1
|
Brancato A, Castelli V, Cannizzaro C, Tringali G. Adolescent binge-like alcohol exposure dysregulates NPY and CGRP in rats: Behavioural and immunochemical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110699. [PMID: 36565980 DOI: 10.1016/j.pnpbp.2022.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Alcohol binge drinking during adolescence impacts affective behaviour, possibly impinging on developing neural substrates processing affective states, including calcitonin gene-related peptide (CGRP) and neuropeptide Y (NPY). Here, we modelled binge-like alcohol exposure in adolescence, by administering 3.5 g/kg alcohol per os, within 1 h, to male adolescent rats every other day, from postnatal day 35 to 54. The effects on positive and negative affective behaviour during abstinence were explored including: consummatory behaviour and weight gain; social behaviour in the modified social interaction test; thermal nociception in the tail-flick test; psychosocial stress coping in the resident-intruder paradigm. Moreover, CGRP and NPY levels were evaluated in functionally relevant brain regions. Our data shows that binge-like intermittent alcohol administration during adolescence decreased weight gain, social preference and motivation, nociception, and active psychosocial stress coping during abstinence. In addition, intermittent alcohol-exposed rats displayed increased expression of CGRP and NPY in the prefrontal cortex and nucleus accumbens; decreased NPY levels in the amygdala; opposite changes in CGRP levels in the hypothalamus and brainstem. Overall, our data shows that adolescent binge-like alcohol exposure, through the allostatic load of alternate intoxication and withdrawal, produces long-term consequences in sensory and affective processes and dysregulated complementary neuropeptidergic systems. Thus, neuropeptide-targeted interventions hold promising potential for addressing negative affect during prolonged withdrawal in young subjects.
Collapse
Affiliation(s)
- Anna Brancato
- University of Palermo, Dept. of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", piazza delle Cliniche 2, 90127 Palermo, Italy.
| | - Valentina Castelli
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Carla Cannizzaro
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
2
|
Urban-Kowalczyk M, Śmigielski J, Strzelecki D. Olfactory identification in patients with schizophrenia - the influence of β-endorphin and calcitonin gene-related peptide concentrations. Eur Psychiatry 2017; 41:16-20. [PMID: 28049076 DOI: 10.1016/j.eurpsy.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/28/2016] [Accepted: 09/20/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The relationship between the olfactory system and emotional processing is an area of growing interest in schizophrenia research. Both the orbitofrontal cortex and amygdala are involved in the processing of olfactory information, and olfactory deficits may be also influenced by endogenous opioids and calcitonin gene-related peptide (CGRP), which is probably involved in dopaminergic transmission. However, the relationship between endorphins and dopaminergic transmission has not been fully explored. METHODS Odor identification performance and valence interaction was evaluated among 50 schizophrenic patients and 50 controls. Schizophrenia symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). All study participants were subjected to the University of Pennsylvania Smell Identification Test (UPSIT), blood β-endorphin (BE) and CGRP measurement. RESULTS Insignificantly higher BE concentrations were observed in the patient group, while significantly higher UPSIT scores were seen in controls (mean UPSIT 32.48 vs 26.82). The patients demonstrated significantly more identification errors for pleasant (P=0.000) and neutral (P=0.055) odors than for unpleasant odors. Patients with higher BE concentrations made more identification errors concerning pleasant (Rs=-0.292; P=0.04) and neutral odors (Rs=-0.331; P=0.019). Although the concentration of CGRP was significantly higher in the patient sample (P<0.001), no relationship was observed between concentration and UPSIT performance. A strong negative correlation was observed between PANSS N score and UPSIT total score (Rs=-0.646; P=0.000), between PANSS N score and identification by valence for pleasant and neutral odors (UPSIT n/16: Rs=-0.450, P=0.001; UPSIT n/15: Rs=-0.586, P=0.000), and a weak negative correlation between PANSS N score and identification of unpleasant odors (UPSIT n/9: Rs=-0.325, P=0.021). CONCLUSIONS Schizophrenic patients present a unique pattern of smell identification characterized by aberrant hedonic ratings for pleasant odors but not unpleasant ones. Individuals with predominant negative symptoms and higher BE concentrations are most able to identify negative odors.
Collapse
Affiliation(s)
- M Urban-Kowalczyk
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland.
| | - J Śmigielski
- Department of Geriatrics, Healthy Aging Research Centre (HARC), Medical University of Lodz, Lodz, Poland
| | - D Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechosłowacka 8/10, 92-216 Lodz, Poland
| |
Collapse
|
3
|
Urban-Kowalczyk M, Śmigielski J, Strzelecki D. Comparison of beta-endorphin and CGRP levels before and after treatment for severe schizophrenia. Neuropsychiatr Dis Treat 2016; 12:863-8. [PMID: 27143887 PMCID: PMC4841412 DOI: 10.2147/ndt.s101647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Links between endorphins and dopaminergic transmission have not been fully explored in schizophrenia. Both endorphins excess and deficiency were postulated. CGRP is probably involved in dopaminergic transmission. The aim of this study was the evaluation of beta-endorphin (BE) and CGRP blood concentrations before and after treatment of severe schizophrenia. METHODS Seventy patients treated with various antipsychotics, with severe symptoms of schizophrenia (51 with positive symptoms, 19 with negative symptoms), 15 first-degree relatives, and 44 healthy controls were included in the study. BE and CGRP blood concentrations were measured during patients severe schizophrenia and in their stable mental state after treatment. The results were compared with relatives and controls. RESULTS BE and CGRP concentrations in patients with negative symptoms were higher than in relatives and in controls. BE levels in patients with positive symptoms were lower than in patients with negative symptoms (P<0.0000) and controls (P<0.0006). No significant changes in CGRP concentration were found in patient samples. CGRP levels in these samples were independent of treatment, but they were significantly higher than in relatives and controls. After the treatment, BE level decreased in patients with negative symptoms (P<0.0001) and increased in patients with positive symptoms (P<0.0000). No differences in BE concentration between patients in stable mental state, their relatives, and controls were found. CONCLUSION Effective antipsychotic treatment results in "normalization" of BE level. Specific changes in BE concentration could be involved in dopaminergic transmission and related to some symptoms of schizophrenia.
Collapse
Affiliation(s)
- Małgorzata Urban-Kowalczyk
- Department of Affective and Psychotic Disorders, Healthy Aging Research Centre (HARC), Medical University of Lodz, Lodz, Poland
| | - Janusz Śmigielski
- Department of Geriatrics, Healthy Aging Research Centre (HARC), Medical University of Lodz, Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Healthy Aging Research Centre (HARC), Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Angelucci F, Gruber SHM, Caltagirone C, Mathé AA. Differential effects of olanzapine, haloperidol and risperidone on calcitonin gene-related peptide in the rat brain. Neuropeptides 2008; 42:535-41. [PMID: 18662828 DOI: 10.1016/j.npep.2008.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/17/2008] [Accepted: 06/17/2008] [Indexed: 11/23/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37 amino acid peptide which acts on central nervous system (CNS) neurons and is involved in activities related to dopamine. These effects of CGRP suggest that the peptide may have a role in pathophysiology and treatment of schizophrenia where dopaminergic system hypoactivity in the frontal cortex and hyperactivity in the subcortical structures have been demonstrated. In this study we measured by radioimmunoassay (RIA) the brain levels of CGRP-like immunoreactivity (CGRP-LI) in rats treated with either classical (haloperidol) or atypical (risperidone and olanzapine) antipsychotic drugs. Both haloperidol and risperidone decreased CGRP-LI in the striatum. Risperidone also decreased CGRP-LI in the occipital cortex. On the other hand, olanzapine increased CGRP-LI in the striatum, the frontal cortex and hypothalamus. The differential effects on CGRP could reflect a different profile of side effects and further suggest that CGRP is involved in CNS functions related to psychiatric disorders.
Collapse
Affiliation(s)
- Francesco Angelucci
- Karolinska Institutet, Clinical Neuroscience, Psychiatry M56, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden.
| | | | | | | |
Collapse
|
5
|
Angelucci F, Gruber SHM, El Khoury A, Tonali PA, Mathé AA. Chronic amphetamine treatment reduces NGF and BDNF in the rat brain. Eur Neuropsychopharmacol 2007; 17:756-62. [PMID: 17434716 DOI: 10.1016/j.euroneuro.2007.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/19/2007] [Accepted: 03/06/2007] [Indexed: 01/05/2023]
Abstract
Amphetamines (methamphetamine and d-amphetamine) are dopaminergic and noradrenergic agonists and are highly addictive drugs with neurotoxic effect on the brain. In human subjects, it has also been observed that amphetamine causes psychosis resembling positive symptoms of schizophrenia. Neurotrophins are molecules involved in neuronal survival and plasticity and protect neurons against (BDNF) are the most abundant neurotrophins in the central nervous system (CNS) and are important survival factors for cholinergic and dopaminergic neurons. Interestingly, it has been proposed that deficits in the production or utilization of neurotrophins participate in the pathogenesis of schizophrenia. In this study in order to investigate the mechanism of amphetamine-induced neurotoxicity and further elucidate the role of neurotrophins in the pathogenesis of schizophrenia we administered intraperitoneally d-amphetamine for 8 days to rats and measured the levels of neurotrophins NGF and BDNF in selected brain regions by ELISA. Amphetamine reduced NGF levels in the hippocampus, occipital cortex and hypothalamus and of BDNF in the occipital cortex and hypothalamus. Thus the present data indicate that chronic amphetamine can reduce the levels of NGF and BDNF in selected brain regions. This reduction may account for some of the effects of amphetamine in the CNS neurons and provides evidences for the role of neurotrophins in schizophrenia.
Collapse
Affiliation(s)
- Francesco Angelucci
- Karolinska Institutet, Clinical Neuroscience, Psychiatry M56, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
6
|
Mathé AA, Husum H, El Khoury A, Jiménez-Vasquez P, Gruber SHM, Wörtwein G, Nikisch G, Baumann P, Agren H, Andersson W, Södergren A, Angelucci F. Search for biological correlates of depression and mechanisms of action of antidepressant treatment modalities. Do neuropeptides play a role? Physiol Behav 2007; 92:226-31. [PMID: 17572454 DOI: 10.1016/j.physbeh.2007.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dysregulation of the monoaminergic systems is likely a sufficient but not a necessary cause of depression. A wealth of data indicates that neuropeptides, e.g., NPY, CRH, somatostatin, tachykinins and CGRP play a role in affective disorders and alcohol use/abuse. This paper focuses on NPY in etiology and pathophysiology of depression. Decreased peptide and mRNA NPY were found in hippocampus of both the genetic, e.g., the FSL strain, and environmental rat models of depression, e.g., chronic mild stress and early life maternal separation paradigms. Rat models of alcoholism also show altered NPY. Furthermore, NPY is also reduced in CSF of depressed patients. Antidepressive treatments tested so far (lithium, topiramate, SSRIs, ECT and ECS, wheel running) increase NPY selectively in rat hippocampus and in human CSF. Moreover, NPY given icv to rat has antidepressive effects which are antagonized by NPY-Y1 blockers. The data support our hypothesis that the NPY system dysregulation constitutes one of the biological underpinnings of depression and that one common mechanism of action of antidepressive treatment modalities may be effects on NPY and its receptors. In a novel paradigm, early life maternal separation was superimposed on "depressed" FSL and control rats and behavioral and brain neurochemistry changes observed in adulthood. The consequences were more deleterious in genetically vulnerable FSL. Early antidepressive treatment modulated the adult sequelae. Consequently, if these data are confirmed, the ethical and medical question that will be asked is whether it is permissible and advisable to consider prophylactically treating persons at risk.
Collapse
Affiliation(s)
- Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Karolinska University Hospital Huddinge, Psychiatry M56, E-141 86 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wörtwein G, Husum H, Andersson W, Bolwig TG, Mathé AA. Effects of maternal separation on neuropeptide Y and calcitonin gene-related peptide in "depressed" Flinders Sensitive Line rats: a study of gene-environment interactions. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:684-93. [PMID: 16600456 DOI: 10.1016/j.pnpbp.2006.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2006] [Indexed: 11/23/2022]
Abstract
Interactions between genetic vulnerability to stress/depression and early life experience may play a crucial role in the pathogenesis of mood disorders. Here we explore this hypothesis by superimposing early life trauma in the form of maternal deprivation for 180 min per day from postnatal day 2 to 14 onto a genetic model of depression/susceptibility to depression, Flinders Sensitive Line (FSL) and their controls, Flinders Resistant Line (FRL) rats. We investigate effects on neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) like immunoreactivity (LI) in 10 brain regions as these neuropeptides are affected by antidepressants and are altered in cerebrospinal fluid of depressed patients. NPY-LI was reduced while CGRP-LI was elevated in hippocampus and frontal cortex of "genetically depressed" FSL rats. The two peptides displayed a significant negative correlation in these regions that was strongest in the FSL strain. Maternal deprivation exacerbated the strain difference in hippocampal CGRP-LI, while it was without effect on NPY-LI. FSL rats had higher tissue concentration of both neuropeptides in periaqueductal grey and higher NPY-LI in caudate/putamen. Maternal deprivation selectively raised CGRP-LI in amygdala of the FRL control stain. Thus, in two brain regions implicated in the neurobiology of depression, hippocampus and frontal cortex, changes in CGRP-LI and NPY-LI were in opposite direction, and CGRP-LI appears to be more responsive to adverse experience. Our findings thus support the hypothesis that genetic disposition and developmental stress may contribute to the susceptibility to depression by exerting selective neuropeptide- and brain region-specific effects on adult neurobiology.
Collapse
Affiliation(s)
- Gitta Wörtwein
- Laboratory of Neuropsychiatry, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
8
|
Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J Neurosci 2003. [PMID: 14561865 DOI: 10.1523/jneurosci.23-28-09374.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids have been shown to critically modulate cholinergic neurotransmission in the hippocampus, yet opposing effects of cannabinoid receptor 1 (CB1R) agonists on hippocampal synaptic acetylcholine (ACh) efflux have been reported. This study shows that administration of a synthetic CB1R agonist results in a biphasic, dose-dependent, effect on hippocampal ACh: a low (0.5 mg/kg, i.p.) and a high (5 mg/kg, i.p) dose of WIN55,212-2 induces a transient stimulation and a prolonged inhibition of hippocampal ACh efflux, respectively. Both effects of WIN55,212-2 are mediated through CB1 receptors coupled to Gi but involve different neuroanatomical sites. Thus, intrahippocampal infusion of the CB1R antagonist SR141716A or pertussis toxin blocked the inhibition of hippocampal ACh release induced by the high dose of WIN55,212-2, but was without effect on the stimulatory action of the low dose. In contrast, this latter effect was blocked by SR141716A or pertussis toxin infused, in dual microdialysis experiments, in the septum, in which the majority of cholinergic cell bodies projecting to the hippocampus reside. The stimulatory and inhibitory effects of WIN55,212-2 on hippocampal ACh involve dopamine D1 and D2 receptor activation, respectively, given that pretreatment with D1 and D2 receptor antagonists prevents the respective actions of WIN55,212-2. We propose that the in vivo observed biphasic effects of CB1R agonists on hippocampal ACh release result from a differential, functional association of anatomicaly distinct subpopulations of CB1-Gi coupled receptors to neurotransmitter systems that have opposing effects on ACh release. This concept could provide a theoretical framework to understand endocannabinoids as state-dependent modulators of neuronal activity.
Collapse
|
9
|
Mathé AA, Agren H, Wallin A, Blennow K. Calcitonin gene-related peptide and calcitonin in the CSF of patients with dementia and depression: possible disease markers. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:41-8. [PMID: 11853117 DOI: 10.1016/s0278-5846(01)00219-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cerebrospinal fluid (CSF) was obtained from 32 patients with dementia, 19 healthy controls that were age-matched with the dementia patients, and 29 DSM-IV major depression patients and calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) and calcitonin-like immunoreactivity (CT-LI) measured by RIA. CGRP-LI was lower in the dementia group compared to both the controls and depressed patients (P<.01) after covarying out sex and age. CT-LI was decreased in the dementia and depressed patients (P<.05) compared to the controls. A positive relationship between CGRP-LI and CT-LI was found in dementia. A logistic discriminant analysis with calcitonin gene-related peptide (CGRP) and log calcitonin (CT) predicting diagnosis (three classes) revealed a significant overall fit (chi2 = 18.08, P = .0011), with an effect test showing contributions of both independent variables: CGRP (chi2 = 10.03, P<.007), log CT (chi2 = 8.63, P = .013). In dementia, both CGRP-LI and CT-LI were decreased and their concentration ratio did not differ from that in controls, likely reflecting a general neuronal loss. Alternatively and more speculatively, but theoretically possible, expression of the alpha-CGRP/CT gene may be affected in dementia. In contrast, in depression, CT-LI but not CGRP-LI was decreased and the CGRP/CT concentration ratio was increased, which is consistent with a possibility of an altered splicing process favoring CGRP mRNA.
Collapse
Affiliation(s)
- Aleksander A Mathé
- Institution of Clinical Neuroscience, Karolinska Institutet, St Göran's Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
10
|
Angelucci F, Gruber SH, Mathé AA. A pilot study of rat brain regional distribution of calcitonin, katacalcin and calcitonin gene-related peptide before and after antipsychotic treatment. Neuropeptides 2001; 35:285-91. [PMID: 12030813 DOI: 10.1054/npep.2001.0876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In contrast to extensive determinations of calcitonin gene-related peptide (CGRP) in neural tissues, calcitonin and its carboxyl-terminal flanking peptide katacalcin (in human PDN-21) have not been systematically measured by radioimmunoassay (RIA) in discrete brain structures. Using microwave irradiation (MW), a procedure that increases the recovery of neuropeptides, we investigated by radioimmunoassay (RIA) the rat brain regional distribution of CGRP like- immunoreactivity (-LI), calcitonin-LI, and katacalcin-LI. Calcitonin-LI and katacalcin-LI were found in low concentrations in frontal cortex, occipital cortex, striatum and hippocampus. Moreover, a 4-week treatment with antipsychotic drugs altered the concentrations of the calcitonin-gene family peptides in the frontal cortex, occipital cortex, and hippocampus; the magnitude of these changes, however, was only moderate. Lastly, calcitonin-LI and katacalcin-LI baseline concentrations as well as after antipsychotic treatment were highly correlated in the frontal cortex, striatum, and hippocampus. The possible regulatory role of calcitonin gene family peptides in the central nervous system (CNS) needs to be further explored.
Collapse
Affiliation(s)
- F Angelucci
- Karolinska Institutet, Institution of Clinical Neuroscience, St. Göran's Hospital, Stockholm, Sweden
| | | | | |
Collapse
|