1
|
Kawata A, Kaneda Y, Matsunaga D, Nakagawa H, Togo F, Yasumatsu M, Ishiwata T. Influence of extreme light/dark cycles on monoamine levels, physiological indices, and emotional behaviors in rats. Chronobiol Int 2024; 41:1516-1532. [PMID: 39618305 DOI: 10.1080/07420528.2024.2434173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Aberrant light/dark (LD) cycles are prevalent in modern society due to electric light usage, leading to mood disorders from circadian disruption or misalignment. However, research on the physiological and behavioral effects of LD variations on brain neurotransmitters is limited. We investigated the effects of extreme LD cycles on body weight (BW), core body temperature (Tcore), locomotor activity (ACT), emotional behaviors, and monoamine levels (noradrenaline [NA], dopamine [DA], and serotonin [5-HT]) in male Wistar rats that were exposed to 1 month of either long light phase (20 L:4D), long dark phase (4 L:20D), or normal (12 L:12D) LD cycles. The 20 L:4D rats exhibited blunted rhythms, with decreased amplitude and advanced/delayed acrophase in Tcore and ACT, alongside increased BW. The 4 L:20D rats showed circadian misalignment, with increased/decreased amplitude in Tcore or ACT and delayed acrophase in Tcore and ACT, also gaining BW. In the 20 L:4D group, NA and 5-HT levels decreased in the suprachiasmatic nucleus and amygdala, respectively, while the 4 L:20D group had increased DA and 5-HT levels in the caudate putamen and dorsomedial hypothalamus, respectively. Open field and social interaction tests indicated anxiety-like behaviors in both test groups. Overall, each extreme LD cycle affected Tcore, ACT amplitude, acrophase, and monoamine levels differently, inducing anxiogenic responses.
Collapse
Affiliation(s)
- Akira Kawata
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
| | - Yuta Kaneda
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
| | - Daisuke Matsunaga
- Department of Health-Promotion and Sports Science, Osaka Electro-Communication University, Osaka, Japan
| | - Hikaru Nakagawa
- College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Fumiharu Togo
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Mikinobu Yasumatsu
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
- College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Takayuki Ishiwata
- Graduate School of Community and Human Services, Rikkyo University, Saitama, Japan
- College of Sport and Wellness, Rikkyo University, Saitama, Japan
| |
Collapse
|
2
|
Langiu M, Dehghani F, Hohmann U, Bechstein P, Rawashdeh O, Rami A, Maronde E. Adrenergic Agonists Activate Transcriptional Activity in Immortalized Neuronal Cells From the Mouse Suprachiasmatic Nucleus. J Pineal Res 2024; 76:e12999. [PMID: 39092782 DOI: 10.1111/jpi.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) houses the central circadian oscillator of mammals. The main neurotransmitters produced in the SCN are γ-amino-butyric acid, arginine-vasopressin (AVP), vasoactive intestinal peptide (VIP), pituitary-derived adenylate cyclase-activating peptide (PACAP), prokineticin 2, neuromedin S, and gastrin-releasing peptide (GRP). Apart from these, catecholamines and their receptors were detected in the SCN as well. In this study, we confirmed the presence of β-adrenergic receptors in SCN and a mouse SCN-derived immortalized cell line by immunohistochemical, immuno-cytochemical, and pharmacological techniques. We then characterized the effects of β-adrenergic agonists and antagonists on cAMP-regulated element (CRE) signaling. Moreover, we investigated the interaction of β-adrenergic signaling with substances influencing parallel signaling pathways. Our findings have potential implications on the role of stress (elevated adrenaline) on the biological clock and may explain some of the side effects of β-blockers applied as anti-hypertensive drugs.
Collapse
Affiliation(s)
- Monica Langiu
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Philipp Bechstein
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
| | - Oliver Rawashdeh
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Abdelhaq Rami
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
| | - Erik Maronde
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Guedes Linhares SS, da Silva Rodrigues Meurer Y, Aquino A, Aquino Câmara D, Mateus Brandão LE, Dierschnabel AL, Porto Fiuza F, Hypólito Lima R, Engelberth RC, Cavalcante JS. Effects of prenatal exposure to fluoxetine on circadian rhythmicity in the locomotor activity and neuropeptide Y and 5-HT expression in male and female adult Wistar rats. Int J Dev Neurosci 2022; 82:407-422. [PMID: 35481929 DOI: 10.1002/jdn.10189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/07/2022] Open
Abstract
Serotonin (5-HT) reuptake inhibitors, such as fluoxetine, are the most prescribed antidepressant for maternal depression. In this sense, it exposes mothers and the brains of infants to increased modulatory and trophic effects of serotonergic neurotransmission. 5-HT promotes essential brain changes throughout its development, which include neuron migration, differentiation, and organization of neural circuitries related to emotional, cognitive, and circadian behavior. Early exposure to the SSRIs induces long-term effects on behavioral and neural serotonergic signalization. We have aimed to evaluate the circadian rhythm of locomotor activity and the neurochemical content, neuropeptide Y (NPY) and 5-HT in three brain areas: intergeniculate leaflet (IGL), suprachiasmatic nuclei (SCN) and raphe nuclei (RN), at two zeitgebers (ZT6 and ZT18), in male and female rat's offspring early exposed (developmental period GD13-GD21) to fluoxetine (20mg/kg). First, we have conducted daily records of the locomotor activity rhythm using activity sensors coupled to individual cages over four weeks. We have lastly evaluated the immunoreactivity of NPY in both SCN and IGL, and as well the 5-HT expression in the dorsal and medial RN. In summary, our results showed that (1) prenatal fluoxetine affects phase entrainment of the rest/activity rhythm at ZT6 and ZT18, more in male than female specimens, and (2) modulates the NPY and 5-HT expression. Here, we show male rats are more susceptible to phase entrainment and the NPY and 5-HT misexpression compared to female ones. The sex differences induced by early exposure to fluoxetine in both the circadian rhythm of locomotor activity and the neurochemical expression into SCN, IGL, and midbrain raphe are an important highlight in the present work. Thus, our results may help to improve the knowledge on neurobiological mechanisms of circadian rhythms and are relevant to understanding the "broken brains" and behavioral abnormalities of offspring early exposed to antidepressants.
Collapse
Affiliation(s)
- Sara Sophia Guedes Linhares
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Antonio Aquino
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego Aquino Câmara
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Aline Lima Dierschnabel
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Felipe Porto Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Ramon Hypólito Lima
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Graduate Program in Neuroengineering, Macaíba, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jeferson Souza Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
4
|
Spulber S, Conti M, Elberling F, Raciti M, Borroto-Escuela DO, Fuxe K, Ceccatelli S. Desipramine restores the alterations in circadian entrainment induced by prenatal exposure to glucocorticoids. Transl Psychiatry 2019; 9:263. [PMID: 31624238 PMCID: PMC6797805 DOI: 10.1038/s41398-019-0594-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
Alterations in circadian rhythms are closely linked to depression, and we have shown earlier that progressive alterations in circadian entrainment precede the onset of depression in mice exposed in utero to excess glucocorticoids. The aim of this study was to investigate whether treatment with the noradrenaline reuptake inhibitor desipramine (DMI) could restore the alterations in circadian entrainment and prevent the onset of depression-like behavior. C57Bl/6 mice were exposed to dexamethasone (DEX-synthetic glucocorticoid analog, 0.05 mg/kg/day) between gestational day 14 and delivery. Male offspring aged 6 months (mo) were treated with DMI (10 mg/kg/day in drinking water) for at least 21 days before behavioral testing. We recorded spontaneous activity using the TraffiCage™ system and found that DEX mice re-entrained faster than controls after an abrupt advance in light-dark cycle by 6 h, while DMI treatment significantly delayed re-entrainment. Next we assessed the synchronization of peripheral oscillators with the central clock (located in the suprachiasmatic nucleus-SCN), as well as the mechanisms required for entrainment. We found that photic entrainment of the SCN was apparently preserved in DEX mice, but the expression of clock genes in the hippocampus was not synchronized with the light-dark cycle. This was associated with downregulated mRNA expression for arginine vasopressin (AVP; the main molecular output entraining peripheral clocks) in the SCN, and for glucocorticoid receptor (GR; required for the negative feedback loop regulating glucocorticoid secretion) in the hippocampus. DMI treatment restored the mRNA expression of AVP in the SCN and enhanced GR-mediated signaling by upregulating GR expression and nuclear translocation in the hippocampus. Furthermore, DMI treatment at 6 mo prevented the onset of depression-like behavior and the associated alterations in neurogenesis in 12-mo-old DEX mice. Taken together, our data indicate that DMI treatment enhances GR-mediated signaling and restores the synchronization of peripheral clocks with the SCN and support the hypothesis that altered circadian entrainment is a modifiable risk factor for depression.
Collapse
Affiliation(s)
- Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Mirko Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Marilena Raciti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Sabbar M, Dkhissi-Benyahya O, Benazzouz A, Lakhdar-Ghazal N. Circadian Clock Protein Content and Daily Rhythm of Locomotor Activity Are Altered after Chronic Exposure to Lead in Rat. Front Behav Neurosci 2017; 11:178. [PMID: 28970786 PMCID: PMC5609114 DOI: 10.3389/fnbeh.2017.00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Lead exposure has been reported to produce many clinical features, including parkinsonism. However, its consequences on the circadian rhythms are still unknown. Here we aimed to examine the circadian rhythms of locomotor activity following lead intoxication and investigate the mechanisms by which lead may induce alterations of circadian rhythms in rats. Male Wistar rats were injected with lead or sodium acetate (10 mg/kg/day, i.p.) during 4 weeks. Both groups were tested in the “open field” to quantify the exploratory activity and in the rotarod to evaluate motor coordination. Then, animals were submitted to continuous 24 h recordings of locomotor activity under 14/10 Light/dark (14/10 LD) cycle and in complete darkness (DD). At the end of experiments, the clock proteins BMAL1, PER1-2, and CRY1-2 were assayed in the suprachiasmatic nucleus (SCN) using immunohistochemistry. We showed that lead significantly reduced the number of crossing in the open field, impaired motor coordination and altered the daily locomotor activity rhythm. When the LD cycle was advanced by 6 h, both groups adjusted their daily locomotor activity to the new LD cycle with high onset variability in lead-intoxicated rats compared to controls. Lead also led to a decrease in the number of immunoreactive cells (ir-) of BMAL1, PER1, and PER2 without affecting the number of ir-CRY1 and ir-CRY2 cells in the SCN. Our data provide strong evidence that lead intoxication disturbs the rhythm of locomotor activity and alters clock proteins expression in the SCN. They contribute to the understanding of the mechanism by which lead induce circadian rhythms disturbances.
Collapse
Affiliation(s)
- Mariam Sabbar
- Équipe de Recherche sur les Rythmes Biologiques, Neurosciences et Environnement, Faculté des Sciences, Université Mohammed VRabat, Morocco
| | - Ouria Dkhissi-Benyahya
- INSERM, Stem Cell and Brain Research Institute U1208, University of Lyon, Université Claude Bernard Lyon 1Lyon, France
| | - Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, UMR5293Bordeaux, France.,Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR5293Bordeaux, France
| | - Nouria Lakhdar-Ghazal
- Équipe de Recherche sur les Rythmes Biologiques, Neurosciences et Environnement, Faculté des Sciences, Université Mohammed VRabat, Morocco
| |
Collapse
|
6
|
Dethe S, Deepak M, Agarwal A. Elucidation of Molecular Mechanism(s) of Cognition Enhancing Activity of Bacomind ®: A Standardized Extract of Bacopa Monnieri. Pharmacogn Mag 2016; 12:S482-S487. [PMID: 27761079 PMCID: PMC5068128 DOI: 10.4103/0973-1296.191464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Bacopa monnieri (L.) Wettst., commonly known as Brahmi, is renowned in Indian traditional system for its potent memory enhancing activity, which has been validated by various scientific studies. Objective: The objective of this study was to understand the molecular mechanism of memory enhancing activity of BacoMind® (BM), a standardized extract of B. monnieri. Materials and Methods: BM was screened in vitro in a panel of cell-free and receptor-transfected cell assays. The purified enzymes/membrane homogenates/cells were incubated with substrate/standard ligand in the absence or presence of the test compound. The IC50 values and EC50 values were determined by nonlinear regression analysis of the concentration–response curves generated with mean replicate values using Hill equation curve fitting. Results: BM was found to inhibit three enzymes; Catechol-O-methyl transferase (COMT), Prolyl endopeptidase (PEP), and Poly (ADP-ribose) polymerase (PARP). It also had an antagonistic effect on serotonin 6 and 2A (5-HT6 and 5-HT2A) receptors, known to influence the different neurological pathways, associated with memory and learning disorders, age-associated memory impairment. Conclusion: BM was found to inhibit three enzymes namely, Catechol-O-methyl transferase (COMT), Prolyl endopeptidase (PEP), and Poly (ADP-ribose) polymerase (PARP). It also exhibited an antagonistic effect on 5-HT6 and 5-HT2A receptors. SUMMARY This study was conducted to understand the molecular mechanism of memory enhancing activity of a standardized extract of B. monnieri by was screening it in vitro in a panel of cell-free and receptor-transfected cell assays. The purified enzymes/membrane homogenates/cells were incubated with substrate/standard ligand in the absence or presence of the test compound. BM was found to inhibit three enzymes; Catechol-O-methyl transferase (COMT), Prolyl endopeptidase (PEP), and Poly (ADP-ribose) polymerase (PARP). It also had an antagonistic effect on serotonin6 and2A (5-HT6 and 5-HT2A) receptors, known to influence the different neurological pathways, associated with memory and learning disorders, age-associated memory impairment. Abbreviations used: HTRF: Homogenous time resolved fluorescence, cAMP: Cyclic adenosine monophosphate, CHO: Chinese hamster ovary, RFU: Relative fluorescence unit, pNP: Para nitro phenol, AMC: 7-amino-4-methylcoumarin, ELISA: Enzyme linked immunosorbent assay, Z-Pro-Pro-CHO: Z-prolyl-prolinal, HEK: Human embryonic kidney, TE: Trolox equivalent.
Collapse
Affiliation(s)
- Shekhar Dethe
- Natural Remedies R and D Centre No. 5B, Veerasandra, Bangalore, India
| | - M Deepak
- Natural Remedies R and D Centre No. 5B, Veerasandra, Bangalore, India
| | - Amit Agarwal
- Natural Remedies R and D Centre No. 5B, Veerasandra, Bangalore, India
| |
Collapse
|
7
|
Bedont JL, Blackshaw S. Constructing the suprachiasmatic nucleus: a watchmaker's perspective on the central clockworks. Front Syst Neurosci 2015; 9:74. [PMID: 26005407 PMCID: PMC4424844 DOI: 10.3389/fnsys.2015.00074] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/23/2015] [Indexed: 11/13/2022] Open
Abstract
The circadian system constrains an organism's palette of behaviors to portions of the solar day appropriate to its ecological niche. The central light-entrained clock in the suprachiasmatic nucleus (SCN) of the mammalian circadian system has evolved a complex network of interdependent signaling mechanisms linking multiple distinct oscillators to serve this crucial function. However, studies of the mechanisms controlling SCN development have greatly lagged behind our understanding of its physiological functions. We review advances in the understanding of adult SCN function, what has been described about SCN development to date, and the potential of both current and future studies of SCN development to yield important insights into master clock function, dysfunction, and evolution.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Physiology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
8
|
O'Keeffe SM, Thome J, Coogan AN. The noradrenaline reuptake inhibitor atomoxetine phase-shifts the circadian clock in mice. Neuroscience 2011; 201:219-30. [PMID: 22119060 DOI: 10.1016/j.neuroscience.2011.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/17/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
Circadian rhythms are recurring cycles in physiology and behaviour that repeat with periods of near 24 h and are driven by an endogenous circadian timekeeping system with a master circadian pacemaker located in the suprachiasmatic nucleus (SCN). Atomoxetine is a specific noradrenaline reuptake inhibitor that is used in the clinical management of attention-deficit/hyperactivity disorder (ADHD). In the current study we examined the effects of atomoxetine on circadian rhythms in mice. Atomoxetine (i.p.; 3 mg/kg) treatment of mice free-running in constant light (LL) at circadian time (CT) 6 induced large phase delays that were significantly different to saline controls. Treatment of animals with atomoxetine at CT13 or CT18 did not elicit any significant phase shifts. We also examined the effects of atomoxetine treatment of animals free-running in constant darkness (DD). Atomoxetine treatment at CT6 in these animals leads to more modest, but significant, phase advances, whereas treatment at CT18 did not elicit significant phase shifts. The effects of atomoxetine in LL were attenuated by pretreatment with the α-1 adrenoreceptor antagonist prazosin and were mimicked by another noradrenaline reuptake inhibitor, reboxetine. Further, atomoxetine treatment at CT6 induced a downregulation of c-Fos and CLOCK in the SCN, but did not alter the expression of PER2 and BMAL1. Atomoxetine during the night phase did not alter any of these factors. Atomoxetine treatment preceding a light pulse at CT15 enhanced the magnitude of the photic-phase shift, whereas it altered photic induction of the immediate early gene products c-Fos and ARC in the SCN. These data indicate that atomoxetine can reset the circadian clock and indicate that part of the therapeutic profile of atomoxetine may be through circadian rhythm modulation.
Collapse
Affiliation(s)
- S M O'Keeffe
- Department of Psychology, National University of Ireland Maynooth, Co. Kildare, Republic of Ireland
| | | | | |
Collapse
|
9
|
Morioka N, Sugimoto T, Tokuhara M, Dohi T, Nakata Y. Noradrenaline Induces Clock Gene Per1 mRNA Expression in C6 Glioma Cells Through β2-Adrenergic Receptor Coupled With Protein Kinase A – cAMP Response Element Binding Protein (PKA–CREB) and Src-Tyrosine Kinase – Glycogen Synthase Kinase-3β (Src–GSK-3β). J Pharmacol Sci 2010; 113:234-45. [DOI: 10.1254/jphs.10031fp] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Real C, Popa D, Seif I, Callebert J, Launay JM, Adrien J, Escourrou P. Sleep apneas are increased in mice lacking monoamine oxidase A. Sleep 2007; 30:1295-302. [PMID: 17969463 PMCID: PMC2266281 DOI: 10.1093/sleep/30.10.1295] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Alterations in the serotonin (5-HT) system have been suggested as a mechanism of sleep apnea in humans and rodents. The objective is to evaluate the contribution of 5-HT to this disorder. DESIGN We studied sleep and breathing (whole-body plethysmography) in mutant mice that lack monoamine oxidase A (MAOA) and have increased concentrations of monoamines, including 5-HT. MEASUREMENTS AND RESULTS Compared to wild-type mice, the mutants showed similar amounts of slow wave sleep (SWS) and rapid eye movement sleep (REMS), but exhibited a 3-fold increase in SWS and REMS apnea indices. Acute administration of the MAOA inhibitor clorgyline decreased REMS amounts and increased the apnea index in wild-type but not mutant mice. Parachlorophenylalanine, a 5-HT synthesis inhibitor, reduced whole brain concentrations of 5-HT in both strains, and induced a decrease in apnea index in mutant but not wild-type mice. CONCLUSION Our results show that MAOA deficiency is associated with increased sleep apnea in mice and suggest that an acute or chronic excess of 5-HT contributes to this phenotype.
Collapse
Affiliation(s)
- Caroline Real
- Univ Paris-Sud, EA3544, Châtenay-Malabry Cedex, F-92296, Sérotonine et Neuropharmacologie, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Koroleva SV, Nikolaeva AA, Ashmarin IP. Interactions between dopamine, serotonin, and other reward factor. BIOL BULL+ 2006. [DOI: 10.1134/s106235900604008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ye L, Li X, Chen Y, Sun H, Wang W, Su T, Jiang L, Cui B, Ning G. Autosomal dominant neurohypophyseal diabetes insipidus with linkage to chromosome 20p13 but without mutations in the AVP-NPII gene. J Clin Endocrinol Metab 2005; 90:4388-93. [PMID: 15811933 DOI: 10.1210/jc.2004-2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) has been known as a rare disorder transmitted as an autosomal dominant trait, characterized by polyuria and polydipsia, and caused by deficient neurosecretion of arginine vasopressin precursor (AVP-NPII). We reported an ADNDI family with linkage to chromosome 20p13 but without mutations in the AVP-NPII gene. OBJECTIVE The objective of this study was to identify the corresponding locus responsible for ADNDI in a family without AVP-NP II gene mutations. SUBJECTS AND METHODS Two families with ADNDI were diagnosed by water deprivation test. The AVP-NPII gene was amplified by PCR and sequenced. A genomewide scan was performed in one family using 400 microsatellite markers covering 22 autosomes. RESULTS A 3-bp deletion (1827-1829delAGG) of AVP-NPII gene was identified in the affected individuals in one family. Although no mutations could be detected in the coding, the promoter, and intronic regions of AVP-NPII gene in the other family, a maximum LOD score of 1.202999 (theta = 0.00) was obtained at marker D20S889 by genomewide scan, and a 7-cM interval on chromosome 20p13 was defined by fine mapping with markers D20S199-D20S849. Furthermore, the intragenic region that regulates AVP-NPII and oxytocin expression as an enhancer element and the UBCE7IP5 gene that participates in prohormone degradation were sequenced. No alterations could be detected either. CONCLUSION The corresponding locus responsible for ADNDI is possibly heterogeneous regarding the slightly different clinical features in these two families.
Collapse
Affiliation(s)
- Lei Ye
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Second Medical University, Ruijin Er Lu, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Teskey GC, Radford KS, Seif I, Dyck RH. MAOA knockout mice are more susceptible to seizures but show reduced epileptogenesis. Epilepsy Res 2004; 59:25-34. [PMID: 15135164 DOI: 10.1016/j.eplepsyres.2004.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 03/01/2004] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
The role of elevated neuroactive amine exposure during embryonic and early postnatal development on seizure threshold and epileptogenesis was examined using both electrical and pentylenetetrazol (PTZ) kindling in monoamine oxidase A knockout (MAO(A) KO) mice and their wildtype, parental strain (C3H). In the first experiment permanent bilateral electrodes were implanted in the amygdala of both C3H and MAO(A) KO mice. The mice had their afterdischarge threshold determined and then seizures were kindled daily for a total of 20 days. We observed that the MAO(A) KO mice had lower afterdischarge thresholds and less severe seizures compared to the C3H mice. In the second experiment, seizures were elicited in experimentally naive mice using 50mg/kg of PTZ once daily for 7 days. We observed that the MAO(A) KO mice had shorter latencies to the onset of the first seizure, shorter total duration of seizures and fewer seizures per day. Overall the results of both experiments suggest that MAO(A) KO mice have an increased susceptibility to seizures, but are more resistant to epileptogenesis. We conclude that the high levels of neuroactive amines in the MAO(A) KO mice reorganize the brain to make the mice more susceptible to seizures but the remaining high levels of serotonin and norepinephrine likely inhibit epileptogenesis.
Collapse
Affiliation(s)
- G Campbell Teskey
- Behavioural Neuroscience Research Group, Department of Psychology, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
| | | | | | | |
Collapse
|
14
|
Vacher CM, Calas A, Maltonti F, Hardin-Pouzet H. Postnatal regulation by monoamines of vasopressin expression in the neuroendocrine hypothalamus of MAO-A-deficient mice. Eur J Neurosci 2004; 19:1110-4. [PMID: 15009159 DOI: 10.1111/j.1460-9568.2004.03201.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We studied the influence of noradrenaline (NA) and serotonin (5-HT) on arginine-vasopressin (AVP) expression in the mouse neuroendocrine hypothalamus during the postnatal period. We used 11-day-old transgenic Tg8 mice knock-out for the monoamine oxidase A gene, which are characterized by increased amounts of NA (two-fold) and 5-HT (nine-fold) in the brain compared with wild-type littermates. AVP expression, determined by enzyme immunoassay and in situ hybridization, was increased in the suprachiasmatic nucleus (SCN), decreased in the supraoptic nucleus (SON), and unchanged in the paraventricular nucleus of Tg8 mice compared with wild-types. Inhibiting NA synthesis by injecting alpha-methylparatyrosine to Tg8 mice, AVP levels were decreased in the SCN but increased in the SON. Moreover, the administration of parachlorophenylalanine, a 5-HT synthesis inhibitor, was associated with increased AVP contents in the SCN only. Together, these data show a marked region-specific sensitivity of AVP expression to NA and 5-HT during the postnatal period in the mouse hypothalamus.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Laboratoire de Neurobiologie des Signaux Intercellulaires, UMR CNRS 7101, Université Pierre et Marie Curie, 75252 Paris cedex 05, France.
| | | | | | | |
Collapse
|
15
|
Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 2004; 4:1002-12. [PMID: 14618156 DOI: 10.1038/nrn1256] [Citation(s) in RCA: 946] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New genetic models that target the serotonin system show that transient alterations in serotonin homeostasis cause permanent changes to adult behaviour and modify the fine wiring of brain connections. These findings have revived a long-standing interest in the developmental role of serotonin. Molecular genetic approaches are now showing us that different serotonin receptors, acting at different developmental stages, modulate different developmental processes such as neurogenesis, apoptosis, axon branching and dendritogenesis. Our understanding of the specification of the serotonergic phenotype is improving. In addition, studies have revealed that serotonergic traits are dissociable, as there are populations of neurons that contain serotonin but do not synthesize it.
Collapse
Affiliation(s)
- Patricia Gaspar
- INSERM U 106, Hôpital Salpêtrière, 47, Boulevard de l'Hôpital, 75651, Paris cedex 13, France.
| | | | | |
Collapse
|