1
|
Shashikumar U, Joshi S, Srivastava A, Tsai PC, Shree KDS, Suresh M, Ravindran B, Hussain CM, Chawla S, Ke LY, Ponnusamy VK. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges. Int J Biol Macromol 2023; 253:127120. [PMID: 37820902 DOI: 10.1016/j.ijbiomac.2023.127120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The ligand attribute of biomolecules to form coordination bonds with metal ions led to the discovery of a novel class of materials called biomolecule-associated metal-organic frameworks (Bio-MOFs). These biomolecules coordinate in multiple ways and provide versatile applications. Far-spread bio-ligands include nucleobases, amino acids, peptides, cyclodextrins, saccharides, porphyrins/metalloporphyrin, proteins, etc. Low-toxicity, self-assembly, stability, designable and selectable porous size, the existence of rigid and flexible forms, bio-compatibility, and synergistic interactions between metal ions have led Bio-MOFs to be commercialized in industries such as sensors, food, pharma, and eco-sensing. The rapid growth and commercialization are stunted by absolute bio-compatibility issues, bulk morphology that makes it rigid to alter shape/porosity, longer reaction times, and inadequate research. This review elucidates the structural vitality, biocompatibility issues, and vital sensing applications, including challenges for incorporating bio-ligands into MOF. Critical innovations in Bio-MOFs' applicative spectrum, including sustainable food packaging, biosensing, insulin and phosphoprotein detection, gas sensing, CO2 capture, pesticide carriers, toxicant adsorptions, etc., have been elucidated. Emphasis is placed on biosensing and biomedical applications with biomimetic catalysis and sensitive sensor designing.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Somi Joshi
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Kandkuri Dhana Sai Shree
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Meera Suresh
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan.; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan.
| |
Collapse
|
2
|
Dang DK, Nguyen VN, Tahir Z, Jeong H, Kim S, Tran HN, Cho S, Park YC, Bae JS, Le CT, Yoon J, Kim YS. An Efficient Green Approach to Constructing Adenine Sulfate-Derived Multicolor Sulfur- and Nitrogen-Codoped Carbon Dots and Their Bioimaging Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366002 DOI: 10.1021/acsami.3c06093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.
Collapse
Affiliation(s)
- Dinh Khoi Dang
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 700000, Viet Nam
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Zeeshan Tahir
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hyunsun Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sungdo Kim
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Hong Nhan Tran
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Shinuk Cho
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Yun Chang Park
- Measurement and Analysis Division, National Nanofab Center, Daejeon 34141, South Korea
| | - Jong-Seong Bae
- Busan Center, Korea Basic Science Institute, Busan 46742, South Korea
| | - Chinh Tam Le
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yong Soo Kim
- Department of Semiconductor Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
3
|
Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing. Carbohydr Polym 2022; 276:118718. [PMID: 34823762 DOI: 10.1016/j.carbpol.2021.118718] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/07/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Developing an efficient and available material for improved cutaneous tissue regeneration is a major challenge in healthcare. Inspired by the concept of moist wound healing, the injectable and self-healing adenine-modified chitosan (AC) hydrogels are designed to significantly accelerate wound healing without the addition of therapeutic drugs. A series of AC derivatives with degree of substitution (DS) ranging from 0.21 to 0.55 were synthesized in aqueous solutions, and the AC hydrogels were prepared by a simple heating/cooling process. AC hydrogels presented good self-healing, low swelling rate capacity, biocompatibility, promote cell proliferation and excellent hemostatic effect. The hydrogels displayed excellent antibacterial activities against gram-negative bacteria, gram-positive bacteria, fungi and drug-resistance bacteria. Moreover, the full-thickness skin defect model experiments showed that AC hydrogels could reduce inflammatory cell infiltration and accelerate wound healing significantly. The hydrogel can shed new light on designing of the multifunctional dressings for wound healing.
Collapse
|
4
|
Lv D, Nong W, Guan Y. Edible ligand-metal-organic frameworks: Synthesis, structures, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Novel multifunctional adenine-modified chitosan dressings for promoting wound healing. Carbohydr Polym 2021; 260:117767. [PMID: 33712125 DOI: 10.1016/j.carbpol.2021.117767] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Wound healing is a dynamic and intricate process, and newly dressings are urgently needed to promote wound healing over the multiple stages. Herein, two water-soluble adenine-modified chitosan (CS-A) derivatives were synthesized in aqueous solutions and freeze-dried to obtain porous sponge-like dressings. The novel derivatives displayed antibacterial activities against S. aureus and E. coli. Moreover, CS-A derivatives demonstrated excellent hemocompatibility and cytocompatibility, as well as promoted the proliferation of the wound cells by shortening the G1 phase and improving DNA duplication efficiency. The ability of CS-A sponges to promote wound healing was studied in a full-thickness skin defect model. The histological analysis and immunohistochemical staining showed that the wounds treated with CS-A sponges displayed fewer inflammatory cells, and faster regeneration of epithelial tissue, collagen deposition and neovascularization. Therefore, CS-A derivatives have potential application in wound dressings and provide new ideas for the design of multifunctional biomaterials.
Collapse
|
6
|
Chen YP, Chu YL, Tsuang YH, Wu Y, Kuo CY, Kuo YJ. Anti-Inflammatory Effects of Adenine Enhance Osteogenesis in the Osteoblast-Like MG-63 Cells. Life (Basel) 2020; 10:life10070116. [PMID: 32707735 PMCID: PMC7399991 DOI: 10.3390/life10070116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Adenine is a purine with a role in cellular respiration and protein synthesis. It is considered for its pharmacological potential. We investigated whether anti-inflammatory effect of adenine benefits on the proliferation and maturation of osteoblastic cells. Methods: Human osteoblast-like cells (MG-63) were cultured with adenine under control conditions or pre-treated with 10ng/mL of tumor necrosis factor-α (TNF-α) followed by adenine treatment. Cell viability was examined using dimethylthiazol diphenyltetrazolium bromide (MTT) assay. Expression of cytokines and osteogenic markers were analyzed using quantitative PCR (qPCR) and ELISA. Enzyme activity of alkaline phosphatase (ALP) and collagen content were measured. Results: TNF-α exposure led to a decreased viability of osteoblastic cells. Treatment with adenine suppressed TNF-α-induced elevation in IL-6 expression and nitrite oxide production in MG-63 cells. Adenine induced the osteoblast differentiation with increased transcript levels of collage and increased ALP enzyme activity. Conclusions: Adenine exerts anti-inflammatory activity in an inflammatory cell model. Adenine benefits osteoblast differentiation in normal and inflammatory experimental settings. Adenine has a potential for the use to treat inflammatory bone condition such as osteoporosis.
Collapse
Affiliation(s)
- Yu-Pin Chen
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-P.C.); (Y.-L.C.); (Y.W.)
| | - Yo-Lun Chu
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-P.C.); (Y.-L.C.); (Y.W.)
| | - Yang-Hwei Tsuang
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan;
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yueh Wu
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-P.C.); (Y.-L.C.); (Y.W.)
| | - Cheng-Yi Kuo
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (C.-Y.K.); (Y.-J.K.)
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; (Y.-P.C.); (Y.-L.C.); (Y.W.)
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (C.-Y.K.); (Y.-J.K.)
| |
Collapse
|
7
|
Adenine Inhibits the Growth of Colon Cancer Cells via AMP-Activated Protein Kinase Mediated Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9151070. [PMID: 31611925 PMCID: PMC6757274 DOI: 10.1155/2019/9151070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023]
Abstract
Background Adenine is involved in a variety of cell biological processes and has been explored for pharmacological uses. Its therapeutic use for managing cancer is of great interest. In the present study, we investigated the anticancer effects of adenine and the underlying mechanism in colon cancer cells. Methods Cell viability was measured using the MTT assay. Levels of phosphorylation and protein expression were determined using western blotting. qPCR was carried out to determine the changes in mRNA expression of genes of interest. Results Adenine significantly inhibited the viability of colon cancer cells, HT29 and Caco-2 cells, in a dose-dependent manner. Adenine induced significant apoptosis in HT29 cells, whereas Caco-2 cells exhibited less apoptotic responses. The data showed that adenine activated AMP-activated protein kinase (AMPK) signaling contributing to autophagic cell death through mTOR in both colon cancer cell lines. Conclusions Our findings suggest that adenine inhibits the growth of colon cancer cells. Anticancer activity of adenine in colon cancer cells is attributable to the activation of apoptotic signaling and in turn the AMPK/mTOR pathway. Adenine represents a natural compound with anticancer potency.
Collapse
|
8
|
Silwal P, Lim K, Heo JY, Park JI, Namgung U, Park SK. Adenine attenuates lipopolysaccharide-induced inflammatory reactions. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:379-389. [PMID: 29962852 PMCID: PMC6019877 DOI: 10.4196/kjpp.2018.22.4.379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/18/2018] [Accepted: 04/06/2018] [Indexed: 11/15/2022]
Abstract
A nucleobase adenine is a fundamental component of nucleic acids and adenine nucleotides. Various biological roles of adenine have been discovered. It is not produced from degradation of adenine nucleotides in mammals but produced mainly during polyamine synthesis by dividing cells. Anti-inflammatory roles of adenine have been supported in IgE-mediated allergic reactions, immunological functions of lymphocytes and dextran sodium sulfate-induced colitis. However adenine effects on Toll-like receptor 4 (TLR4)-mediated inflammation by lipopolysaccharide (LPS), a cell wall component of Gram negative bacteria, is not examined. Here we investigated anti-inflammatory roles of adenine in LPS-stimulated immune cells, including a macrophage cell line RAW264.7 and bone marrow derived mast cells (BMMCs) and peritoneal cells in mice. In RAW264.7 cells stimulated with LPS, adenine inhibited production of pro-inflammatory cytokines TNF-α and IL-6 and inflammatory lipid mediators, prostaglandin E2 and leukotriene B4. Adenine impeded signaling pathways eliciting production of these inflammatory mediators. It suppressed IκB phosphorylation, nuclear translocation of nuclear factor κB (NF-κB), phosphorylation of Akt and mitogen activated protein kinases (MAPKs) JNK and ERK. Although adenine raised cellular AMP which could activate AMP-dependent protein kinase (AMPK), the enzyme activity was not enhanced. In BMMCs, adenine inhibited the LPS-induced production of TNF-α, IL-6 and IL-13 and also hindered phosphorylation of NF-κB and Akt. In peritoneal cavity, adenine suppressed the LPS-induced production of TNF-α and IL-6 by peritoneal cells in mice. These results show that adenine attenuates the LPS-induced inflammatory reactions.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jun-Young Heo
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jong Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon 34520, Korea
| | - Seung-Kiel Park
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.,Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
9
|
Hosoi T, Ino S, Ohnishi F, Todoroki K, Yoshii M, Kakimoto M, Müller CE, Ozawa K. Mechanisms of the action of adenine on anti-allergic effects in mast cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:97-105. [PMID: 29094492 PMCID: PMC5818451 DOI: 10.1002/iid3.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
Introduction Mast cells play an important role in allergic responses. Methods We herein demonstrated the mechanisms of inhibitory effect of adenine on IgE/antigen‐induced degranulation and TNF‐α release in mast cells. Results We found that these effects were dependent on the amino group of adenine because purine only weakly inhibited degranulation. Adenine also inhibited Ca2+ ionophore‐ and thapsigargin‐induced degranulation, however, this inhibitory effect was weaker than that of the antigen. Therefore, the inhibitory effects of adenine on degranulation may be mediated before as well as after the Ca2+ raise under the antigen stimulus. Adenine inhibited antigen‐induced Syk and the subsequent induction of AKT and ERK activation under FcϵRI‐mediated signal. Adenine also attenuated antigen‐induced increase in Ca2+. Furthermore, adenine inhibited IgE/antigen‐induced IKKα/β activation, which is involved in degranulation. Finally, adenine protected mice against anaphylactic allergic responses in vivo. Conclusions The present study revealed a key role of adenine in the attenuation of allergic responses through the inhibition of Syk‐mediated signal transduction and IKK‐mediated degranulation.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shinsuke Ino
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Fumie Ohnishi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kenichi Todoroki
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Michiko Yoshii
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Mai Kakimoto
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
10
|
Fukuda T, Majumder K, Zhang H, Matsui T, Mine Y. Adenine has an anti-inflammatory effect through the activation of adenine receptor signaling in mouse macrophage. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Adenine attenuates the Ca(2+) contraction-signaling pathway via adenine receptor-mediated signaling in rat vascular smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:999-1007. [PMID: 27318925 DOI: 10.1007/s00210-016-1264-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Our previous study demonstrated that adenine (6-amino-6H-purine) relaxed contracted rat aorta rings in an endothelial-independent manner. Although adenine receptors (AdeRs) are expressed in diverse tissues, aortic AdeR expression has not been ascertained. Thus, the aims of this study were to clarify the expression of AdeR in rat vascular smooth muscle cells (VSMCs) and to investigate the adenine-induced vasorelaxation mechanism(s). VSMCs were isolated from 8-week-old male Wistar-Kyoto rats and used in this study. Phosphorylation of myosin light chain (p-MLC) was measured by western blot. AdeR mRNA was detected by RT-PCR. Intracellular Ca(2+) concentration ([Ca(2+)]i) was measured by using Fura-2/AM. Vasorelaxant adenine (10-100 μM) significantly reduced p-MLC by angiotensin II (Ang II, 10 μM) in VSMCs (P < 0.05). We confirmed the expression of aortic AdeR mRNA and the activation of PKA in VSMCs through stimulation of AdeR by adenine by ELISA. Intracellular Ca(2+) concentration ([Ca(2+)]i) measurement demonstrated that adenine inhibits Ang II- and m-3M3FBS (PLC agonist)-induced [Ca(2+)]i elevation. In AdeR-knockdown VSMCs, PKA activation and p-MLC reduction by adenine were completely abolished. These results firstly demonstrated that vasorelaxant adenine can suppress Ca(2+) contraction signaling pathways via aortic AdeR/PKA activation in VSMCs.
Collapse
|
12
|
Fukuda T, Majumder K, Zhang H, Turner PV, Matsui T, Mine Y. Adenine Inhibits TNF-α Signaling in Intestinal Epithelial Cells and Reduces Mucosal Inflammation in a Dextran Sodium Sulfate-Induced Colitis Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4227-4234. [PMID: 27166765 DOI: 10.1021/acs.jafc.6b00665] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adenine (6-amino-6H-purine), found in molokheiya (Corchorus olitorius L.), has exerted vasorelaxation effects in the thoracic aorta. However, the mode of action of the anti-inflammatory effect of adenine is unclear. Thus, we investigated to clarify the effect of adenine on chronic inflammation of the gastrointestinal tract. In intestinal epithelial cells, adenine significantly inhibited tumor necrosis factor-α-induced interleukin-8 secretion. The inhibition of adenine was abolished under the treatment of inhibitors of adenyl cyclase (AC) and protein kinase A (PKA), indicating the effect of adenine was mediated through the AC/PKA pathway. Adenine (5, 10, and 50 mg/kg BW/day) was administered orally for 14 days to female BALB/c mice, and then 5% dextran sodium sulfate (DSS) was given to induce colitis. Adenine (5 mg/kg BW/day) significantly prevented DSS-induced colon shortening, expression of pro-inflammatory cytokines, and histological damage in the colon. These results suggest that adenine can be a promising nutraceutical for the prevention of intestinal inflammation.
Collapse
Affiliation(s)
- Toshihiko Fukuda
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | - Toshiro Matsui
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | |
Collapse
|
13
|
Burnstock G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 2015; 104:4-17. [PMID: 26056033 DOI: 10.1016/j.neuropharm.2015.05.031] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022]
Abstract
Purinergic signalling appears to play important roles in neurodegeneration, neuroprotection and neuroregeneration. Initially there is a brief summary of the background of purinergic signalling, including release of purines and pyrimidines from neural and non-neural cells and their ectoenzymatic degradation, and the current characterisation of P1 (adenosine), and P2X (ion channel) and P2Y (G protein-coupled) nucleotide receptor subtypes. There is also coverage of the localization and roles of purinoceptors in the healthy central nervous system. The focus is then on the roles of purinergic signalling in trauma, ischaemia, stroke and in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, as well as multiple sclerosis and amyotrophic lateral sclerosis. Neuroprotective mechanisms involving purinergic signalling are considered and its involvement in neuroregeneration, including the role of adult neural stem/progenitor cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Australia.
| |
Collapse
|
14
|
Adenine suppresses IgE-mediated mast cell activation. Mol Immunol 2015; 65:242-9. [PMID: 25700347 DOI: 10.1016/j.molimm.2015.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
Nucleobase adenine is produced by dividing human lymphoblasts mainly from polyamine synthesis and inhibits immunological functions of lymphocytes. We investigated the anti-allergic effect of adenine on IgE-mediated mast cell activation in vitro and passive cutaneous anaphylaxis (PCA) in mice. Intraperitoneal injection of adenine to IgE-sensitized mice attenuated IgE-mediated PCA reaction in a dose dependent manner, resulting in a median effective concentration of 4.21 mg/kg. In mast cell cultures, only adenine among cytosine, adenine, adenosine, ADP and ATP dose-dependently suppressed FcɛRI (a high affinity receptor for IgE)-mediated degranulation with a median inhibitory concentration of 1.6mM. It also blocked the production of LTB4, an inflammatory lipid mediator, and inflammatory cytokines TNF-α and IL-4. In addition, adenine blocked thapsigargin-induced degranulation which is FcɛRI-independent but shares FcɛRI-dependent signaling events. Adenine inhibited the phosphorylation of signaling molecules important to FcɛRI-mediated allergic reactions such as Syk, PLCγ2, Gab2, Akt, and mitogen activated protein kinases ERK and JNK. From this result, we report for the first time that adenine inhibits PCA in mice and allergic reaction by inhibiting FcɛRI-mediated signaling events in mast cells. Therefore, adenine may be useful for the treatment of mast cell-mediated allergic diseases. Also, the upregulation of adenine production may provide another mechanism for suppressing mast cell activity especially at inflammatory sites.
Collapse
|
15
|
Knospe M, Müller CE, Rosa P, Abdelrahman A, von Kügelgen I, Thimm D, Schiedel AC. The rat adenine receptor: pharmacological characterization and mutagenesis studies to investigate its putative ligand binding site. Purinergic Signal 2013; 9:367-81. [PMID: 23413038 PMCID: PMC3757150 DOI: 10.1007/s11302-013-9355-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/23/2013] [Indexed: 12/20/2022] Open
Abstract
The rat adenine receptor (rAdeR) was the first member of a family of G protein-coupled receptors (GPCRs) activated by adenine and designated as P0-purine receptors. The present study aimed at gaining insights into structural aspects of ligand binding and function of the rAdeR. We exchanged amino acid residues predicted to be involved in ligand binding (Phe110(3.24), Asn115(3.29), Asn173(4.60), Phe179(45.39), Asn194(5.40), Phe195(5.41), Leu201(5.47), His252(6.54), and Tyr268(7.32)) for alanine and expressed them in Spodoptera frugiperda (Sf9) insect cells. Membrane preparations subjected to [(3)H]adenine binding studies revealed only minor effects indicating that none of the exchanged amino acids is part of the ligand binding pocket, at least in the inactive state of the receptor. Furthermore, we coexpressed the rAdeR and its mutants with mammalian Gi proteins in Sf9 insect cells to probe receptor activation. Two amino acid residues, Asn194(5.40) and Leu201(5.47), were found to be crucial for activation since their alanine mutants did not respond to adenine. Moreover we showed that-in contrast to most other rhodopsin-like GPCRs-the rAdeR does not contain essential disulfide bonds since preincubation with dithiothreitol neither altered adenine binding in Sf9 cell membranes, nor adenine-induced inhibition of adenylate cyclase in 1321N1 astrocytoma cells transfected with the rAdeR. To detect rAdeRs by Western blot analysis, we developed a specific antibody. Finally, we were able to show that the extended N-terminal sequence of the rAdeR constitutes a putative signal peptide of unknown function that is cleaved off in the mature receptor. Our results provide important insights into this new, poorly investigated family of purinergic receptors.
Collapse
Affiliation(s)
- Melanie Knospe
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E. Müller
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Patrizia Rosa
- />CNR—Institute of Neuroscience and Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Aliaa Abdelrahman
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Ivar von Kügelgen
- />PharmaCenter Bonn, Department of Pharmacology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Dominik Thimm
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Anke C. Schiedel
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
16
|
Thimm D, Knospe M, Abdelrahman A, Moutinho M, Alsdorf BBA, von Kügelgen I, Schiedel AC, Müller CE. Characterization of new G protein-coupled adenine receptors in mouse and hamster. Purinergic Signal 2013; 9:415-26. [PMID: 23608776 PMCID: PMC3757137 DOI: 10.1007/s11302-013-9360-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/26/2013] [Indexed: 10/26/2022] Open
Abstract
The nucleobase adenine has previously been reported to activate G protein-coupled receptors in rat and mouse. Adenine receptors (AdeR) thus constitute a new family of purine receptors, for which the designation "P0-receptors" has been suggested. We now describe the cloning and characterization of two new members of the AdeR family from mouse (MrgA10, termed mAde1R) and hamster (cAdeR). Both receptors were expressed in Sf9 insect cells, and radioligand binding studies were performed using [(3)H]adenine. Specific binding of the radioligand was detected in transfected, but not in untransfected cells, and K D values of 286 nM (mAde1R, B max 1.18 pmol/mg protein) and 301 nM (cAdeR, B max 17.7 pmol/mg protein), respectively, were determined. A series of adenine derivatives was investigated in competition binding assays. Minor structural modifications generally led to a reduction or loss of affinity, with one exception: 2-fluoroadenine was at least as potent as adenine itself at the cAdeR. Structure-activity relationships at all AdeR orthologs and subtypes investigated so far were similar, but not identical. For functional analyses, the cAdeR was homologously expressed in Chinese hamster ovary (CHO) cells, while the mAde1R was heterologously expressed in 1321N1 astrocytoma cells. Like the previously described AdeRs from rat (rAdeR) and mouse (mAde2R), the mAde1R (EC50 9.77 nM) and the cAdeR (EC50 51.6 nM) were coupled to inhibition of adenylate cyclase. In addition, the cAdeR from hamster expressed in CHO cells produced an increase in intracellular calcium concentrations (EC50 6.24 nM) and was found to be additionally coupled to Gq proteins.
Collapse
Affiliation(s)
- Dominik Thimm
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Melanie Knospe
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Aliaa Abdelrahman
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Miguel Moutinho
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Bernt B. A. Alsdorf
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Ivar von Kügelgen
- />PharmaCenter Bonn, Department of Pharmacology, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Anke C. Schiedel
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E. Müller
- />PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
17
|
Borrmann T, Abdelrahman A, Volpini R, Lambertucci C, Alksnis E, Gorzalka S, Knospe M, Schiedel AC, Cristalli G, Müller CE. Structure−Activity Relationships of Adenine and Deazaadenine Derivatives as Ligands for Adenine Receptors, a New Purinergic Receptor Family. J Med Chem 2009; 52:5974-89. [DOI: 10.1021/jm9006356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Borrmann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Rosaria Volpini
- Dipartimento di Scienze Chimiche, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Catia Lambertucci
- Dipartimento di Scienze Chimiche, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Edgars Alksnis
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, Riga LV-1006, Latvia
| | - Simone Gorzalka
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Melanie Knospe
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anke C. Schiedel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Gloria Cristalli
- Dipartimento di Scienze Chimiche, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
18
|
Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 2008; 7:575-90. [PMID: 18591979 DOI: 10.1038/nrd2605] [Citation(s) in RCA: 464] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purines have key roles in neurotransmission and neuromodulation, with their effects being mediated by the purine and pyrimidine receptor subfamilies, P1, P2X and P2Y. Recently, purinergic mechanisms and specific receptor subtypes have been shown to be involved in various pathological conditions including brain trauma and ischaemia, neurodegenerative diseases involving neuroimmune and neuroinflammatory reactions, as well as in neuropsychiatric diseases, including depression and schizophrenia. This article reviews the role of purinergic signalling in CNS disorders, highlighting specific purinergic receptor subtypes, most notably A(2A), P2X(4) and P2X(7), that might be therapeutically targeted for the treatment of these conditions.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
19
|
von Kügelgen I, Schiedel AC, Hoffmann K, Alsdorf BBA, Abdelrahman A, Müller CE. Cloning and functional expression of a novel Gi protein-coupled receptor for adenine from mouse brain. Mol Pharmacol 2008; 73:469-77. [PMID: 17975009 DOI: 10.1124/mol.107.037069] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
An orphan G protein-coupled receptor from the rat has recently been demonstrated to act as a transmembrane receptor for the nucleobase adenine. The receptor is possibly involved in nociception. Here we report the cloning and functional expression of an additional G(i)-coupled receptor for adenine (Genbank accession code DQ386867). mRNA for this receptor was obtained from mouse brain and the mouse neuroblastoma x rat glioma hybrid cell line NG108-15. The new mouse protein sequence shares only 76% identity with that of the rat adenine receptor, suggesting that the receptors are not species homologs but distinct receptor subtypes. In human 1321N1 astrocytoma cells stably expressing the new mouse receptor, adenine and 2-fluoroadenine inhibited the isoproterenol-induced cAMP formation with IC(50) concentrations of 8 and 15 nM, respectively. The adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 muM) as well as the P2 receptor antagonist suramin (300 muM) failed to change the responses to adenine. In contrast, pretreatment of cells with pertussis toxin abolished the effect of adenine. When the novel adenine receptor was expressed in Sf21 insect cells, a specific binding site for [(3)H]adenine was detected. In competition assays, the rank order of potency of selected ligands was identical to that obtained in membranes from NG108-15 cells and rat brain cortex (adenine > 2-fluoroadenine > 7-methyladenine > 1-methyladenine >> N(6)-dimethyladenine). In summary, our data show that a second mammalian DNA sequence encodes for a G(i)-coupled GPCR activated by low, nanomolar concentrations of adenine.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, University of Bonn, D-53113 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Nagasawa K, Kawasaki F, Tanaka A, Nagai K, Fujimoto S. Characterization of guanine and guanosine transport in primary cultured rat cortical astrocytes and neurons. Glia 2007; 55:1397-404. [PMID: 17674371 DOI: 10.1002/glia.20550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study, we examined the transport mechanisms for guanine and guanosine in rat neurons and astrocytes, and compared their characteristics. In the both types of cell, the uptake of [(3)H]guanine and [(3)H]guanosine was time-, temperature-, and concentration-dependent, and Na(+)-independent. Their uptake decreased on the addition of purine and pyrimidine nucleobases or nucleosides, and the inhibitory effect of the purine analogues was greater than that of the pyrimidine ones. In both cell types, equilibrative nucleoside transporter (ENT) 1 and ENT2 expression was confirmed at the mRNA level, and nitrobenzylmercaptopurine riboside, a representative inhibitor for ENT, decreased their uptake at concentrations of over 10 microM. Comparing uptake characteristics between the substrates, [(3)H]guanine uptake exhibited higher affinity and clearance than [(3)H]guanosine uptake in each type of cell. Although between neurons and astrocytes, there was no difference in the apparent uptake clearance for [(3)H]guanine and [(3)H]guanosine, which was calculated based upon the cellular protein content, the cellular uptake clearance was significantly greater in astrocytes than in neurons. These findings indicate that guanine and guanosine, of which the former is a preferable substrate, are taken up into both neurons and astrocytes via ENT2, and that the extracellular concentrations of guanine and guanosine are mainly regulated by astrocytes to maintain brain physiology.
Collapse
Affiliation(s)
- Kazuki Nagasawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
21
|
Wengert M, Adão-Novaes J, Assaife-Lopes N, Leão-Ferreira LR, Caruso-Neves C. Adenine-induced inhibition of Na(+)-ATPase activity: Evidence for involvement of the Gi protein-coupled receptor in the cAMP signaling pathway. Arch Biochem Biophys 2007; 467:261-7. [PMID: 17892855 DOI: 10.1016/j.abb.2007.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 11/23/2022]
Abstract
In the present work, we demonstrate that adenine reduced Na(+)-ATPase activity in isolated basolateral membrane (BLM) of proximal tubule in a dose-dependent manner. Adenine metabolism was ruled out by TLC analysis of the potential [(3)H]adenine derived-metabolites. Specific binding of [(3)H]adenine to isolated BLM was observed in a dose-dependent manner with K(d) and B(max) of 242.6+/-27.6 nM and 2749.9+/-104.9 fmolmg(-1), respectively. Adenine increased the [(35)S]GTPgammaS specific binding and it was completely abolished by 10(-6)M GDPbetaS (G protein inhibitor) but it was not modified by DPCPX, DMPX and MRS1523, selective antagonists for A(1), A(2) and A(3) receptors, respectively. Furthermore, the inhibitory effect of adenine on the Na(+)-ATPase activity was blocked by 10(-6)M GDPbetaS, 1 microg/ml pertussis toxin (Gi protein inhibitor), 10(-6)M foskolin (adenylyl cyclase activator) and 10(-8)M cAMP. These data demonstrate that adenine inhibits the proximal tubule Na(+)-ATPase activity through the Gi protein-coupled receptor.
Collapse
Affiliation(s)
- M Wengert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949 Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
22
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
23
|
Girardi ES, Canitrot J, Antonelli M, González NN, Coirini H. Differential Expression of Cerebellar Metabotropic Glutamate Receptors mGLUR2/3 and mGLUR4a after the Administration of a Convulsant Drug and the Adenosine Analogue Cyclopentyladenosine. Neurochem Res 2007; 32:1120-8. [PMID: 17401670 DOI: 10.1007/s11064-006-9275-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
Metabotropic glutamate receptors (mGluR) play a role in synaptic transmission, neuronal modulation and plasticity but their action in epileptic activity is still controversial. On the other hand adenosine acts as a neuromodulator with endogenous anticonvulsive properties. Since cerebellum from epileptic patients has shown neuronal damage, sometimes associated with Purkinje cells loss, we have explored the effect of repetitive seizures on two types of mGluR in the cerebellum. Seizures were induced by the convulsant drug 3-mercaptopropionic acid (MP) and the effect of the adenosine analogue cyclopentyladenosine (CPA) alone or before MP administration (CPA+MP) were also evaluated. The expression of the receptors subtypes 2/3 (mGluR2/3) and 4a (mGluR4a) was assessed by immunocitochemistry. Granular cell layer was labeled with mGluR2/3 antibody and increased immunoreactivity was observed after MP (60%), CPA (53%) and CPA + MP (85%) treatments. Control cerebellum slices showed mGluR4a reactivity around Purkinje cells, while MP, CPA and CPA+MP treatment decreased this immunostaining. Repetitive administration of MP and CPA induces an increased cerebellar mGluR2/3 and a decreased mGluR4a immunostaining, suggesting a distinct participation of both receptors that may be related to the type of cell involved. A protective action and /or an apoptotic effect may not be discarded. CPA repetitive administration although increase seizure latency, cannot prevent seizure activity.
Collapse
Affiliation(s)
- Elena Silvia Girardi
- Instituto de Biología Celular y Neurociencia Prof. Eduardo De Robertis Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
24
|
Gimenez-Cassina A, Lim F, Diaz-Nido J. Gene transfer into Purkinje cells using herpesviral amplicon vectors in cerebellar cultures. Neurochem Int 2006; 50:181-8. [PMID: 16989924 DOI: 10.1016/j.neuint.2006.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/26/2006] [Accepted: 08/01/2006] [Indexed: 11/30/2022]
Abstract
Purkinje cells play a crucial role in sensory motor coordination since they are the only output projection neurons in the cerebellar cortex and are affected in most spinocerebellar ataxias. They stand out in the central nervous system due to their large size and their profusely branched dendritic arbor. However, molecular and cellular studies on Purkinje cells are often hampered by the difficulty of maintaining these cells in culture. Here we report an easy, robust and reproducible method to obtain Purkinje-enriched mixed cerebellar cell cultures from day 16 mouse embryos using papain digestion and a semi-defined culture medium, being the composition of the culture approximately 20% Purkinje cells, 70% non-Purkinje neurons and 10% glial cells. We demonstrate that efficient gene transfer into Purkinje cells (as well as into other cerebellar populations) is possible using herpes simplex virus-1 (HSV-1)-derived vectors. Indeed, up to 50% of the Purkinje cells can be transduced and gene expression may persist for at least 14 days. As a result, this procedure permits functional gene expression studies to be carried out on cultured Purkinje neurons. To demonstrate this, we show that the expression of a dominant-negative form of glycogen synthase kinase-3 protects Purkinje neurons against cell death triggered by a chemical inhibitor of phosphatidylinositol-3 kinase. In summary, we have established reproducible and reliable cerebellar cell cultures enriched for Purkinje cells which enables gene transfer studies to be carried out using herpesviral vectors.
Collapse
Affiliation(s)
- Alfredo Gimenez-Cassina
- Departamento de Biologia Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
25
|
Deitmer JW, Brockhaus J, Casel D. Modulation of synaptic activity in Purkinje neurons by ATP. THE CEREBELLUM 2006; 5:49-54. [PMID: 16527764 DOI: 10.1080/14734220500497456] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Adenosine triphosphate (ATP) is a versatile signalling molecule in the central and peripheral nervous system, where it can be released from both neurons and glial cells. In the cerebellum, ATP is released endogenously from the second postnatal week onwards, and is involved in the up-regulation of spontaneous synaptic input to Purkinje neurons by activation of purinergic P2 receptors. In the cerebellar cortex, ATP presumably acts on presynaptic inhibitory interneurons, which are excited by the activation of both P2X and P2Y receptors. P2 receptors have been reported for Purkinje neurons, where they mediate intracellular Ca(2+) responses. The extracellular concentration of ATP is modulated by its enzymatic degradation by ecto-nucleotidases. Adenosine, which modulates evoked transmitter release, does not influence the spontaneous synaptic activity in Purkinje neurons. Some implications of ATP as a tonically active neuromodulator in the cerebellum are discussed.
Collapse
Affiliation(s)
- Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, Kaiserslautern, Germany.
| | | | | |
Collapse
|
26
|
Abstract
The concept of a purinergic signaling system, using purine nucleotides and nucleosides as extracellular messengers, was first proposed over 30 years ago. After a brief introduction and update of purinoceptor subtypes, this article focuses on the diverse pathophysiological roles of purines and pyrimidines as signaling molecules. These molecules mediate short-term (acute) signaling functions in neurotransmission, mechanosensory transduction, secretion and vasodilatation, and long-term (chronic) signaling functions in cell proliferation, differentiation, and death involved in development and regeneration. Plasticity of purinoceptor expression in pathological conditions is frequently observed, including an increase in the purinergic component of autonomic cotransmission. Recent advances in therapies using purinergic-related drugs in a wide range of pathological conditions will be addressed with speculation on future developments in the field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London NW3 2PF, UK.
| |
Collapse
|
27
|
Gorzalka S, Vittori S, Volpini R, Cristalli G, von Kügelgen I, Müller CE. Evidence for the functional expression and pharmacological characterization of adenine receptors in native cells and tissues. Mol Pharmacol 2005; 67:955-64. [PMID: 15604413 DOI: 10.1124/mol.104.006601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An orphan G protein-coupled receptor from rat has recently been discovered to be activated by the nucleobase adenine (Proc Natl Acad Sci USA 99:8573-8578, 2002). In the present study, we show for the first time that the adenine receptor is expressed in membrane preparations of native tissues and cell lines in high density, including rat brain cortex, rat brain striatum, and the mouse neuroblastoma x rat glioma hybrid cell line NG108-15. Saturation analysis with [3H]adenine at rat brain cortical membranes exhibited a single high-affinity binding site with a KD value of 27.2 nM, and a binding capacity of 2.28 pmol/mg of protein. Kinetic studies revealed unusual binding kinetics of [3H]adenine with rapid association and slow dissociation. A series of compounds were investigated in [3H]adenine competition experiments at rat brain cortex. Only minor substitution of the adenine structure was tolerated, the most potent compounds of the present series being 2-fluoroadenine (Ki value of 620 nM), 8-thioadenine (Ki value of 2.77 microM), N6-methyladenine (Ki value of 3.64 microM), and 7-methyladenine (Ki value of 4.13 microM), all of which were partial agonists (40-60% intrinsic activity). Adenine dose dependently inhibited forskolin-stimulated adenylate cyclase in membrane preparations of NG108-15 cells as well as in intact cells, showing that the receptor is functional in NG108-15 cells. Reverse transcriptase-polymerase chain reaction experiments followed by sequencing indicate that the NG108-15 cells express the murine ortholog of the adenine receptor. Moreover, preliminary radioligand binding studies with [3H]adenine at membranes of human astrocytoma 1321N1 cells suggest that a human ortholog of the rat adenine receptor exists.
Collapse
Affiliation(s)
- Simone Gorzalka
- Pharmaceutical Institute, Pharmaceutical Chemistry Poppelsdorf, University of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|