1
|
DeFelipe J, DeFelipe-Oroquieta J, Furcila D, Muñoz-Alegre M, Maestú F, Sola RG, Blázquez-Llorca L, Armañanzas R, Kastanaskaute A, Alonso-Nanclares L, Rockland KS, Arellano JI. Neuroanatomical and psychological considerations in temporal lobe epilepsy. Front Neuroanat 2022; 16:995286. [PMID: 36590377 PMCID: PMC9794593 DOI: 10.3389/fnana.2022.995286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and is associated with a variety of structural and psychological alterations. Recently, there has been renewed interest in using brain tissue resected during epilepsy surgery, in particular 'non-epileptic' brain samples with normal histology that can be found alongside epileptic tissue in the same epileptic patients - with the aim being to study the normal human brain organization using a variety of methods. An important limitation is that different medical characteristics of the patients may modify the brain tissue. Thus, to better determine how 'normal' the resected tissue is, it is fundamental to know certain clinical, anatomical and psychological characteristics of the patients. Unfortunately, this information is frequently not fully available for the patient from which the resected tissue has been obtained - or is not fully appreciated by the neuroscientists analyzing the brain samples, who are not necessarily experts in epilepsy. In order to present the full picture of TLE in a way that would be accessible to multiple communities (e.g., basic researchers in neuroscience, neurologists, neurosurgeons and psychologists), we have reviewed 34 TLE patients, who were selected due to the availability of detailed clinical, anatomical, and psychological information for each of the patients. Our aim was to convey the full complexity of the disorder, its putative anatomical substrates, and the wide range of individual variability, with a view toward: (1) emphasizing the importance of considering critical patient information when using brain samples for basic research and (2) gaining a better understanding of normal and abnormal brain functioning. In agreement with a large number of previous reports, this study (1) reinforces the notion of substantial individual variability among epileptic patients, and (2) highlights the common but overlooked psychopathological alterations that occur even in patients who become "seizure-free" after surgery. The first point is based on pre- and post-surgical comparisons of patients with hippocampal sclerosis and patients with normal-looking hippocampus in neuropsychological evaluations. The second emerges from our extensive battery of personality and projective tests, in a two-way comparison of these two types of patients with regard to pre- and post-surgical performance.
Collapse
Affiliation(s)
- Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain,*Correspondence: Javier DeFelipe,
| | - Jesús DeFelipe-Oroquieta
- Gerencia Asistencial de Atención Primaria, Servicio Madrileño de Salud, Madrid, Spain,Facultad de Educación, Universidad Camilo José Cela, Madrid, Spain
| | - Diana Furcila
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Mar Muñoz-Alegre
- Facultad de Educación y Psicología, Universidad Francisco de Vitoria, Madrid, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain,Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Rafael G. Sola
- Cátedra UAM de “Innovación en Neurocirugía”, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lidia Blázquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Armañanzas
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain,Tecnun School of Engineering, Universidad de Navarra, Donostia-San Sebastian, Spain
| | - Asta Kastanaskaute
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kathleen S. Rockland
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Zahr NM, Sullivan EV, Pohl KM, Pfefferbaum A, Saranathan M. Sensitivity of ventrolateral posterior thalamic nucleus to back pain in alcoholism and CD4 nadir in HIV. Hum Brain Mapp 2020; 41:1351-1361. [PMID: 31785046 PMCID: PMC7268080 DOI: 10.1002/hbm.24880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/15/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Volumes of thalamic nuclei are differentially affected by disease-related processes including alcoholism and human immunodeficiency virus (HIV) infection. This MRI study included 41 individuals diagnosed with alcohol use disorders (AUD, 12 women), 17 individuals infected with HIV (eight women), and 49 healthy controls (24 women) aged 39 to 75 years. A specialized, high-resolution acquisition protocol enabled parcellation of five thalamic nuclei: anterior [anterior ventral (AV)], posterior [pulvinar (Pul)], medial [mediodorsal (MD)], and ventral [including ventral lateral posterior (VLp) and ventral posterior lateral (VPl)]. An omnibus mixed-model approach solving for volume considered the "fixed effects" of nuclei, diagnosis, and their interaction while covarying for hemisphere, sex, age, and supratentorial volume (svol). The volume by diagnosis interaction term was significant; the effects of hemisphere and sex were negligible. Follow-up mixed-model tests thus evaluated the combined (left + right) volume of each nucleus separately for effects of diagnosis while controlling for age and svol. Only the VLp showed diagnoses effects and was smaller in the AUD (p = .04) and HIV (p = .0003) groups relative to the control group. In the AUD group, chronic back pain (p = .008) and impaired deep tendon ankle reflex (p = .0005) were associated with smaller VLp volume. In the HIV group, lower CD4 nadir (p = .008) was associated with smaller VLp volume. These results suggest that the VLp is differentially sensitive to disease processes associated with AUD and HIV.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Neuroscience ProgramSRI InternationalMenlo ParkCalifornia
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | - Kilian M. Pohl
- Neuroscience ProgramSRI InternationalMenlo ParkCalifornia
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | - Adolf Pfefferbaum
- Neuroscience ProgramSRI InternationalMenlo ParkCalifornia
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | | |
Collapse
|
3
|
Effects of Brain Ischemic Preconditioning on Cognitive Decline and Motor Incoordination in 3-Nitropropionic Acid-Intoxicated Rats: Probable Mechanisms of Action. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09809-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Demeter K, Török B, Fodor A, Varga J, Ferenczi S, Kovács KJ, Eszik I, Szegedi V, Zelena D. Possible contribution of epigenetic changes in the development of schizophrenia-like behavior in vasopressin-deficient Brattleboro rats. Behav Brain Res 2016; 300:123-34. [DOI: 10.1016/j.bbr.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022]
|
5
|
Ma Y, Zhou C, Li G, Tian Y, Liu J, Yan L, Jiang Y, Tian S. Effects on Spatial Cognition and Nociceptive Behavior Following Peripheral Nerve Injury in Rats with Lesion of the Striatal Marginal Division Induced by Kainic Acid. Neurochem Res 2015; 40:2357-64. [DOI: 10.1007/s11064-015-1727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/16/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
|
6
|
The marginal division of the striatum and hippocampus has different role and mechanism in learning and memory. Mol Neurobiol 2014; 51:827-39. [PMID: 25274077 PMCID: PMC4359289 DOI: 10.1007/s12035-014-8891-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
The memory function of the hippocampal formation (Hip) and the marginal division (MrD) of neostriatum was compared. Rats with bilateral lesions of the MrD either immediate or 24 h after training in Y-maze were found to have decrease in correct runs in both groups. However, animals with transected afferent and efferent nerve bundles to isolate the Hip immediately or 24 h after training in Y-maze were found to show a decrease in correct runs only in the group injured immediately after Y-maze training but not in the 24 h group suggesting that MrD is likely involved in the entire process of long-term memory consolidation whereas the Hip only contributes to memory in the early stage. In addition, animals treated with a NMDA receptor (NMDAR) blocker, e.g. MK-801, showed decreased correct runs in Y-maze test and in expression level of phosphorylated CREB (pCREB) in neurons of the MrD but not in the Hip. Furthermore, animals treated with okadaic acid (OA), a potent protein phosphatase 1 inhibitor, showed increased correct runs in the Y-maze test. The expression level of pCREB and c-Fos and c-Jun was found increased in neurons of the MrD and the Hip in response to OA treatment. In conclusion, NMDAR and pCREB are involved in memory functions of both the Hip and the MrD. NMDAR might regulate pCREB level in neurons of the MrD but not in the Hip. Hence, the processes and mechanism of learning and memory involved in the MrD and the Hip may be different.
Collapse
|
7
|
Jia W, Liu R, Shi J, Wu B, Dang W, Du Y, Zhou Q, Wang J, Zhang R. Differential Regulation of MAPK Phosphorylation in the Dorsal Hippocampus in Response to Prolonged Morphine Withdrawal-Induced Depressive-Like Symptoms in Mice. PLoS One 2013; 8:e66111. [PMID: 23823128 PMCID: PMC3688859 DOI: 10.1371/journal.pone.0066111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/30/2013] [Indexed: 12/20/2022] Open
Abstract
Depression is one of the most frequent neuropsychiatric comorbidities associated with opiate addiction. Mitogen activated protein kinase (MAPK) and MAPK phosphatase (MKP) are involved in drug addiction and depression. However, the potential role of MAPK and MKP in depression caused by morphine withdrawal remains unclear. We utilized a mouse model of repeated morphine administration to examine the molecular mechanisms that contribute to prolonged withdrawal induced depressive-like behaviors. Depressive-like behaviors were significant at 1 week after withdrawal and worsened over time. Phospho-ERK (extracellular signal-regulated protein kinase) was decreased and MKP-1 was elevated in the hippocampus, and JNK (c-Jun N-terminal protein kinase), p38 (p38 protein kinase) and MKP-3 were unaffected. A pharmacological blockade of MKP-1 by intra-hippocampal sanguinarine (SA) infusion prevented the development of depressive-like behaviors and resulted in relatively normal levels of MKP-1 and phospho-ERK after withdrawal. Our findings support the association between hippocampal MAPK phosphorylation and prolonged morphine withdrawal-induced depression, and emphasize the MKP-1 as an negative regulator of the ERK phosphorylation that contributes to depression.
Collapse
Affiliation(s)
- Wei Jia
- Methadone Maintenance Treatment Clinic, Xi’an Mental Health Center, Xi’an, China
| | - Rui Liu
- Department of Geriatrics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail:
| | - Jianguo Shi
- Methadone Maintenance Treatment Clinic, Xi’an Mental Health Center, Xi’an, China
| | - Bin Wu
- Methadone Maintenance Treatment Clinic, Xi’an Mental Health Center, Xi’an, China
| | - Wei Dang
- Methadone Maintenance Treatment Clinic, Xi’an Mental Health Center, Xi’an, China
| | - Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Qiong Zhou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianhua Wang
- Department of Geriatrics, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Rui Zhang
- Methadone Maintenance Treatment Clinic, Xi’an Mental Health Center, Xi’an, China
| |
Collapse
|
8
|
Shu SY, Qing D, Wang B, Zeng QY, Chen YC, Jin Y, Zeng CC, Bao R. Comparison of microRNA expression in hippocampus and the marginal division (MrD) of the neostriatum in rats. J Biomed Sci 2013; 20:9. [PMID: 23425148 PMCID: PMC3615960 DOI: 10.1186/1423-0127-20-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/01/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of highly conserved small non-coding RNA molecules, are known to play essential roles in central nervous system (CNS) by causing post-transcriptional gene silencing. There is much evidence that miRNAs have specific temporal and spatial expression patterns in the mammal brain, but little is known about the role of the region specificity for the gene regulatory networks of the brain. This study represents the first attempt to perform a profiling analysis of the differential expression of miRNAs between hippocampus and the Marginal division (MrD) of the neostriatum in the rat brain. RESULTS Microarray was used to detect the expression of 357 miRNAs in hippocampus and the MrD from three rats. A short-list of the most dysregulated 30 miRNAs per rat was generated for data analysis, and the miRNAs that were represented in two or three short-lists were then further analyzed. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was employed to validate the aberrantly expressed miRNAs obtained from the miRNA microarray analysis. A family of 11 miRNAs demonstrated differential expression between the MrD and hippocampus in more than one rat. Amongst these, miR-383 was differentially expressed in all three rats and up-regulated to the largest degree in rat one, and the ten other miRNAs, let-7d*, miR-181b, miR-187, miR-195, miR-214, miR-382, miR-411, miR-466b, miR-592 and miR-1224 were differentially expressed in at least two rats. Of these ten, besides miR-382 and miR-411 which were up-regulated in one rat and down-regulated in another, the other eight miRNAs retained a uniform direction of regulation (up-regulation or down-regulation) between different specimens. When further examined by RT-PCR, the aberrantly expressed miRNAs, except miR-383 and let-7d*, demonstrated differential expression that significantly correlated with the microarray findings. CONCLUSION This study reported that the miRNA expression patterns in MrD was distinct from that of Hip, suggesting the role of miRNAs in the learning and memory function of the MrD probably different from hippocampus.
Collapse
Affiliation(s)
- Si Yun Shu
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, Guangdong, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Application of in vitro [³⁵S]GTPγ-S autoradiography in studies of growth hormone effects on opioid receptors in the male rat brain. Brain Res Bull 2012; 90:100-6. [PMID: 23063719 DOI: 10.1016/j.brainresbull.2012.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 11/21/2022]
Abstract
Chronic treatment with opiates may inhibit cell growth and trigger apoptosis. On the contrary, growth hormone (GH) has been demonstrated to stimulate neurogenesis and counteract apoptosis. We recently demonstrated that recombinant human GH (rhGH) may reverse opiate-induced apoptosis in cells derived from prenatal mouse hippocampus. Thus, GH might be able to prevent the impaired cognitive capabilities that may occur in both humans and other mammals in connection to chronic opiate treatment. In order to explore the mechanism by which GH exerts its beneficial effects we here examined the impact of GH treatment on the levels of delta and mu opioid peptide (DOP and MOP, respectively) receptors in the male rat brain. The rats were treated with rhGH (Genotropin®) at two different doses (0.07 and 0.7 IU/kg), twice daily, during 7 days. Following decapitation, the levels of DOP and MOP receptor functionality were determined using [³⁵S]GTPγS autoradiography. The results demonstrate that rhGH affects the levels of the MOP receptor functionality in certain areas of the brain. These alterations were seen in e.g. amygdala and thalamus, i.e. regions that recently have been implicated in learning and memory. The activity level of DOP receptors was not affected. Thus, the data support that the beneficial effect of GH on counteracting apoptosis might involve a direct or indirect effect on the MOP but not the DOP receptor.
Collapse
|
10
|
Verma N, Pink M, Rettenmeier AW, Schmitz-Spanke S. Review on proteomic analyses of benzo[a]pyrene toxicity. Proteomics 2012; 12:1731-55. [DOI: 10.1002/pmic.201100466] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nisha Verma
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Mario Pink
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Albert W. Rettenmeier
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| | - Simone Schmitz-Spanke
- Institute of Hygiene and Occupational Medicine; University Hospital Essen; Essen Germany
| |
Collapse
|
11
|
Zhou ZW, Shu Y, Li M, Guo X, Pac-Soo C, Maze M, Ma D. The glutaminergic, GABAergic, dopaminergic but not cholinergic neurons are susceptible to anaesthesia-induced cell death in the rat developing brain. Neuroscience 2010; 174:64-70. [PMID: 21056635 DOI: 10.1016/j.neuroscience.2010.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/10/2010] [Accepted: 10/02/2010] [Indexed: 11/28/2022]
Abstract
Neuronal cell death induced by anaesthetics in the developing brain was evident in previous pre-clinical studies. However, the neuronal cell types involved in anaesthesia-induced neuronal cell death remains elusive. The aim of this study was to investigate glutamatergic, GABAergic, cholinergic and dopaminergic neuronal cell apoptosis induced by anaesthetic exposure in specific brain regions in rats. Separate cohorts of 7-day-old Sprague Dawley (SD) rat pups were randomly assigned to two groups: Naive and anaesthetics alone (70% nitrous oxide and 0.75% isoflurane exposure for 6 h). The brains were sectioned and the slices that contained the basal forebrain, substantia nigra, cornu ammonis area 1 (CA1) subarea of hippocampus or cingulate cortex were selected and subsequently subjected to double-labelled fluorescent immunohistochemistry for choline acetyltransferase, dopamine, vesicular glutamate transporter 1 (vGLUT1) or glutamic acid decarboxylase 67 (GAD67) together with caspase 3, respectively. Compared to the naive control, anaesthetic exposure significantly increased the number of caspase-3 positive cells in the CA1 subarea of hippocampus, cingulate cortex, and substantia nigra, but not in the basal forebrain. 54% and 14% of apoptotic cells in the CA1 subarea of hippocampus were GABAergic and glutamatergic neurons respectively. In the cingulate cortex, 30% and 37% of apoptotic cells were GABAergic and glutamatergic neurons respectively. In the substantia nigra, 22% of apoptotic cells were dopaminergic neurons. Our data suggests, anaesthetic exposure significantly increases neuroapoptosis of glutamatergic, GABAergic and dopaminergic neurons in the developing brain but not that of the cholinergic neurons in the basal forebrain.
Collapse
Affiliation(s)
- Z-W Zhou
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Visu-Petra L, Cheie L, Benga O, Packiam Alloway T. Effects of anxiety on memory storage and updating in young children. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2010. [DOI: 10.1177/0165025410368945] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The relationship between trait anxiety and memory functioning in young children was investigated. Two studies were conducted, using tasks tapping verbal and visual-spatial short-term memory (Study 1) and working memory (Study 2) in preschoolers. On the verbal storage tasks, there was a detrimental effect of anxiety on processing efficiency (duration of preparatory intervals) on Word Span. Performance effectiveness (memory span) did not differ between high-anxious and low-anxious children. In the second study, evaluating memory updating in a dual-task context, high-anxious children performed worse than low-anxious children on two verbal working memory tasks. Therefore, when simple verbal storage is required, high-anxious children show only efficiency deficits; when executive demands are higher (i.e., verbal updating) both accuracy and efficiency are impaired. However, on the visual-spatial storage and updating measures, performance did not differ between the two anxiety groups. The results are discussed in the context of the attentional control theory (Eysenck, Derakshan, Santos, & Calvo, 2007).
Collapse
Affiliation(s)
- Laura Visu-Petra
- Developmental Psychology Lab, Department of Psychology, Babeş-Bolyai University, Cluj-Napoca, Romania,
| | - Lavinia Cheie
- Developmental Psychology Lab, Department of Psychology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Oana Benga
- Developmental Psychology Lab, Department of Psychology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Tracy Packiam Alloway
- Centre for Memory and Learning over the Lifespan, Department of Psychology, Stirling University, UK
| |
Collapse
|
13
|
The impact of flavonoids on spatial memory in rodents: from behaviour to underlying hippocampal mechanisms. GENES AND NUTRITION 2009; 4:251-70. [PMID: 19727888 DOI: 10.1007/s12263-009-0137-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that a group of dietary-derived phytochemicals known as flavonoids are able to induce improvements in memory, learning and cognition. Flavonoids have been shown to modulate critical neuronal signalling pathways involved in processes of memory, and therefore are likely to affect synaptic plasticity and long-term potentiation mechanisms, widely considered to provide a basis for memory. Animal dietary supplementation studies have further shown that flavonoid-rich foods are able to reverse age-related spatial memory and spatial learning impairments. A more accurate understanding of how a particular spatial memory task works and of which aspects of memory and learning can be assessed in each case, are necessary for a correct interpretation of data relating to diet-cognition experiments. Further understanding of how specific behavioural tasks relate to the functioning of hippocampal circuitry during learning processes might be also elucidative of the specific observed memory improvements. The overall goal of this review is to give an overview of how the hippocampal circuitry operates as a memory system during behavioural tasks, which we believe will provide a new insight into the underlying mechanisms of the action of flavonoids on cognition.
Collapse
|
14
|
Wan L, Su L, Xie Y, Liu Y, Wang Y, Wang Z. Protein receptor for activated C kinase 1 is involved in morphine reward in mice. Neuroscience 2009; 161:734-42. [DOI: 10.1016/j.neuroscience.2009.03.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/17/2009] [Accepted: 03/21/2009] [Indexed: 11/16/2022]
|
15
|
Niogi SN, Mukherjee P, Ghajar J, Johnson CE, Kolster R, Lee H, Suh M, Zimmerman RD, Manley GT, McCandliss BD. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain 2008; 131:3209-21. [PMID: 18952679 DOI: 10.1093/brain/awn247] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Memory and attentional control impairments are the two most common forms of dysfunction following mild traumatic brain injury (TBI) and lead to significant morbidity in patients, yet these functions are thought to be supported by different brain networks. This 3 T magnetic resonance diffusion tensor imaging (DTI) study investigates whether microstructural integrity of white matter, as measured by fractional anisotropy (FA) within a small set of individually localized regions of interest (ROIs), is associated with these cognitive domains in normal adults and adults with mild TBI. Results in a sample of 23 normal controls reveal a significant correlation between attentional control and FA within a ROI in the left hemisphere anterior corona radiata. Furthermore, the controls demonstrate a correlation between memory performance and FA in a ROI placed in the uncinate fasciculus. Next, to examine whether these relationships are found in the pathological ranges of attention, memory and microstructural white matter integrity associated with mild TBI, these analyses were applied to a group of 43 mild TBI patients. Results, which generally demonstrated a wider range of attention, memory and FA scores, replicated the correlation between attentional control and FA in left hemisphere anterior corona radiata, as well as the correlation between memory performance and FA in the uncinate fasciculus. These two sets of brain-behaviour relationships were highly specific, as shown by a lack of correlation between attention and uncinate fasciculus FA and the lack of correlation between memory performance and anterior corona radiata FA. Furthermore, a 'correlational double dissociation' was demonstrated to exist between two distinct frontal structures independently associated with attention and memory, respectively, via a series of multiple regression analyses in both normal controls and adults with mild TBI. The results of the multiple regression analyses provide direct evidence that tract-specific variation in microstructural white matter integrity among normal controls and among mild TBI patients can account for much of the variation in performance in specific cognitive domains. More generally, such findings suggest that diffusion anisotropy measurement can be used as a quantitative biomarker for neurocognitive function and dysfunction.
Collapse
Affiliation(s)
- Sumit N Niogi
- Sackler Institute for Developmental Psychobiology,Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Joca SRL, Ferreira FR, Guimarães FS. Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress 2007; 10:227-49. [PMID: 17613938 DOI: 10.1080/10253890701223130] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Several findings relate the hippocampal formation to the behavioural consequences of stress. It contains a high concentration of corticoid receptors and undergoes plastic modifications, including decreased neurogenesis and cellular remodelling, following stress exposure. Various major neurotransmitter systems in the hippocampus are involved in these effects. Serotonin (5-HT) seems to exert a protective role in the hippocampus and attenuates the behavioural consequences of stress by activating 5-HT1A receptors in this structure. These effects may mediate the therapeutic actions of several antidepressants. The role of noradrenaline is less clear and possibly depends on the specific hippocampal region (dorsal vs. ventral). The deleterious modifications induced in the hippocampus by stress might involve a decrease in neurotrophic factors such as brain derived neurotrophic factor (BDNF) following glutamate N-methyl-D-aspartate (NMDA) receptor activation. In addition to glutamate, nitric oxide (NO) could also be related to these effects. Systemic and intra-hippocampal administration of nitric oxide synthase (NOS) inhibitors attenuates stress-induced behavioural consequences. The challenge for the future will be to integrate results related to these different neurotransmitter systems in a unifying theory about the role of the hippocampus in mood regulation, depressive disorder and antidepressant effects.
Collapse
Affiliation(s)
- Sâmia Regiane Lourenço Joca
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
17
|
Vasa RA, Roberson-Nay R, Klein RG, Mannuzza S, Moulton JL, Guardino M, Merikangas A, Carlino AR, Pine DS. Memory deficits in children with and at risk for anxiety disorders. Depress Anxiety 2007; 24:85-94. [PMID: 16850413 DOI: 10.1002/da.20193] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are limited data on the neurocognitive correlates of childhood anxiety disorders. The objective of this study was to examine whether visual and verbal memory deficits of nonemotional stimuli are (1) a shared feature of three common childhood anxiety disorders (social phobia, separation anxiety disorder, and generalized anxiety disorder) or whether these deficits are restricted to specific anxiety disorders, and (2) present in offspring who possess at least one of the following established risk factors for anxiety disorders, parental history of panic disorder (PD), or major depressive disorder (MDD). One hundred and sixty offspring, ages 9-20 years, were recruited from parents with lifetime diagnoses of PD, MDD, PD plus MDD, or neither illness. Different clinicians blindly administered semistructured diagnostic interviews to offspring and parents. Verbal and visual memory subtests of the Wide Range Assessment of Memory and Learning were administered to offspring. The results showed that offspring with ongoing social phobia demonstrated reduced visual but not verbal memory scores compared to those without social phobia when controlling for offspring IQ, separation anxiety disorder, and generalized anxiety disorder. No other offspring anxiety disorder predicted memory performance. Neither parental PD nor parental MDD was associated with offspring memory performance. These findings are relevant to understanding the phenomenology of childhood anxiety disorders and may provide insights into the neural circuits underlying these disorders.
Collapse
Affiliation(s)
- Roma A Vasa
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rosenzweig-Lipson S, Beyer CE, Hughes ZA, Khawaja X, Rajarao SJ, Malberg JE, Rahman Z, Ring RH, Schechter LE. Differentiating antidepressants of the future: Efficacy and safety. Pharmacol Ther 2007; 113:134-53. [PMID: 17010443 DOI: 10.1016/j.pharmthera.2006.07.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 11/17/2022]
Abstract
There have been significant advances in the treatment of depression since the serendipitous discovery that modulating monoaminergic neurotransmission may be a pathological underpinning of the disease. Despite these advances, particularly over the last 15years with the introduction of selective serotonin and/or norepinephrine reuptake inhibitors (SNRI), there still remain multiple unmet clinical needs that would represent substantial improvements to current treatment regimens. In terms of efficacy there have been improvements in the percentage of patients achieving remission but this can still be dramatically improved and, in fact, issues still remain with relapse. Furthermore, advances are still required in terms of improving the onset of efficacy as well as addressing the large proportion of patients who remain treatment resistant. While this is not well understood, collective research in the area suggests the disease is heterogeneous in terms of the multiple parameters related to etiology, pathology and response to pharmacological agents. In addition to efficacy further therapeutic advances will also need to address such issues as cognitive impairment, pain, sexual dysfunction, nausea and emesis, weight gain and potential cardiovascular effects. With these unmet needs in mind, the next generation of antidepressants will need to differentiate themselves from the current array of therapeutics for depression. There are multiple strategies for addressing unmet needs that are currently being investigated. These range from combination monoaminergic approaches to subtype selective agents to novel targets that include mechanisms to modulate neuropeptides and excitatory amino acids (EAA). This review will discuss the many facets of differentiation and potential strategies for the development of novel antidepressants.
Collapse
|
19
|
Marie-Claire C, Courtin C, Robert A, Gidrol X, Roques BP, Noble F. Sensitization to the conditioned rewarding effects of morphine modulates gene expression in rat hippocampus. Neuropharmacology 2006; 52:430-5. [PMID: 17014870 PMCID: PMC1976342 DOI: 10.1016/j.neuropharm.2006.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/21/2006] [Accepted: 08/16/2006] [Indexed: 01/17/2023]
Abstract
Opiates addiction is characterized by its long-term persistence. In order to study the enduring changes in long-term memory in hippocampus, a pivotal region for this process, we used suppression subtractive hybridization to compare hippocampal gene expression in morphine and saline-treated rats. Animals were subjected to an extended place preference paradigm consisting of four conditioning phases. Sensitization to the reinforcing effects of the drug occurred after three conditioning phases. After 25 days of treatment rats were euthanized and the complementary DNA (cDNA) from the hippocampus of morphine-dependent and saline-treated animals were then screened for differentially expressed cDNAs. The selected 177 clones were then subjected to a microarray procedure and 20 clones were found differentially regulated. The pattern of regulated genes suggests impairments in neurotransmitter release and the activation of neuroprotective pathways.
Collapse
Affiliation(s)
- Cynthia Marie-Claire
- Neuropsychopharmacologie des addictions. Vulnérabilité et variabilité expérimentale et clinique
CNRS : UMR7157 INSERM : U705 IFR71Université René Descartes - Paris V Université Denis Diderot - Paris VIIFaculté de Pharmacie
4 avenue de l'Observatoire
75006 PARIS,FR
| | - Cindie Courtin
- Neuropsychopharmacologie des addictions. Vulnérabilité et variabilité expérimentale et clinique
CNRS : UMR7157 INSERM : U705 IFR71Université René Descartes - Paris V Université Denis Diderot - Paris VIIFaculté de Pharmacie
4 avenue de l'Observatoire
75006 PARIS,FR
| | - Amelie Robert
- Service de génomique fonctionnelle
CEAGenopole d'Evry
91057 Evry Cedex,FR
| | - Xavier Gidrol
- Service de génomique fonctionnelle
CEAGenopole d'Evry
91057 Evry Cedex,FR
| | - Bernard P. Roques
- Pharmacochimie moléculaire et structurale
CNRS : FRE2463Université René Descartes - Paris V4 Av de l'Observatoire
75270 PARIS CEDEX 06,FR
| | - Florence Noble
- Neuropsychopharmacologie des addictions. Vulnérabilité et variabilité expérimentale et clinique
CNRS : UMR7157 INSERM : U705 IFR71Université René Descartes - Paris V Université Denis Diderot - Paris VIIFaculté de Pharmacie
4 avenue de l'Observatoire
75006 PARIS,FR
- * Correspondence should be adressed to: Florence Noble
| |
Collapse
|
20
|
Ozcan M, Yilmaz B, King WM, Carpenter DO. Hippocampal long-term potentiation (LTP) is reduced by a coplanar PCB congener. Neurotoxicology 2005; 25:981-8. [PMID: 15474616 DOI: 10.1016/j.neuro.2004.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 03/31/2004] [Indexed: 11/18/2022]
Abstract
Neurotoxicity of polychlorinated biphenyls (PCBs) is usually ascribed to the ortho-substituted congeners. We have examined the effects of acute perfusion of 3,3',4,4'-tetrachlorobiphenyl (PCB 77), a coplanar, dioxin-like congener, on long-term potentiation (LTP) in the Schaffer collateral-CA1 and the mossy fiber-CA3 pathways in mouse hippocampus. LTP in both pathways was blocked by PCB 77, with a threshold effect at a concentration of 1 microM. LTP is a useful model of learning and memory function in which a patterned stimulation of an afferent pathway produces a persistent increase in the efficacy of synaptic transmission. LTP is reduced by PCB mixtures and ortho-substituted congeners at concentrations comparable to those studied here. These observations provide evidence in support of the hypothesis that dioxin-like and non-dioxin-like PCB congeners are equally potent in causing the cognitive decrements seen in children exposed prenatally to PCBs.
Collapse
Affiliation(s)
- Mete Ozcan
- School of Public Health, University at Albany, One University Place, Rensselaer, NY 12144-3456, USA
| | | | | | | |
Collapse
|
21
|
Diamond DM, Campbell A, Park CR, Vouimba RM. Preclinical research on stress, memory, and the brain in the development of pharmacotherapy for depression. Eur Neuropsychopharmacol 2004; 14 Suppl 5:S491-5. [PMID: 15550347 DOI: 10.1016/j.euroneuro.2004.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have reviewed two areas of research on stress, memory, and synaptic plasticity which may be relevant toward understanding the neurobiology of major depressive disorder (MDD). First, we have presented the view that the hippocampus (HC) and prefrontal cortex (PFC) function jointly as a memory system which enables multitask processing (working memory) and consolidation of contextual information. The amygdala, by contrast, is necessary for the consolidation of emotional memories. Cognitive and neurophysiological studies have shown that HC-PFC processing is impaired, and amygdaloid processing is enhanced, by stress and in anxiety and mood disorders, including MDD. Second, we have reviewed research on the behavioral and neurophysiological actions of tianeptine, an antidepressant that is known to block the adverse effects of chronic stress on hippocampal morphology. Recent work has shown that acute tianeptine enhances cognitive and electrophysiological measures of HC-PFC functioning without interfering with the emotion-induced enhancement of amygdaloid functioning in rodents. We conclude with a synthesis of the preclinical and clinical literature on stress, memory, and tianeptine with the proposal that tianeptine should enhance HC-PFC memory-related processing in people under stress.
Collapse
Affiliation(s)
- David M Diamond
- Neuroscience Program, Department of Psychology, University of South Florida, PCD 4118G, 4202 E. Fowler Ave., Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
22
|
Göder R, Boigs M, Braun S, Friege L, Fritzer G, Aldenhoff JB, Hinze-Selch D. Impairment of visuospatial memory is associated with decreased slow wave sleep in schizophrenia. J Psychiatr Res 2004; 38:591-9. [PMID: 15458855 DOI: 10.1016/j.jpsychires.2004.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 04/06/2004] [Accepted: 04/22/2004] [Indexed: 11/22/2022]
Abstract
Cognitive impairments such as memory deficits and sleep disturbances are common clinical features of schizophrenia. Since sleep plays an important role in consolidation of memory, we hypothesize, that there is an interrelationship between distinct alterations in sleep and memory performance in schizophrenia. We studied 17 patients with schizophrenia on stable antipsychotic medication with amisulpride (age range 22-44 years; 7 women) and 17 healthy controls (matched for age, gender and educational level). Sleep was recorded and scored according to the standard criteria by Rechtschaffen and Kales. Immediately before polysomnography and the morning after we performed neuropsychological tasks including Rey-Osterrieth Complex Figure Test and a test for recall of spatial location for testing aspects of declarative memory and a mirror tracing skill for procedural memory. In comparison to healthy controls, the patients showed a significant increase in sleep onset latency and a significant decrease in sleep efficiency and amount of slow wave sleep (SWS). Furthermore, the patients' performance in recall of the Rey-figure and of spatial location the next morning was significantly impaired. These impairments in the tests for visuospatial memory were positively correlated with reduction in the amount of SWS and in sleep efficiency. These results point to a functional interrelationship between regulation of SWS and performance in visuospatial memory in schizophrenia. If these results of our pilot study hold true, they will allow the development of innovative treatment strategies for neuropsychological deficits in patients with schizophrenia.
Collapse
Affiliation(s)
- Robert Göder
- Department of Psychiatry and Psychotherapy, Center for Integrative Psychiatry (ZIP), Christian-Albrechts-University School of Medicine, Niemannsweg 147, 24105 Kiel, Germany.
| | | | | | | | | | | | | |
Collapse
|