Y and HT22 cells, and brain cells of AD mice). The molecular docking models and characterization of Mat's action both indicated that the mechanism of Mat's synergistic impact on HS72 catalysis is to increase the turnover number (or molecular activity) of HS72 by enhancing the catalytic power of the HS72's catalytic groups and encouraging the release of the degradation products (Aβ fragments). The study's results suggest a natural synergy between Mat-like small molecules and the catalytic anti-oligomeric Aβ42 antibody HS72, enabling more effective reduction or removal of Aβ42 aggregates or plaques than the antibody alone. These findings provide novel insights into the effectiveness of anti-oligomeric Aβ42 antibodies in AD immunotherapy.
Collapse
Affiliation(s)
- Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Changxin Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
11
|
Nie RZ, Zhang SS, Yan XK, Feng K, Lao YJ, Bao YR. Molecular insights into the structure destabilization effects of ECG and EC on the Aβ protofilament: An all-atom molecular dynamics simulation study. Int J Biol Macromol 2023; 253:127002. [PMID: 37729983 DOI: 10.1016/j.ijbiomac.2023.127002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The formation of Aβ into amyloid fibrils was closely connected to AD, therefore, the Aβ aggregates were the primary therapeutic targets against AD. Previous studies demonstrated that epicatechin-3-gallate (ECG), which possessed a gallate moiety, exhibited a greater ability to disrupt the preformed Aβ amyloid fibrils than epicatechin (EC), indicating that the gallate moiety was crucial. In the present study, the molecular mechanisms were investigated. Our results demonstrated that ECG had more potent disruptive impacts on the β-sheet structure and K28-A42 salt bridges than EC. We found that ECG significantly interfered the interactions between Peptide-4 and Peptide-5. However, EC could not. The disruption of K28-A42 salt bridges by ECG was mainly due to the interactions between ECG and the hydrophobic residues located at C-terminus. Interestingly, EC disrupted the K28-A42 salt bridges by the interactions with C-terminal hydrophobic residues and the cation-π interactions with K28. Moreover, our results indicated that hydrophobic interactions, H-bonds, π-π interactions and cation-π interactions between ECG and the bend of L-shaped region caused the disaggregation of interactions between Peptide-4 and Peptide-5. Significantly, gallate moiety in ECG had contributed tremendously to the disaggregation. We believed that our findings could be useful for designing prospective drug candidates targeting AD.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shan-Shuo Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xiao-Ke Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yan-Jing Lao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ya-Ru Bao
- Science and Technology Division, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
12
|
Okumura H. Perspective for Molecular Dynamics Simulation Studies of Amyloid-β Aggregates. J Phys Chem B 2023; 127:10931-10940. [PMID: 38109338 DOI: 10.1021/acs.jpcb.3c06051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The cause of Alzheimer's disease is related to aggregates such as oligomers and amyloid fibrils consisting of amyloid-β (Aβ) peptides. Molecular dynamics (MD) simulation studies have been conducted to understand the molecular mechanism of the formation and disruption of Aβ aggregates. In this Perspective, the MD simulation studies are classified into four categories, focusing on the target systems: aggregation of Aβ peptides in bulk solution, Aβ aggregation at the interface, aggregation inhibitor against Aβ peptides, and nonequilibrium MD simulation of Aβ aggregates. MD simulation studies in these categories are first reviewed. Future perspectives in each category are then presented. Finally, the overall perspective is presented on how MD simulations of Aβ aggregates can be utilized for developing Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
13
|
Sahoo S, Pal T, Mondal S, Ghanta KP, Bandyopadhyay S. Conformational Properties of Aβ Peptide Oligomers in Aqueous Ionic Liquid Solution: Insights from Molecular Simulation Studies. J Phys Chem B 2023; 127:10960-10973. [PMID: 38091356 DOI: 10.1021/acs.jpcb.3c05490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Alzheimer's disease is a progressive irreversible neurological disorder with abnormal extracellular deposition of amyloid β (Aβ) peptides in the brain. We have carried out atomistic molecular dynamics simulations to investigate the size-dependent conformational properties of aggregated Aβ oligomers of different orders, namely, pentamer [O(5)], decamer [O(10)], and hexadecamer [O(16)] in aqueous solutions containing the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The calculations revealed reduced peptide conformational fluctuations in O(5) and O(10) in the presence of the IL. In contrast, the higher order oligomer [O(16)] has been found to exhibit greater structural distortion due to enhanced flexibilities of its peptide units in the presence of the IL. Based on the distributions of the solvent (water) and the cosolvent (IL) components, it is demonstrated that exchange of water by the IL ion pairs at the exterior surface of the oligomers primarily occurs beyond the first layer of surface-bound water molecules. Importantly, a reduced number of relatively weaker peptide salt bridges have been found in O(16) in binary water-IL solution as compared to the other two smaller-sized oligomers [O(5) and O(10)]. Such differential influence of the IL on peptide salt bridges results in less favorable binding free energies of peptide monomers to O(16), which leads to its greater structural distortion and reduced stability compared to those of O(5) and O(10).
Collapse
Affiliation(s)
- Subhadip Sahoo
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tamisra Pal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
14
|
Taha HB, Chawla E, Bitan G. IM-MS and ECD-MS/MS Provide Insight into Modulation of Amyloid Proteins Self-Assembly by Peptides and Small Molecules. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2066-2086. [PMID: 37607351 DOI: 10.1021/jasms.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neurodegenerative proteinopathies are characterized by formation and deposition of misfolded, aggregated proteins in the nervous system leading to neuronal dysfunction and death. It is widely believed that metastable oligomers of the offending proteins, preceding the fibrillar aggregates found in the tissue, are the proximal neurotoxins. There are currently almost no disease-modifying therapies for these diseases despite an active pipeline of preclinical development and clinical trials for over two decades, largely because studying the metastable oligomers and their interaction with potential therapeutics is notoriously difficult. Mass spectrometry (MS) is a powerful analytical tool for structural investigation of proteins, including protein-protein and protein-ligand interactions. Specific MS tools have been useful in determining the composition and conformation of abnormal protein oligomers involved in proteinopathies and the way they interact with drug candidates. Here, we analyze critically the utilization of ion-mobility spectroscopy-MS (IM-MS) and electron-capture dissociation (ECD) MS/MS for analyzing the oligomerization and conformation of multiple amyloidogenic proteins. We also discuss IM-MS investigation of their interaction with two classes of compounds developed by our group over the last two decades: C-terminal fragments derived from the 42-residue form of amyloid β-protein (Aβ42) and molecular tweezers. Finally, we review the utilization of ECD-MS/MS for elucidating the binding sites of the ligands on multiple proteins. These approaches are readily applicable to future studies addressing similar questions and hold promise for facilitating the development of successful disease-modifying drugs against neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Integrative Biology & Physiology, University of California Los Angeles, California 90095, United States
| | - Esha Chawla
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, California 90095, United States
| | - Gal Bitan
- Department of Neurology, University of California Los Angeles, California 90095, United States
- Brain Research Institute, University of California Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Faridi N, Sanjari-Pour M, Wang P, Bathaie SZ. The Effect of Ultrasonication on the Fibrillar/ Oligomeric Structures of Aβ 1-42 at Different Concentrations. Protein J 2023; 42:575-585. [PMID: 37634212 PMCID: PMC10480282 DOI: 10.1007/s10930-023-10138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
The number of disease states linked the aberrant regular protein conformations to oligomers and amyloid fibrils. Amyloid beta 1-42 (Aβ1-42) peptide is very hydrophobic and quickly forms the β-rich structure and fibrillar protein aggregates in some solutions and buffer conditions. Ultrasonication pulses can disrupt amyloid fibrils to smaller fragments and produce Aβ1-42 peptides of different sizes and oligomers. Herein, we investigated the effects of buffer and ultrasonication on Aβ1-42 structure at low and high concentrations. After ultrasonication, the Western blot results showed that Aβ1-42 fibrils were disaggregated into different sizes. The transmission electron microscopy results indicated Aβ1-42 at low concentration (25 µM) in Ham's/F12 phenol red-free culture medium formed short-size fragments and oligomers. In comparison, Aβ1-42 at higher concentration (100 µM) formed fibrils that break down into smaller fragments after ultrasonication. However, after regrowth, it formed mature fibrils again. Cell viability assay indicated that Aβ1-42 oligomers formed at a low concentration (25 µM) were more toxic to PC12 cells than other forms. In conclusion, by applying ultrasonication pulses and controlling peptide concentration and buffer condition, we can rich Aβ1-42 aggregates with a particular size and molecular structure.
Collapse
Affiliation(s)
- Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box. 14115-133, Tehran, Iran
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran
| | - Maryam Sanjari-Pour
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box. 14115-133, Tehran, Iran
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box. 14115-133, Tehran, Iran.
- Institute for Natural Products and Medicinal Plants, Tarbiat Modares University, Tehran, Iran.
- UCLA-DOE Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Li X, Yang Z, Chen Y, Zhang S, Wei G, Zhang L. Dissecting the Molecular Mechanisms of the Co-Aggregation of Aβ40 and Aβ42 Peptides: A REMD Simulation Study. J Phys Chem B 2023; 127:4050-4060. [PMID: 37126408 DOI: 10.1021/acs.jpcb.3c01078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The aggregation of amyloid-β protein (Aβ) into oligomers and amyloid fibrils is closely related to Alzheimer's disease (AD). Aβ40 and Aβ42, as two most prominent isoforms of Aβ peptides, can cross-interact with each other and form co-aggregates, which affect the progression of the disease. However, the molecular determinants underlying Aβ40 and Aβ42 cross-interaction and the structural details of their co-oligomers remain elusive. Herein, we performed all-atom explicit-solvent replica exchange molecular dynamics simulations on Aβ40-Aβ42 heterogeneous and Aβ40/Aβ42 homogeneous dimer systems to dissect the co-aggregation mechanisms of the two isoforms. Our results show that the interpeptide main-chain interaction of Aβ40-Aβ42 is stronger than that of Aβ40-Aβ40 and Aβ42-Aβ42. The positions of hotspot residues in heterodimers and homodimers display high similarity, implying similar molecular recognition sites for both cross-interaction and self-interaction. Contact maps of Aβ40-Aβ42 heterodimers reveal that residue pairs crucial for cross-interaction are mostly located in the C-terminal hydrophobic regions of Aβ40 and Aβ42 peptides. Conformational analysis shows that Aβ40 and Aβ42 monomers can co-assemble into β-sheet-rich heterodimers with shorter β-sheets than those in homodimers, which is decremental to monomer addition. Similar molecular recognition sites and β-sheet distribution of Aβ40 and Aβ42 peptides are observed in heterodimers and homodimers, which may provide the molecular basis for the two isoforms' co-aggregation and cross-seeding. Our work dissects the co-aggregation mechanisms of Aβ40 and Aβ42 peptides at the atomic level, which will help for in-depth understanding of the cross-talk between the two Aβ isoforms and the pathogenesis of AD.
Collapse
Affiliation(s)
- Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
17
|
Dervişoğlu R, Antonschmidt L, Nimerovsky E, Sant V, Kim M, Ryazanov S, Leonov A, Carlos Fuentes-Monteverde J, Wegstroth M, Giller K, Mathies G, Giese A, Becker S, Griesinger C, Andreas LB. Anle138b interaction in α-synuclein aggregates by dynamic nuclear polarization NMR. Methods 2023; 214:18-27. [PMID: 37037308 DOI: 10.1016/j.ymeth.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.
Collapse
Affiliation(s)
- Rıza Dervişoğlu
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leif Antonschmidt
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Evgeny Nimerovsky
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vrinda Sant
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Myeongkyu Kim
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sergey Ryazanov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Andrei Leonov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | | | - Melanie Wegstroth
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Stefan Becker
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
18
|
Shahpasand-Kroner H, Siddique I, Malik R, Linares GR, Ivanova MI, Ichida J, Weil T, Münch J, Sanchez-Garcia E, Klärner FG, Schrader T, Bitan G. Molecular Tweezers: Supramolecular Hosts with Broad-Spectrum Biological Applications. Pharmacol Rev 2023; 75:263-308. [PMID: 36549866 PMCID: PMC9976797 DOI: 10.1124/pharmrev.122.000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.
Collapse
Affiliation(s)
- Hedieh Shahpasand-Kroner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Ravinder Malik
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gabriel R Linares
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Magdalena I Ivanova
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Justin Ichida
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Tatjana Weil
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Jan Münch
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sanchez-Garcia
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Frank-Gerrit Klärner
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schrader
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine (H.S.-K., I.S., R.M., G.B.), Brain Research Institute (G.B.), and Molecular Biology Institute (G.B.), University of California, Los Angeles, California; Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California (G.R.L., J.I.); Department of Neurology, University of Michigan, Ann Arbor, Michigan (M.I.I.); Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany (T.W., J.M.); and Department of Computational Biochemistry (E.S.-G.) and Faculty of Chemistry (F-G.K., T.S.), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Depraz Depland A, Stroganova I, Wootton CA, Rijs AM. Developments in Trapped Ion Mobility Mass Spectrometry to Probe the Early Stages of Peptide Aggregation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:193-204. [PMID: 36633834 PMCID: PMC9896548 DOI: 10.1021/jasms.2c00253] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Ion mobility mass spectrometry (IM-MS) has proven to be an excellent method to characterize the structure of amyloidogenic protein and peptide aggregates, which are formed in coincidence with the development of neurodegenerative diseases. However, it remains a challenge to obtain detailed structural information on all conformational intermediates, originating from the early onset of those pathologies, due to their complex and heterogeneous environment. One way to enhance the insights and the identification of these early stage oligomers is by employing high resolution ion mobility mass spectrometry experiments. This would allow us to enhance the mobility separation and MS characterization. Trapped ion mobility spectrometry (TIMS) is an ion mobility technique known for its inherently high resolution and has successfully been applied to the analysis of protein conformations among others. To obtain conformational information on fragile peptide aggregates, the instrumental parameters of the TIMS-Quadrupole-Time-of-Flight mass spectrometer (TIMS-qToF-MS) have to be optimized to allow the study of intact aggregates and ensure their transmission toward the detector. Here, we investigate the suitability and application of TIMS to probe the aggregation process, targeting the well-characterized M307-N319 peptide segment of the TDP-43 protein, which is involved in the development of amyotrophic lateral sclerosis. By studying the influence of key parameters over the full mass spectrometer, such as source temperature, applied voltages or RFs among others, we demonstrate that by using an optimized instrumental method TIMS can be used to probe peptide aggregation.
Collapse
Affiliation(s)
- Agathe Depraz Depland
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Iuliia Stroganova
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | | | - Anouk M. Rijs
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Pal T, Sahoo S, Prasad Ghanta K, Bandyopadhyay S. Computational Investigation of Conformational Fluctuations of Aβ42 Monomers in Aqueous Ionic Liquid Mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Fu Y, Wang ZT, Huang LY, Tan CC, Cao XP, Tan L. Heart fatty acid-binding protein is associated with phosphorylated tau and longitudinal cognitive changes. Front Aging Neurosci 2022; 14:1008780. [PMID: 36299612 PMCID: PMC9588952 DOI: 10.3389/fnagi.2022.1008780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPerturbation of lipid metabolism is associated with Alzheimer’s disease (AD). Heart fatty acid-binding protein (HFABP) is an adipokine playing an important role in lipid metabolism regulation.Materials and methodsTwo datasets separately enrolled 303 and 197 participants. First, we examine the associations of cerebrospinal fluid (CSF) HFABP levels with cognitive measures [including Mini-Mental State Examination (MMSE), Clinical Dementia Rating sum of boxes (CDRSB), and the cognitive section of Alzheimer’s Disease Assessment Scale] and AD biomarkers (CSF amyloid beta and tau levels). Second, we examine the longitudinal associations of baseline CSF HFABP levels and the variability of HFABP with cognitive measures and AD biomarkers. Structural equation models explored the mediation effects of AD pathologies on cognition.ResultsWe found a significant relationship between CSF HFABP level and P-tau (dataset 1: β = 2.04, p < 0.001; dataset 2: β = 1.51, p < 0.001). We found significant associations of CSF HFABP with longitudinal cognitive measures (dataset 1: ADAS13, β = 0.09, p = 0.008; CDRSB, β = 0.10, p = 0.003; MMSE, β = −0.15, p < 0.001; dataset 2: ADAS13, β = 0.07, p = 0.004; CDRSB, β = 0.07, p = 0.005; MMSE, β = −0.09, p < 0.001) in longitudinal analysis. The variability of HFABP was associated with CSF P-tau (dataset 2: β = 3.62, p = 0.003). Structural equation modeling indicated that tau pathology mediated the relationship between HFABP and cognition.ConclusionOur findings demonstrated that HFABP was significantly associated with longitudinal cognitive changes, which might be partially mediated by tau pathology.
Collapse
Affiliation(s)
- Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- *Correspondence: Zuo-Teng Wang,
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Lan Tan,
| |
Collapse
|
22
|
Amorós MA, Choi ES, Cofré AR, Dokholyan NV, Duzzioni M. Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Front Cell Dev Biol 2022; 10:962881. [PMID: 36105357 PMCID: PMC9467621 DOI: 10.3389/fcell.2022.962881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell culture models that recapitulate the etiology and features of nervous system diseases is central to the discovery of new drugs and their translation onto therapies. Neuronal tissues are inaccessible due to skeletal constraints and the invasiveness of the procedure to obtain them. Thus, the emergence of induced pluripotent stem cell (iPSC) technology offers the opportunity to model different neuronal pathologies. Our focus centers on iPSCs derived from amyotrophic lateral sclerosis (ALS) patients, whose pathology remains in urgent need of new drugs and treatment. In this sense, we aim to revise the process to obtain motor neurons derived iPSCs (iPSC-MNs) from patients with ALS as a drug screening model, review current 3D-models and offer a perspective on bioinformatics as a powerful tool that can aid in the progress of finding new pharmacological treatments.
Collapse
Affiliation(s)
- Mariana A. Amorós
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Esther S. Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Axel R. Cofré
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
| | - Marcelo Duzzioni
- Laboratory of Pharmacological Innovation, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| |
Collapse
|
23
|
Li CD, Junaid M, Shan X, Wang Y, Wang X, Khan A, Wei DQ. Effect of Cholesterol on C99 Dimerization: Revealed by Molecular Dynamics Simulations. Front Mol Biosci 2022; 9:872385. [PMID: 35928227 PMCID: PMC9343951 DOI: 10.3389/fmolb.2022.872385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
C99 is the immediate precursor for amyloid beta (Aβ) and therefore is a central intermediate in the pathway that is believed to result in Alzheimer’s disease (AD). It has been suggested that cholesterol is associated with C99, but the dynamic details of how cholesterol affects C99 assembly and the Aβ formation remain unclear. To investigate this question, we employed coarse-grained and all-atom molecular dynamics simulations to study the effect of cholesterol and membrane composition on C99 dimerization. We found that although the existence of cholesterol delays C99 dimerization, there is no direct competition between C99 dimerization and cholesterol association. In contrast, the existence of cholesterol makes the C99 dimer more stable, which presents a cholesterol binding C99 dimer model. Cholesterol and membrane composition change the dimerization rate and conformation distribution of C99, which will subsequently influence the production of Aβ. Our results provide insights into the potential influence of the physiological environment on the C99 dimerization, which will help us understand Aβ formation and AD’s etiology.
Collapse
Affiliation(s)
- Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Junaid
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqi Shan
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangeng Wang
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Dong-Qing Wei,
| |
Collapse
|
24
|
Single Cell/Nucleus Transcriptomics Comparison in Zebrafish and Humans Reveals Common and Distinct Molecular Responses to Alzheimer’s Disease. Cells 2022; 11:cells11111807. [PMID: 35681503 PMCID: PMC9180693 DOI: 10.3390/cells11111807] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis is significantly reduced in Alzheimer’s disease (AD) and is a potential therapeutic target. Contrary to humans, a zebrafish can regenerate its diseased brain, and thus is ideal for studying neurogenesis. To compare the AD-related molecular pathways between humans and zebrafish, we compared single cell or nuclear transcriptomic data from a zebrafish amyloid toxicity model and its controls (N = 12) with the datasets of two human adult brains (N = 10 and N = 48 (Microglia)), and one fetal brain (N = 10). Approximately 95.4% of the human and zebrafish cells co-clustered. Within each cell type, we identified differentially expressed genes (DEGs), enriched KEGG pathways, and gene ontology terms. We studied synergistic and non-synergistic DEGs to point at either common or uniquely altered mechanisms across species. Using the top DEGs, a high concordance in gene expression changes between species was observed in neuronal clusters. On the other hand, the molecular pathways affected by AD in zebrafish astroglia differed from humans in favor of the neurogenic pathways. The integration of zebrafish and human transcriptomes shows that the zebrafish can be used as a tool to study the cellular response to amyloid proteinopathies. Uniquely altered pathways in zebrafish could highlight the specific mechanisms underlying neurogenesis, which are absent in humans, and could serve as potential candidates for therapeutic developments.
Collapse
|
25
|
Krafft GA, Jerecic J, Siemers E, Cline EN. ACU193: An Immunotherapeutic Poised to Test the Amyloid β Oligomer Hypothesis of Alzheimer’s Disease. Front Neurosci 2022; 16:848215. [PMID: 35557606 PMCID: PMC9088393 DOI: 10.3389/fnins.2022.848215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects 50 million people worldwide, with 10 million new cases occurring each year. The emotional and economic impacts of AD on patients and families are devastating. Approved treatments confer modest improvement in symptoms, and recently one treatment obtained accelerated approval from the United States Food and Drug Administration (FDA) and may have modest disease modifying benefit. Research over the past three decades has established a clear causal linkage between AD and elevated brain levels of amyloid β (Aβ) peptide, and substantial evidence now implicates soluble, non-fibrillar Aβ oligomers (AβOs) as the molecular assemblies directly responsible for AD-associated memory and cognitive failure and accompanying progressive neurodegeneration. The widely recognized linkage of elevated Aβ and AD spawned a comprehensive 20-year therapeutic campaign that focused primarily on two strategies – inhibition of the secretase enzymes responsible for Aβ production and clearance of Aβ peptide or amyloid plaques with Aβ-directed immunotherapeutics. Unfortunately, all clinical trials of secretase inhibitors were unsuccessful. Of the completed phase 3 immunotherapy programs, bapineuzumab (targeting amyloid plaque) and solanezumab (targeting Aβ monomers) were negative, and the crenezumab program (targeting Aβ monomers and to a small extent oligomers) was stopped for futility. Aducanumab (targeting amyloid plaques), which recently received FDA accelerated approval, had one positive and one negative phase 3 trial. More than 25 negative randomized clinical trials (RCTs) have evaluated Aβ-targeting therapeutics, yet none has directly evaluated whether selective blockage of disease-relevant AβOs can stop or reverse AD-associated cognitive decline. Here, we briefly summarize studies that establish the AD therapeutic rationale to target AβOs selectively, and we describe ACU193, the first AβO-selective immunotherapeutic to enter human clinical trials and the first positioned to test the AβO hypothesis of AD.
Collapse
|
26
|
Singh SK, Balendra V, Obaid AA, Esposto J, Tikhonova MA, Gautam NK, Poeggeler B. Copper-Mediated β-Amyloid Toxicity and its Chelation Therapy in Alzheimer's Disease. Metallomics 2022; 14:6554256. [PMID: 35333348 DOI: 10.1093/mtomcs/mfac018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
The link between bio-metals, Alzheimer's disease (AD), and its associated protein, amyloid-β (Aβ) is very complex and one of the most studied aspects currently. Alzheimer's disease, a progressive neurodegenerative disease, is proposed to occurs due to the misfolding and aggregation of Aβ. Dyshomeostasis of metal ions and their interaction with Aβ has largely been implicated in AD. Copper plays a crucial role in amyloid-β toxicity and AD development potentially occurs through direct interaction with the copper-binding motif of APP and different amino acid residues of Aβ. Previous reports suggest that high levels of copper accumulation in the AD brain result in modulation of toxic Aβ peptide levels, implicating the role of copper in the pathophysiology of AD. In this review, we explore the possible mode of copper ion interaction with Aβ which accelerates the kinetics of fibril formation and promote amyloid-β mediated cell toxicity in Alzheimer's disease and the potential use of various copper chelators in the prevention of copper-mediated Aβ toxicity.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow-226002, India
| | - Vyshnavy Balendra
- Saint James School of Medicine, Park Ridge, Illinois, United States of America 60068
| | - Ahmad A Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, CanadaK9L 0G2
| | - Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Neurosciences and Medicine; Timakov st., 4, Novosibirsk, 630117, Russia
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology & Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Am Türmchen 3,33332 Gütersloh, Germany
| |
Collapse
|
27
|
Song C, Shi J, Zhang P, Zhang Y, Xu J, Zhao L, Zhang R, Wang H, Chen H. Immunotherapy for Alzheimer's disease: targeting β-amyloid and beyond. Transl Neurodegener 2022; 11:18. [PMID: 35300725 PMCID: PMC8932191 DOI: 10.1186/s40035-022-00292-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly worldwide. However, the complexity of AD pathogenesis leads to discrepancies in the understanding of this disease, and may be the main reason for the failure of AD drug development. Fortunately, many ongoing preclinical and clinical studies will continually open up avenues to unravel disease mechanisms and guide strategies for AD diagnosis and drug development. For example, immunotherapeutic strategies targeting amyloid-β (Aβ) and tau proteins were once deemed almost certainly effective in clinical treatment due to the excellent preclinical results. However, the repeated failures of clinical trials on vaccines and humanized anti-Aβ and anti-tau monoclonal antibodies have resulted in doubts on this strategy. Recently, a new anti-Aβ monoclonal antibody (Aducanumab) has been approved by the US Food and Drug Administration, which brings us back to the realization that immunotherapy strategies targeting Aβ may be still promising. Meanwhile, immunotherapies based on other targets such as tau, microglia and gut-brain axis are also under development. Further research is still needed to clarify the forms and epitopes of targeted proteins to improve the accuracy and effectiveness of immunotherapeutic drugs. In this review, we focus on the immunotherapies based on Aβ, tau and microglia and their mechanisms of action in AD. In addition, we present up-to-date advances and future perspectives on immunotherapeutic strategies for AD.
Collapse
Affiliation(s)
- Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Clinical Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
28
|
Wang BY, Gu BC, Wang GJ, Yang YH, Wu CC. Detection of Amyloid-β(1–42) Aggregation With a Nanostructured Electrochemical Sandwich Immunoassay Biosensor. Front Bioeng Biotechnol 2022; 10:853947. [PMID: 35372290 PMCID: PMC8965719 DOI: 10.3389/fbioe.2022.853947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022] Open
Abstract
Amyloid-β(1–42) [Aβ(1–42)] oligomer accumulations are associated with physiologic alterations in the brains of individuals with Alzheimer’s disease. In this study, we demonstrate that a nanostructured gold electrode with deposited gold nanoparticles, induced via electrochemical impedance spectroscopy (EIS), may be used as an Aβ(1–42) conformation biosensor for the detection of Alzheimer’s disease. Monoclonal antibodies (12F4) were immobilized on self-assembled monolayers of the electrochemical sandwich immunoassay biosensor to capture Aβ(1–42) monomers and oligomers. Western blot and fluorescence microscopy analyses were performed to confirm the presence of Aβ(1–42) monomers and oligomers. EIS analysis with an equivalent circuit model was used to determine the concentrations of different Aβ(1–42) conformations in this study. We identified conformations of Aβ(1–42) monomers and Aβ(1–42) oligomers using probe antibodies (12F4) by employing EIS. RAβ(1−42) indicates the sum resistance of impedance measured during Aβ(1–42) immobilization. ΔR12F4 refers to the concentration of probe antibody (12F4) binding with Aβ(1–42). The concentration of Aβ(1–42) oligomer was defined as the percentage of Aβ(1–42) aggregation R12F4/RAβ(1−42). The experimental results show that the biosensor has high selectivity to differentiate Aβ(1–40) and Aβ(1–42) monomers and Aβ(1–42) oligomers and that it can detect Aβ(1–42) oligomer accurately. The linear detection range for Aβ(1–42) oligomers was between 10 pg/ml and 100 ng/ml. The limit of detection was estimated to be 113 fg/ml.
Collapse
Affiliation(s)
- Bing-Yu Wang
- Department of Mechanical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Bien-Chen Gu
- Department of Mechanical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Gou-Jen Wang
- Department of Mechanical Engineering, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Han Yang
- Department of and Master's Program in Neurology, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Che Wu
- Department of Mechanical Engineering, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, Taiwan
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung, Taiwan
| |
Collapse
|
29
|
Discovery of a novel pseudo β-hairpin structure of N-truncated amyloid-β for use as a vaccine against Alzheimer's disease. Mol Psychiatry 2022; 27:840-848. [PMID: 34776512 DOI: 10.1038/s41380-021-01385-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) are deposits of amyloid-beta (Aβ) protein in amyloid plaques in the brain. The Aβ peptide exists in several forms, including full-length Aβ1-42 and Aβ1-40 - and the N-truncated species, pyroglutamate Aβ3-42 and Aβ4-42, which appear to play a major role in neurodegeneration. We previously identified a murine antibody (TAP01), which binds specifically to soluble, non-plaque N-truncated Aβ species. By solving crystal structures for TAP01 family antibodies bound to pyroglutamate Aβ3-14, we identified a novel pseudo β-hairpin structure in the N-terminal region of Aβ and show that this underpins its unique binding properties. We engineered a stabilised cyclic form of Aβ1-14 (N-Truncated Amyloid Peptide AntibodieS; the 'TAPAS' vaccine) and showed that this adopts the same 3-dimensional conformation as the native sequence when bound to TAP01. Active immunisation of two mouse models of AD with the TAPAS vaccine led to a striking reduction in amyloid-plaque formation, a rescue of brain glucose metabolism, a stabilisation in neuron loss, and a rescue of memory deficiencies. Treating both models with the humanised version of the TAP01 antibody had similar positive effects. Here we report the discovery of a unique conformational epitope in the N-terminal region of Aβ, which offers new routes for active and passive immunisation against AD.
Collapse
|
30
|
Khan MI, Taehwan P, Cho Y, Scotti M, Priscila Barros de Menezes R, Husain FM, Alomar SY, Baig MH, Dong JJ. Discovery of novel acetylcholinesterase inhibitors through integration of machine learning with genetic algorithm based in silico screening approaches. Front Neurosci 2022; 16:1007389. [PMID: 36937207 PMCID: PMC10020350 DOI: 10.3389/fnins.2022.1007389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/08/2022] [Indexed: 03/06/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most studied progressive eurodegenerative disorder, affecting 40-50 million of the global population. This progressive neurodegenerative disease is marked by gradual and irreversible declines in cognitive functions. The unavailability of therapeutic drug candidates restricting/reversing the progression of this dementia has severed the existing challenge. The development of acetylcholinesterase (AChE) inhibitors retains a great research focus for the discovery of an anti-Alzheimer drug. Materials and methods This study focused on finding AChE inhibitors by applying the machine learning (ML) predictive modeling approach, which is an integral part of the current drug discovery process. In this study, we have extensively utilized ML and other in silico approaches to search for an effective lead molecule against AChE. Result and discussion The output of this study helped us to identify some promising AChE inhibitors. The selected compounds performed well at different levels of analysis and may provide a possible pathway for the future design of potent AChE inhibitors.
Collapse
Affiliation(s)
- Mohd Imran Khan
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Park Taehwan
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yunseong Cho
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Marcus Scotti
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suliman Yousef Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Mohammad Hassan Baig,
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jae-June Dong,
| |
Collapse
|
31
|
Fatafta H, Kav B, Bundschuh BF, Loschwitz J, Strodel B. Disorder-to-order transition of the amyloid-β peptide upon lipid binding. Biophys Chem 2021; 280:106700. [PMID: 34784548 DOI: 10.1016/j.bpc.2021.106700] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
There is mounting evidence that Alzheimer's disease progression and severity are linked to neuronal membrane damage caused by aggregates of the amyloid-β (Aβ) peptide. However, the detailed mechanism behind the membrane damage is not well understood yet. Recently, the lipid-chaperone hypothesis has been put forward, based on which the formation of complexes between Aβ and free lipids enables an easy insertion of Aβ into membranes. In order to test this hypothesis, we performed numerous all-atom molecular dynamics simulations. We studied the complex formation between individual lipids, considering both POPC and DPPC, and Aβ and examined whether the resulting complexes would be able to insert into lipid membranes. Complex formation at a one-to-one ratio was readily observed, yet with minimal effects on Aβ's characteristics. Most importantly, the peptide remains largely disordered in 1:1 complexes, and the complex does not insert into the membrane; instead, it is adsorbed to the membrane surface. The results change considerably once Aβ forms a complex with a POPC cluster composed of three lipid molecules. The hydrophobic interactions between Aβ and the lipid tails cause the peptide to fold into either a helical or a β-sheet structure. These observations provide atomic insight into the disorder-to-order transition that is needed for membrane insertion or amyloid aggregation to proceed.
Collapse
Affiliation(s)
- Hebah Fatafta
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Batuhan Kav
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bastian F Bundschuh
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitütstrasse 1, 40225 Düsseldorf, Germany
| | - Jennifer Loschwitz
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitütstrasse 1, 40225 Düsseldorf, Germany
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitütstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
32
|
Strazdaite S, Roeters SJ, Sakalauskas A, Sneideris T, Kirschner J, Pedersen KB, Schiøtt B, Jensen F, Weidner T, Smirnovas V, Niaura G. Interaction of Amyloid-β-(1-42) Peptide and Its Aggregates with Lipid/Water Interfaces Probed by Vibrational Sum-Frequency Generation Spectroscopy. J Phys Chem B 2021; 125:11208-11218. [PMID: 34597059 DOI: 10.1021/acs.jpcb.1c04882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we use surface-sensitive vibrational sum-frequency generation (VSFG) spectroscopy to investigate the interaction between model lipid monolayers and Aβ(1-42) in its monomeric and aggregated states. Combining VSFG with atomic force microscopy (AFM) and thioflavin T (ThT) fluorescence measurements, we found that only small aggregates with probably a β-hairpin-like structure adsorbed to the zwitterionic lipid monolayer (DOPC). In contrast, larger aggregates with an extended β-sheet structure adsorbed to a negatively charged lipid monolayer (DOPG). The adsorption of small, initially formed aggregates strongly destabilized both monolayers, but only the DOPC monolayer was completely disrupted. We showed that the intensity of the amide-II' band in achiral (SSP) and chiral (SPP) polarization combinations increased in time when Aβ(1-42) aggregates accumulated at the DOPG monolayer. Nevertheless, almost no adsorption of preformed mature fibrils to DOPG monolayers was detected. By performing spectral VSFG calculations, we revealed a clear correlation between the amide-II' signal and the degree of amyloid aggregates (e.g., oligomers or (proto)fibrils) of various Aβ(1-42) structures. The calculations showed that only structures with a significant amyloid β-sheet content have a strong amide-II' intensity, in line with previous Raman studies. The combination of the presented results substantiates the amide-II(') band as a legitimate amyloid marker.
Collapse
Affiliation(s)
- S Strazdaite
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - S J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - A Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - T Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - J Kirschner
- Institute of Solid State Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - K B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - B Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - F Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - T Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - V Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - G Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
33
|
Fatafta H, Khaled M, Owen MC, Sayyed-Ahmad A, Strodel B. Amyloid-β peptide dimers undergo a random coil to β-sheet transition in the aqueous phase but not at the neuronal membrane. Proc Natl Acad Sci U S A 2021; 118:e2106210118. [PMID: 34544868 PMCID: PMC8488611 DOI: 10.1073/pnas.2106210118] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Mounting evidence suggests that the neuronal cell membrane is the main site of oligomer-mediated neuronal toxicity of amyloid-β peptides in Alzheimer's disease. To gain a detailed understanding of the mutual interference of amyloid-β oligomers and the neuronal membrane, we carried out microseconds of all-atom molecular dynamics (MD) simulations on the dimerization of amyloid-β (Aβ)42 in the aqueous phase and in the presence of a lipid bilayer mimicking the in vivo composition of neuronal membranes. The dimerization in solution is characterized by a random coil to β-sheet transition that seems on pathway to amyloid aggregation, while the interactions with the neuronal membrane decrease the order of the Aβ42 dimer by attenuating its propensity to form a β-sheet structure. The main lipid interaction partners of Aβ42 are the surface-exposed sugar groups of the gangliosides GM1. As the neurotoxic activity of amyloid oligomers increases with oligomer order, these results suggest that GM1 is neuroprotective against Aβ-mediated toxicity.
Collapse
Affiliation(s)
- Hebah Fatafta
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Mohammed Khaled
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Michael C Owen
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | | | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany;
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci Rep 2021; 11:19262. [PMID: 34584131 PMCID: PMC8479085 DOI: 10.1038/s41598-021-98644-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
Amyloid β (Aβ) peptide aggregation plays a central role in Alzheimer's disease (AD) etiology. AD drug candidates have included small molecules or peptides directed towards inhibition of Aβ fibrillogenesis. Although some Aβ-derived peptide fragments suppress Aβ fibril growth, comprehensive analysis of inhibitory potencies of peptide fragments along the whole Aβ sequence has not been reported. The aim of this work is (a) to identify the region(s) of Aβ with highest propensities for aggregation and (b) to use those fragments to inhibit Aβ fibrillogenesis. Structural and aggregation properties of the parent Aβ1-42 peptide and seven overlapping peptide fragments have been studied, i.e. Aβ1-10 (P1), Aβ6-15 (P2), Aβ11-20 (P3), Aβ16-25 (P4), Aβ21-30 (P5), Aβ26-36 (P6), and Aβ31-42 (P7). Structural transitions of the peptides in aqueous buffer have been monitored by circular dichroism and Fourier transform infrared spectroscopy. Aggregation and fibrillogenesis were analyzed by light scattering and thioflavin-T fluorescence. The mode of peptide-peptide interactions was characterized by fluorescence resonance energy transfer. Three peptide fragments, P3, P6, and P7, exhibited exceptionally high propensity for β-sheet formation and aggregation. Remarkably, only P3 and P6 exerted strong inhibitory effect on the aggregation of Aβ1-42, whereas P7 and P2 displayed moderate inhibitory potency. It is proposed that P3 and P6 intercalate between Aβ1-42 molecules and thereby inhibit Aβ1-42 aggregation. These findings may facilitate therapeutic strategies of inhibition of Aβ fibrillogenesis by Aβ-derived peptides.
Collapse
|
35
|
Aksnes M, Müller EG, Tiiman A, Edwin TH, Terenius L, Revheim ME, Vukojević V, Bogdanović N, Knapskog AB. Amyloidogenic Nanoplaques in Cerebrospinal Fluid: Relationship to Amyloid Brain Uptake and Clinical Alzheimer's Disease in a Memory Clinic Cohort. J Alzheimers Dis 2021; 77:831-842. [PMID: 32741818 PMCID: PMC7592690 DOI: 10.3233/jad-200237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Aggregation of amyloid-β (Aβ) is an early pathological event in Alzheimer's disease (AD). Consequently, measures of pathogenic aggregated Aβ are attractive biomarkers for AD. Here, we use a recently developed Thioflavin-T-Fluorescence Correlation Spectroscopy (ThT-FCS) assay to quantify structured ThT-responsive protein aggregates, so-called nanoplaques, in the cerebrospinal fluid (CSF). OBJECTIVE The overall aim of this work was to assess whether ThT-FCS determined CSF nanoplaque levels could predict amyloid brain uptake as determined by 18F-Flutemetamol PET analysis. Further, we assess whether nanoplaque levels could predict clinical AD. METHODS Nanoplaque levels in the CSF from 54 memory clinic patients were compared between sub-groups classified by 18F-Flutemetamol PET as amyloid-positive or amyloid-negative, and by clinical assessment as AD or non-AD. RESULTS Nanoplaque levels did not differ between amyloid groups and could not predict brain amyloid uptake. However, nanoplaque levels were significantly increased in patients with clinical AD, and were significant predictors for AD when adjusting for age, sex, cognitive function, and apolipoprotein E (APOE) genotype. CONCLUSION The concentration of nanoplaques in the CSF differentiates patients with clinical AD from non-AD patients.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ebba Glersen Müller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ann Tiiman
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8: 01, Karolinska Institutet, Stockholm, Sweden
| | - Trine Holt Edwin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Vestfold, Norway
| | - Lars Terenius
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8: 01, Karolinska Institutet, Stockholm, Sweden
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Vladana Vukojević
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8: 01, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanović
- Department of Geriatric Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurobiology, Care Science and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
36
|
Wang K, Na L, Duan M. The Pathogenesis Mechanism, Structure Properties, Potential Drugs and Therapeutic Nanoparticles against the Small Oligomers of Amyloid-β. Curr Top Med Chem 2021; 21:151-167. [PMID: 32938351 DOI: 10.2174/1568026620666200916123000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disease that affects millions of people in the world. The abnormal aggregation of amyloid β protein (Aβ) is regarded as the key event in AD onset. Meanwhile, the Aβ oligomers are believed to be the most toxic species of Aβ. Recent studies show that the Aβ dimers, which are the smallest form of Aβ oligomers, also have the neurotoxicity in the absence of other oligomers in physiological conditions. In this review, we focus on the pathogenesis, structure and potential therapeutic molecules against small Aβ oligomers, as well as the nanoparticles (NPs) in the treatment of AD. In this review, we firstly focus on the pathogenic mechanism of Aβ oligomers, especially the Aβ dimers. The toxicity of Aβ dimer or oligomers, which attributes to the interactions with various receptors and the disruption of membrane or intracellular environments, were introduced. Then the structure properties of Aβ dimers and oligomers are summarized. Although some structural information such as the secondary structure content is characterized by experimental technologies, detailed structures are still absent. Following that, the small molecules targeting Aβ dimers or oligomers are collected; nevertheless, all of these ligands have failed to come into the market due to the rising controversy of the Aβ-related "amyloid cascade hypothesis". At last, the recent progress about the nanoparticles as the potential drugs or the drug delivery for the Aβ oligomers are present.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liu Na
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
37
|
Ruan S, Zhou Y, Jiang X, Gao H. Rethinking CRITID Procedure of Brain Targeting Drug Delivery: Circulation, Blood Brain Barrier Recognition, Intracellular Transport, Diseased Cell Targeting, Internalization, and Drug Release. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004025. [PMID: 33977060 PMCID: PMC8097396 DOI: 10.1002/advs.202004025] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Indexed: 05/06/2023]
Abstract
The past decades have witnessed great progress in nanoparticle (NP)-based brain-targeting drug delivery systems, while their therapeutic potentials are yet to be fully exploited given that the majority of them are lost during the delivery process. Rational design of brain-targeting drug delivery systems requires a deep understanding of the entire delivery process along with the issues that they may encounter. Herein, this review first analyzes the typical delivery process of a systemically administrated NPs-based brain-targeting drug delivery system and proposes a six-step CRITID delivery cascade: circulation in systemic blood, recognizing receptor on blood-brain barrier (BBB), intracellular transport, diseased cell targeting after entering into parenchyma, internalization by diseased cells, and finally intracellular drug release. By dissecting the entire delivery process into six steps, this review seeks to provide a deep understanding of the issues that may restrict the delivery efficiency of brain-targeting drug delivery systems as well as the specific requirements that may guarantee minimal loss at each step. Currently developed strategies used for troubleshooting these issues are reviewed and some state-of-the-art design features meeting these requirements are highlighted. The CRITID delivery cascade can serve as a guideline for designing more efficient and specific brain-targeting drug delivery systems.
Collapse
Affiliation(s)
- Shaobo Ruan
- Key laboratory of Drug Targeting and Drug Delivery Systems of the Education MinistrySichuan Engineering Laboratory for Plant‐sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
- Department of PharmaceuticsCollege of PharmacyUniversity of FloridaGainesvilleFlorida32610USA
| | - Yang Zhou
- Key laboratory of Drug Targeting and Drug Delivery Systems of the Education MinistrySichuan Engineering Laboratory for Plant‐sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Xinguo Jiang
- Key laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Huile Gao
- Key laboratory of Drug Targeting and Drug Delivery Systems of the Education MinistrySichuan Engineering Laboratory for Plant‐sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
38
|
Lambert LJ, Grotegut S, Celeridad M, Gosalia P, Backer LJSD, Bobkov AA, Salaniwal S, Chung TDY, Zeng FY, Pass I, Lombroso PJ, Cosford NDP, Tautz L. Development of a Robust High-Throughput Screening Platform for Inhibitors of the Striatal-Enriched Tyrosine Phosphatase (STEP). Int J Mol Sci 2021; 22:ijms22094417. [PMID: 33922601 PMCID: PMC8122956 DOI: 10.3390/ijms22094417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as “undruggable” and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer’s disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.
Collapse
Affiliation(s)
- Lester J Lambert
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Stefan Grotegut
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Maria Celeridad
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Palak Gosalia
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Laurent JS De Backer
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Andrey A Bobkov
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Sumeet Salaniwal
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Thomas DY Chung
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (S.G.); (P.G.); (A.A.B.); (S.S.); (T.D.C.); (F.-Y.Z.); (I.P.)
| | - Paul J Lombroso
- Child Study Center, Departments of Psychiatry and Departments of Neurobiology, Yale University, 230 South Frontage Rd, New Haven, CT 06520, USA;
| | - Nicholas DP Cosford
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
| | - Lutz Tautz
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA; (L.J.L.); (M.C.); (L.J.D.B.); (N.D.C.)
- Correspondence:
| |
Collapse
|
39
|
Abedin F, Tatulian SA. Mutual structural effects of unmodified and pyroglutamylated amyloid β peptides during aggregation. J Pept Sci 2021; 27:e3312. [PMID: 33631839 DOI: 10.1002/psc.3312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/09/2022]
Abstract
Amyloid β (Aβ) peptide aggregates are linked to Alzheimer's disease (AD). Posttranslationally pyroglutamylated Aβ (pEAβ) occurs in AD brains in significant quantities and is hypertoxic, but the underlying structural and aggregation properties remain poorly understood. Here, the structure and aggregation of Aβ1-40 and pEAβ3-40 are analyzed separately and in equimolar combination. Circular dichroism data show that Aβ1-40 , pEAβ3-40 , and their combination assume α-helical structure in dry state and transition to unordered structure in aqueous buffer. Aβ1-40 and the 1:1 combination gradually acquire β-sheet structure while pEAβ3-40 adopts an α-helix/β-sheet conformation. Thioflavin-T fluorescence studies suggest that the two peptides mutually inhibit fibrillogenesis. Fourier transform infrared (FTIR) spectroscopy identifies the presence of β-turn and α-helical structures in addition to β-sheet structure in peptides in aqueous buffer. The kinetics of transitions from the initial α-helical structure to β-sheet structure were resolved by slow hydration of dry peptides by D2 O vapor, coupled with isotope-edited FTIR. These data confirmed the mutual suppression of β-sheet formation by the two peptides. Remarkably, pEAβ3-40 maintained a significant fraction of α-helical structure in the combined sample, implying a reduced β-sheet propensity of pEAβ3-40 . Altogether, the data imply that the combination of unmodified and pyroglutamylated Aβ peptides resists fibrillogenesis and favors the prefibrillar state, which may underlie hypertoxicity of pEAβ.
Collapse
Affiliation(s)
- Faisal Abedin
- Physics Graduate Program, University of Central Florida, Orlando, Florida, USA
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
40
|
Gong Y, Zhan C, Zou Y, Qian Z, Wei G, Zhang Q. Serotonin and Melatonin Show Different Modes of Action on Aβ 42 Protofibril Destabilization. ACS Chem Neurosci 2021; 12:799-809. [PMID: 33533252 DOI: 10.1021/acschemneuro.1c00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is associated with the aberrant self-assembly of amyloid-β (Aβ) protein into fibrillar deposits. The disaggregation of Aβ fibril is believed as one of the major therapeutic strategies for treating AD. Previous experimental studies reported that serotonin (Ser), one of the indoleamine neurotransmitters, and its derivative melatonin (Mel) are able to disassemble preformed Aβ fibrils. However, the fibril-disruption mechanisms are unclear. As the first step to understand the underlying mechanism, we investigated the interactions of Ser and Mel molecules with the LS-shaped Aβ42 protofibril by performing a total of nine individual 500 ns all-atom molecular dynamics (MD) simulations. The simulations demonstrate that both Ser and Mel molecules disrupt the local β-sheet structure, destroy the salt bridges between K28 side chain and A42 COO-, and consequently destabilize the global structure of Aβ42 protofibril. The Mel molecule exhibits a greater binding capacity than the Ser molecule. Intriguingly, we find that Ser and Mel molecules destabilize Aβ42 protofibril through different modes of action. Ser preferentially binds with the aromatic residues in the N-terminal region through π-π stacking interactions, while Mel binds not only with the N-terminal aromatic residues but also with the C-terminal hydrophobic residues via π-π and hydrophobic interactions. This work reveals the disruptive mechanisms of Aβ42 protofibril by Ser and Mel molecules and provides useful information for designing drug candidates against AD.
Collapse
Affiliation(s)
- Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People’s Republic of China
| | - Chendi Zhan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 148 Tianmenshan Road, Hangzhou, 310007 Zhejiang People’s Republic of China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People’s Republic of China
| |
Collapse
|
41
|
Dal Magro R, Vitali A, Fagioli S, Casu A, Falqui A, Formicola B, Taiarol L, Cassina V, Marrano CA, Mantegazza F, Anselmi-Tamburini U, Sommi P, Re F. Oxidative Stress Boosts the Uptake of Cerium Oxide Nanoparticles by Changing Brain Endothelium Microvilli Pattern. Antioxidants (Basel) 2021; 10:antiox10020266. [PMID: 33572224 PMCID: PMC7916071 DOI: 10.3390/antiox10020266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular oxidative stress is considered a worsening factor in the progression of Alzheimer's disease (AD). Increased reactive oxygen species (ROS) levels promote the accumulation of amyloid-β peptide (Aβ), one of the main hallmarks of AD. In turn, Aβ is a potent inducer of oxidative stress. In early stages of AD, the concomitant action of oxidative stress and Aβ on brain capillary endothelial cells was observed to compromise the blood-brain barrier functionality. In this context, antioxidant compounds might provide therapeutic benefits. To this aim, we investigated the antioxidant activity of cerium oxide nanoparticles (CNP) in human cerebral microvascular endothelial cells (hCMEC/D3) exposed to Aβ oligomers. Treatment with CNP (13.9 ± 0.7 nm in diameter) restored basal ROS levels in hCMEC/D3 cells, both after acute or prolonged exposure to Aβ. Moreover, we found that the extent of CNP uptake by hCMEC/D3 was +43% higher in the presence of Aβ. Scanning electron microscopy and western blot analysis suggested that changes in microvilli structures on the cell surface, under pro-oxidant stimuli (Aβ or H2O2), might be involved in the enhancement of CNP uptake. This finding opens the possibility to exploit the modulation of endothelial microvilli pattern to improve the uptake of anti-oxidant particles designed to counteract ROS-mediated cerebrovascular dysfunctions.
Collapse
Affiliation(s)
- Roberta Dal Magro
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
- Correspondence:
| | - Agostina Vitali
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.V.); (U.A.-T.)
| | - Stefano Fagioli
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Alberto Casu
- NABLA Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (A.C.); (A.F.)
| | - Andrea Falqui
- NABLA Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (A.C.); (A.F.)
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Lorenzo Taiarol
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Valeria Cassina
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Claudia Adriana Marrano
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Francesco Mantegazza
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | | | - Patrizia Sommi
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| |
Collapse
|
42
|
Vosough F, Barth A. Characterization of Homogeneous and Heterogeneous Amyloid-β42 Oligomer Preparations with Biochemical Methods and Infrared Spectroscopy Reveals a Correlation between Infrared Spectrum and Oligomer Size. ACS Chem Neurosci 2021; 12:473-488. [PMID: 33455165 PMCID: PMC8023574 DOI: 10.1021/acschemneuro.0c00642] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
![]()
Soluble oligomers of the amyloid-β(1-42)
(Aβ42) peptide,
widely considered to be among the relevant neurotoxic species involved
in Alzheimer’s disease, were characterized with a combination
of biochemical and biophysical methods. Homogeneous and stable Aβ42
oligomers were prepared by treating monomeric solutions of the peptide
with detergents. The prepared oligomeric solutions were analyzed with
blue native and sodium dodecyl sulfate polyacrylamide gel electrophoresis,
as well as with infrared (IR) spectroscopy. The IR spectra indicated
a well-defined β-sheet structure of the prepared oligomers.
We also found a relationship between the size/molecular weight of
the Aβ42 oligomers and their IR spectra: The position of the
main amide I′ band of the peptide backbone correlated with
oligomer size, with larger oligomers being associated with lower wavenumbers.
This relationship explained the time-dependent band shift observed
in time-resolved IR studies of Aβ42 aggregation in the absence
of detergents, during which the oligomer size increased. In addition,
the bandwidth of the main IR band in the amide I′ region was
found to become narrower with time in our time-resolved aggregation
experiments, indicating a more homogeneous absorption of the β-sheets
of the oligomers after several hours of aggregation. This is predominantly
due to the consumption of smaller oligomers in the aggregation process.
Collapse
Affiliation(s)
- Faraz Vosough
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
43
|
Trombetta-Lima M, Sabogal-Guáqueta AM, Dolga AM. Mitochondrial dysfunction in neurodegenerative diseases: A focus on iPSC-derived neuronal models. Cell Calcium 2021; 94:102362. [PMID: 33540322 DOI: 10.1016/j.ceca.2021.102362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Progressive neuronal loss is a hallmark of many neurodegenerative diseases, including Alzheimer's and Parkinson's disease. These pathologies exhibit clear signs of inflammation, mitochondrial dysfunction, calcium deregulation, and accumulation of aggregated or misfolded proteins. Over the last decades, a tremendous research effort has contributed to define some of the pathological mechanisms underlying neurodegenerative processes in these complex brain neurodegenerative disorders. To better understand molecular mechanisms responsible for neurodegenerative processes and find potential interventions and pharmacological treatments, it is important to have robust in vitro and pre-clinical animal models that can recapitulate both the early biological events undermining the maintenance of the nervous system and early pathological events. In this regard, it would be informative to determine how different inherited pathogenic mutations can compromise mitochondrial function, calcium signaling, and neuronal survival. Since post-mortem analyses cannot provide relevant information about the disease progression, it is crucial to develop model systems that enable the investigation of early molecular changes, which may be relevant as targets for novel therapeutic options. Thus, the use of human induced pluripotent stem cells (iPSCs) represents an exceptional complementary tool for the investigation of degenerative processes. In this review, we will focus on two neurodegenerative diseases, Alzheimer's and Parkinson's disease. We will provide examples of iPSC-derived neuronal models and how they have been used to study calcium and mitochondrial alterations during neurodegeneration.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Angélica María Sabogal-Guáqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
44
|
Amodeo GF, Pavlov EV. Amyloid β, α-synuclein and the c subunit of the ATP synthase: Can these peptides reveal an amyloidogenic pathway of the permeability transition pore? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183531. [PMID: 33309700 DOI: 10.1016/j.bbamem.2020.183531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 01/29/2023]
Abstract
Mitochondrial Permeability Transition (PT) is a phenomenon of increased permeability of the inner mitochondrial membrane in response to high levels of Ca2+ and/or reactive oxygen species (ROS) in the matrix. PT occurs upon the opening of a pore, namely the permeability transition pore (PTP), which dissipates the membrane potential uncoupling the respiratory chain. mPT activation and PTP formation can occur through multiple molecular pathways. The specific focus of this review is to discuss the possible molecular mechanisms of PTP that involve the participation of mitochondrially targeted amyloid peptides Aβ, α-synuclein and c subunit of the ATP synthase (ATPase). As activators of PTP, amyloid peptides are uniquely different from other activators because they are capable of forming channels in lipid bilayers. This property rises the possibility that in this permeabilization pathway the formation of the channel involves the direct participation of peptides, making it uniquely different from other PTP induction mechanisms. In this pathway, a critical step of PTP activation involves the import of amyloidogenic peptides from the cytosol into the matrix. In the matrix these peptides, which would fold into α-helical structure in native conditions, interact with cyclophilin D (CypD) and upon stimulation by elevated ROS and/or the Ca2+ spontaneously misfold into β-sheet ion conducting pores, causing PTP opening.
Collapse
Affiliation(s)
- Giuseppe F Amodeo
- Department of Molecular Pathobiology, New York University, United States of America.
| | - Evgeny V Pavlov
- Department of Molecular Pathobiology, New York University, United States of America.
| |
Collapse
|
45
|
Tandem-Homodimer of a β-Sheet-Forming Short Peptide Inhibits Random-to-β Structural Transition of Its Original Monomer. Processes (Basel) 2020. [DOI: 10.3390/pr8111421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is an increasing interest in designing fibrillogenesis modulators for treating amyloid β (Aβ)-peptide-associated diseases. The use of Aβ fragment peptides and their derivatives, as well as nonpeptidyl natural products, is one promising approach to prevent Aβ fibrillation. In this study, we demonstrate that tandem-homodimers (TDs) of a β-sheet-forming short peptide in which the amino acid sequence is duplicated in series and joined via an amino alkanoic acid linker of different chain lengths, preventing the random-to-β structural transition of the original monomer. Ape5-TD, containing 5-amino pentanoate, most potently prevented this transition for at least five days by generating disordered aggregates with reduced tryptic stability. The linkers in the TDs generated this inhibitory activity, probably due to their bent conformations and hydrophobicity, appropriate for accommodating and twisting the monomers, resulting in irregular arrangements of the peptides. The present study could allow the design of a new class of protein/peptide fibrillogenesis modulators.
Collapse
|
46
|
De Mena L, Smith MA, Martin J, Dunton KL, Ceballos-Diaz C, Jansen-West KR, Cruz PE, Dillon KD, Rincon-Limas DE, Golde TE, Moore BD, Levites Y. Aß40 displays amyloidogenic properties in the non-transgenic mouse brain but does not exacerbate Aß42 toxicity in Drosophila. Alzheimers Res Ther 2020; 12:132. [PMID: 33069251 PMCID: PMC7568834 DOI: 10.1186/s13195-020-00698-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Self-assembly of the amyloid-β (Aβ) peptide into aggregates, from small oligomers to amyloid fibrils, is fundamentally linked with Alzheimer's disease (AD). However, it is clear that not all forms of Aβ are equally harmful and that linking a specific aggregate to toxicity also depends on the assays and model systems used (Haass et al., J Biol. Chem 269:17741-17748, 1994; Borchelt et al., Neuron 17:1005-1013, 1996). Though a central postulate of the amyloid cascade hypothesis, there remain many gaps in our understanding regarding the links between Aβ deposition and neurodegeneration. METHODS In this study, we examined familial mutations of Aβ that increase aggregation and oligomerization, E22G and ΔE22, and induce cerebral amyloid angiopathy, E22Q and D23N. We also investigated synthetic mutations that stabilize dimerization, S26C, and a phospho-mimetic, S8E, and non-phospho-mimetic, S8A. To that end, we utilized BRI2-Aβ fusion technology and rAAV2/1-based somatic brain transgenesis in mice to selectively express individual mutant Aβ species in vivo. In parallel, we generated PhiC31-based transgenic Drosophila melanogaster expressing wild-type (WT) and Aβ40 and Aβ42 mutants, fused to the Argos signal peptide to assess the extent of Aβ42-induced toxicity as well as to interrogate the combined effect of different Aβ40 and Aβ42 species. RESULTS When expressed in the mouse brain for 6 months, Aβ42 E22G, Aβ42 E22Q/D23N, and Aβ42WT formed amyloid aggregates consisting of some diffuse material as well as cored plaques, whereas other mutants formed predominantly diffuse amyloid deposits. Moreover, while Aβ40WT showed no distinctive phenotype, Aβ40 E22G and E22Q/D23N formed unique aggregates that accumulated in mouse brains. This is the first evidence that mutant Aβ40 overexpression leads to deposition under certain conditions. Interestingly, we found that mutant Aβ42 E22G, E22Q, and S26C, but not Aβ40, were toxic to the eye of Drosophila. In contrast, flies expressing a copy of Aβ40 (WT or mutants), in addition to Aβ42WT, showed improved phenotypes, suggesting possible protective qualities for Aβ40. CONCLUSIONS These studies suggest that while some Aβ40 mutants form unique amyloid aggregates in mouse brains, they do not exacerbate Aβ42 toxicity in Drosophila, which highlights the significance of using different systems for a better understanding of AD pathogenicity and more accurate screening for new potential therapies.
Collapse
Affiliation(s)
- Lorena De Mena
- Department of Neurology, McKnight Brain Institute, University of Florida and Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Michael A Smith
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jason Martin
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Katie L Dunton
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Carolina Ceballos-Diaz
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Pedro E Cruz
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kristy D Dillon
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida and Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brenda D Moore
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Yona Levites
- Center for Translational Research in Neurodegenerative Disease and Department of Neuroscience, Gainesville, FL, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
47
|
Stoye NM, Dos Santos Guilherme M, Endres K. Alzheimer's disease in the gut-Major changes in the gut of 5xFAD model mice with ApoA1 as potential key player. FASEB J 2020; 34:11883-11899. [PMID: 32681583 DOI: 10.1096/fj.201903128rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) affects around 33 million people worldwide, which makes it the most prominent form of dementia. The main focus of AD research has been on the central nervous system (CNS) for long, but in recent years, the gut gained more attention. The intestinal tract is innervated by the enteric nervous system (ENS), built of numerous different types of neurons showing great similarity to neurons of the CNS. It already has been demonstrated that the amyloid precursor protein, which plays a major role in AD pathology, is also expressed in these cells. We analyzed gut tissue of AD model mice (5xFAD) and the respective wild-type littermates at different pathological stages: pre-pathological, early pathological and late pathological. Our results show significant difference in function of the intestine of 5xFAD mice as compared to wild-type mice. Using a pathway array detecting 84 AD-related gene products, we found ApoA1 expression significantly altered in colon tissue of 5xFAD mice. Furthermore, we unveil ApoA1's beneficial impact on cell viability and calcium homeostasis of cultured enteric neurons of 5xFAD animals. With this study, we demonstrate that the intestine is altered in AD-like pathology and that ApoA1 might be one key player within the gut.
Collapse
Affiliation(s)
- Nicolai M Stoye
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Malena Dos Santos Guilherme
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
48
|
Kargar F, Emadi S, Fazli H. Dimerization of Aβ40 inside dipalmitoylphosphatidylcholine bilayer and its effect on bilayer integrity: Atomistic simulation at three temperatures. Proteins 2020; 88:1540-1552. [PMID: 32557766 DOI: 10.1002/prot.25972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 04/28/2020] [Accepted: 06/07/2020] [Indexed: 11/10/2022]
Abstract
Amyloid-beta (Aβ) protein is related to Alzheimer disease (AD), and various experiments have shown that oligomers as small as dimers are cytotoxic. Recent studies have concluded that interactions of Aβ with neuronal cell membranes lead to disruption of membrane integrity and toxicity and they play a key role in the development of AD. Molecular dynamics (MD) simulations have been used to investigate Aβ in aqueous solution and membranes. We have previously studied monomeric Aβ40 embedded in dipalmitoylphosphatidylcholine (DPPC) membrane using MD simulations. Here, we explore interactions of two Aβ40 peptides in DPPC bilayer and its consequences on dimer distribution in a lipid bilayer and on the secondary structure of the peptides. We explored that N-terminals played an important role in dimeric Aβ peptide aggregations and Aβ-bilayer interactions, while C-terminals bound peptides to bilayer like anchors. We did not observe exiting of peptides in our simulations although we observed insertion of peptides into the core of bilayer in some of our simulations. So it seems that the presence of Aβ on membrane surface increases its aggregation rate, and as diffusion occurs in two dimensions, it can increase the probability of interpeptide interactions. We found that dimeric Aβ, like monomeric one, had the ability to cause structural destabilization of DPPC membrane, which in turn might ultimately lead to cell death in an in vivo system. This information could have important implications for understanding the affinity of Aβ oligomers (here dimer) for membranes and the mechanism of Aβ oligomer toxicity in AD.
Collapse
Affiliation(s)
- Faezeh Kargar
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Saeed Emadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Hossein Fazli
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
49
|
Ganesan M, Paranthaman S. Studies on the structure and conformational flexibility of secondary structures in amyloid beta — A quantum chemical study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Density functional theory (DFT) calculations are performed to study the conformational flexibility of secondary structures in amyloid beta (A[Formula: see text]) polypeptide. In DFT, M06-2X/6-31[Formula: see text]G(d, p) method is used to optimize the secondary structures of 2LFM and 2BEG in gas phase and in solution phase. Our calculations show that the secondary structures are energetically more stable in solution phase than in gas phase. This is due to the presence of strong solvent interaction with the secondary structures considered in this study. Among the backbone [Formula: see text] and [Formula: see text] dihedral angles, [Formula: see text] varies significantly in sheet structure. This is due to the absence of intermolecular hydrogen bond (H-bond) interactions in sheets considered in this study. Our calculations show that the conformational transition of helix/coil to sheet or vice-versa is due to the floppiness of the amino acid residues. This is observed from the Ramachandran map of the studied secondary structures. Further, it is noted that the intramolecular H-bond interactions play a significant role in the conformational transition of secondary structures of A[Formula: see text].
Collapse
Affiliation(s)
- Mahendiraprabu Ganesan
- Department of Physics and International Research Centre, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626126, India
| | - Selvarengan Paranthaman
- Department of Physics and International Research Centre, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626126, India
| |
Collapse
|
50
|
Huang Y, Cho HJ, Bandara N, Sun L, Tran D, Rogers BE, Mirica LM. Metal-chelating benzothiazole multifunctional compounds for the modulation and 64Cu PET imaging of Aβ aggregation. Chem Sci 2020; 11:7789-7799. [PMID: 34094152 PMCID: PMC8163150 DOI: 10.1039/d0sc02641g] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
While Alzheimer's Disease (AD) is the most common neurodegenerative disease, there is still a dearth of efficient therapeutic and diagnostic agents for this disorder. Reported herein are a series of new multifunctional compounds (MFCs) with appreciable affinity for amyloid aggregates that can be potentially used for both the modulation of Aβ aggregation and its toxicity, as well as positron emission tomography (PET) imaging of Aβ aggregates. Firstly, among the six compounds tested HYR-16 is shown to be capable to reroute the toxic Cu-mediated Aβ oligomerization into the formation of less toxic amyloid fibrils. In addition, HYR-16 can also alleviate the formation of reactive oxygen species (ROS) caused by Cu2+ ions through Fenton-like reactions. Secondly, these MFCs can be easily converted to PET imaging agents by pre-chelation with the 64Cu radioisotope, and the Cu complexes of HYR-4 and HYR-17 exhibit good fluorescent staining and radiolabeling of amyloid plaques both in vitro and ex vivo. Importantly, the 64Cu-labeled HYR-17 is shown to have a significant brain uptake of up to 0.99 ± 0.04 %ID per g. Overall, by evaluating the various properties of these MFCs valuable structure-activity relationships were obtained that should aid the design of improved therapeutic and diagnostic agents for AD.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
| | - Hong-Jun Cho
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University School of Medicine St. Louis Missouri 63108 USA
| | - Liang Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
| | - Diana Tran
- Department of Radiation Oncology, Washington University School of Medicine St. Louis Missouri 63108 USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine St. Louis Missouri 63108 USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana Illinois 61801 USA
- Hope Center for Neurological Disorders, Washington University School of Medicine St. Louis MO 63110 USA
| |
Collapse
|