1
|
Hodges H, Pollock K, Stroemer P, Patel S, Stevanato L, Reuter I, Sinden J. Making Stem Cell Lines Suitable for Transplantation. Cell Transplant 2017. [DOI: 10.3727/000000007783464605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human stem cells, progenitor cells, and cell lines have been derived from embryonic, fetal, and adult sources in the search for graft tissue suitable for the treatment of CNS disorders. An increasing number of experimental studies have shown that grafts from several sources survive, differentiate into distinct cell types, and exert positive functional effects in experimental animal models, but little attention has been given to developing cells under conditions of good manufacturing practice (GMP) that can be scaled up for mass treatment. The capacity for continued division of stem cells in culture offers the opportunity to expand their production to meet the widespread clinical demands posed by neurodegenerative diseases. However, maintaining stem cell division in culture long term, while ensuring differentiation after transplantation, requires genetic and/or oncogenetic manipulations, which may affect the genetic stability and in vivo survival of cells. This review outlines the stages, selection criteria, problems, and ultimately the successes arising in the development of conditionally immortal clinical grade stem cell lines, which divide in vitro, differentiate in vivo, and exert positive functional effects. These processes are specifically exemplified by the murine MHP36 cell line, conditionally immortalized by a temperature-sensitive mutant of the SV40 large T antigen, and cell lines transfected with the c-myc protein fused with a mutated estrogen receptor (c-mycERTAM), regulated by a tamoxifen metabolite, but the issues raised are common to all routes for the development of effective clinical grade cells.
Collapse
Affiliation(s)
- Helen Hodges
- Department of Psychology, Institute of Psychiatry, Kings College, London, UK
- ReNeuron Ltd., Guildford, Surrey, UK
| | | | | | | | | | - Iris Reuter
- Department of Psychology, Institute of Psychiatry, Kings College, London, UK
- Department of Neurology, University of Giessen and Marburg, Germany
| | | |
Collapse
|
2
|
Rezniczek GA, Kumbruch S, Scheich J, Jensen A, Tempfer CB. Factors influencing yield and neuronal differentiation of mesenchymal stem cells from umbilical cord blood and matrix. Regen Med 2016; 11:465-74. [DOI: 10.2217/rme-2016-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: Umbilical cord blood and Wharton's jelly (WJ) are potential sources of mesenchymal stem cells (MSCs). We investigated whether harvesting and donor characteristics affected yield and neuronal differentiation, and compared human umbilical cord blood (hUCB) and WJ-derived MSCs regarding neuronal differentiation and cytokine secretion. Materials & methods: MSCs were analyzed by immunoblotting after seven days of differentiation; cytokine protein arrays were used to analyze conditioned medium. Results: Birth weight and blood/anticoagulant ratio influenced MSC yield per unit blood volume, but not maternal and gestational age, delivery mode or fetal gender. Expression of the early neuronal differentiation marker nestin was unaffected by these variables. hUCB- and WJ-derived MSC secrete distinct cytokine profiles. Conclusion: Cell yield is affected by certain donor characteristics. hUCB- and WJ-derived MSCs may serve distinct therapeutic niches.
Collapse
Affiliation(s)
- Günther A Rezniczek
- Department of Obstetrics & Gynecology, Ruhr-Universität Bochum, Marien Hospital Herne, Hölkeskampring 40, Herne, Germany
| | - Sandra Kumbruch
- Department of Obstetrics & Gynecology, Ruhr-Universität Bochum, Marien Hospital Herne, Hölkeskampring 40, Herne, Germany
| | - Jan Scheich
- Department of Obstetrics & Gynecology, Ruhr-Universität Bochum, Marien Hospital Herne, Hölkeskampring 40, Herne, Germany
| | - Arne Jensen
- Campus Clinic Gynecology, Universitätsstraße 140, Bochum, Germany
| | - Clemens B Tempfer
- Department of Obstetrics & Gynecology, Ruhr-Universität Bochum, Marien Hospital Herne, Hölkeskampring 40, Herne, Germany
| |
Collapse
|
3
|
Bae SH, Kong TH, Lee HS, Kim KS, Hong KS, Chopp M, Kang MS, Moon J. Long-lasting paracrine effects of human cord blood cells on damaged neocortex in an animal model of cerebral palsy. Cell Transplant 2012; 21:2497-515. [PMID: 22524897 DOI: 10.3727/096368912x640457] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neonatal asphyxia is an important contributor to cerebral palsy (CP), for which there is no effective treatment to date. The administration of human cord blood cells (hUCBCs) is emerging as a therapeutic strategy for the treatment of neurological disorders. However, there are few studies on the application of hUCBCs to the treatment of neonatal ischemia as a model of CP. Experiments and behavioral tests (mainly motor tests) performed on neonatal hypoxia/ischemia have been limited to short-term effects of hUCBCs, but mechanisms of action have not been investigated. We performed a study on the use of hUCBCs in a rat model of neonatal hypoxia/ischemia and investigated the underlying mechanism for therapeutic benefits of hUCBC treatment. hUCBCs were intravenously transplanted into a rat model of neonatal hypoxia ischemia. hUCBCs increased microglia temporarily in the periventricular striatum in the early phase of disease, protected mature neurons in the neocortex from injury, paved the way for the near-normalization of brain damage in the subventricular zone (SVZ), and, in consequence, significantly improved performance in a battery of behavioral tests compared to the vehicle-treated group. Although the transplanted cells were rarely observed in the brain 3 weeks after transplantation, the effects of the improved behavioral functions persisted. Our preclinical findings suggest that the long-lasting positive influence of hUCBCs is derived from paracrine effects of hUCBCs that stimulate recovery in the injured brain and protect against further brain damage.
Collapse
Affiliation(s)
- Sang-Hun Bae
- College of Life Science, Department of Applied Bioscience, CHA University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sukhinich KK, Podgornyi OV, Aleksandrova MA. Immunohistochemical analysis of development of suspension and tissue neurotransplants. BIOL BULL+ 2011. [DOI: 10.1134/s1062359011060136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Jin HK, Bae JS, Furuya S, Carter JE. Amyloid beta-derived neuroplasticity in bone marrow-derived mesenchymal stem cells is mediated by NPY and 5-HT2B receptors via ERK1/2 signalling pathways. Cell Prolif 2009; 42:571-86. [PMID: 19614678 DOI: 10.1111/j.1365-2184.2009.00625.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE In Alzheimer's disease, toxic soluble and insoluble forms of amyloid beta (Abeta) cause synaptic dysfunction and neuronal loss. Given its potential role in producing a toxic host microenvironment for transplanted donor stem cells, we investigated the interaction between Abeta and proliferation, survival, and differentiation of bone marrow-derived mesenchymal stem cells (BM-MSC) in culture. MATERIALS AND METHODS We used BM-MSC that had been isolated from mouse bone marrow and cultured, and we also assessed relevant reaction mechanisms using gene microarray, immunocytochemistry, and inhibitors of potential signalling molecules, such as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)1/2 and tyrosine protein kinase. RESULTS AND CONCLUSIONS Interestingly, we found that treatment with aggregated (1-40 or 1-42) and oligomeric (1-42) Abeta promoted neuronal-like differentiation of BM-MSC without toxic effects. This was not dependent on soluble factors released from BM-MSC progeny nor solely on formation of Abeta fibrils. The effect of Abeta is mediated by G-protein coupled receptors, neuropeptide Y1 (NPY1R) and serotonin (5-hydroxytryptamine) receptor 2B, via phosphatidylinositol-3-OH kinase-dependent activation of the MAPK/ERK1/2. Our results lend support to the idea that reciprocal donor stem cell-host interactions may promote a regenerative response that can be exploited by epigenetic modulation of NPY/serotonergic gene expression, for stem cell therapy, in Alzheimer's disease.
Collapse
Affiliation(s)
- H K Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Jung-Gu, Daegu, South Korea
| | | | | | | |
Collapse
|
6
|
Hawryluk GWJ, Fehlings MG. The center of the spinal cord may be central to its repair. Cell Stem Cell 2008; 3:230-2. [PMID: 18786407 DOI: 10.1016/j.stem.2008.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Gregory W J Hawryluk
- Division of Genetics and Development, Toronto Western Research Institute, University of Toronto, Canada
| | | |
Collapse
|
7
|
Lo WC, Hsu CH, Wu ATH, Yang LY, Chen WH, Chiu WT, Lai WF, Wu CH, Gelovani JG, Deng WP. A novel cell-based therapy for contusion spinal cord injury using GDNF-delivering NIH3T3 cells with dual reporter genes monitored by molecular imaging. J Nucl Med 2008; 49:1512-9. [PMID: 18703596 DOI: 10.2967/jnumed.108.051896] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED This aim of our study was to evaluate a novel cell-based therapy for contusion spinal cord injury (SCI) using embryonic-derived NIH3T3 cells, which endogenously express glial cell line-derived neurotrophic factor (GDNF). METHODS Proliferation and differentiation of transplanted NIH3T3 cells and their anti-apoptotic effects were examined after their engraftment into the spinal cords of Long-Evans rats subjected to acute SCI at the T10 vertebral level by a New York University impactor device. NIH3T3 cells were initially engineered to contain dual reporter genes, namely thymidine kinase (T) and enhanced green fluorescence protein (G), for in vivo cell tracking by both nuclear and fluorescence imaging modalities. RESULTS Planar and fluorescence imaging demonstrated that transplanted NIH3T3-TG cells at the L1 vertebral level migrated 2 cm distal to the injury site as early as 2 h, and the signals persisted for 48 h after SCI. The expression of GDNF by NIH3T3-TG cells was then confirmed by immunohistochemical analysis both in vitro and in vivo. GDNF-secreting NIH3T3-TG transplant provided anti-apoptotic effects in the injured cord over the period of 3 wk. Finally, NIH3T3-TG cells cultured under neuronal differentiation medium exhibited both morphologic and genetic resemblance to neuronal cells. CONCLUSION GDNF-secreting NIH3T3-TG cells in combination with molecular imaging could be a platform for developing therapeutic tools for acute SCI.
Collapse
Affiliation(s)
- Wen-Cheng Lo
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
McAdoo DJ, Wu P. Microdialysis in central nervous system disorders and their treatment. Pharmacol Biochem Behav 2008; 90:282-96. [PMID: 18436292 DOI: 10.1016/j.pbb.2008.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
Central nervous system (CNS) insults elevate endogenous toxins and alter levels of indicators of metabolic disorder. These contribute to neurotrauma, neurodegenerative diseases and chronic pain and are possible targets for pharmaceutical treatment. Microdialysis samples substances in the extracellular space for chemical analysis. It has demonstrated that toxic levels of glutamate are released and that toxic levels of the reactive species O(2)(-), H(2)O(2), HO. NO and HOONO are generated upon CNS injury. Agent administration by microdialysis can also help elucidate mechanisms of damage and protection, and to identify targets for clinical application. Microdialysis sampling indicates that circuits descending from the brain to the spinal cord transmit and modulate pain signals by releasing neurotransmitter amines and amino acids. Efforts are under way to develop microdialysis into a technique for intensive care monitoring and predicting outcomes of brain insults. Finally, microdialysis sampling has demonstrated in vivo elevation of glial cell line-derived neurotrophic factor following grafting of primed fetal human neural stem cells into brain-injured rats, the first in vivo demonstration of the release of a neurotrophic factor by grafted stem cells. This increased release correlated with significantly improved spatial learning and memory.
Collapse
Affiliation(s)
- David J McAdoo
- Department of Neurosciences and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, United States.
| | | |
Collapse
|
9
|
Neuhoff S, Moers J, Rieks M, Grunwald T, Jensen A, Dermietzel R, Meier C. Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol 2007; 35:1119-31. [PMID: 17588481 DOI: 10.1016/j.exphem.2007.03.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 03/28/2007] [Accepted: 03/30/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Human umbilical cord blood (hUCB)-derived mononuclear cells were previously shown to exert therapeutic effects in a number of animal models of nervous system impairment. However, the mechanisms underlying the structural and functional improvements are still unclear. As cell replacement seems to be a rare or absent event in vivo, we suggest secondary mechanisms, by which the therapeutic effect of transplanted mononuclear cells might be mediated. We investigated the potential of hUCB-derived mononuclear cells in vitro to proliferate, differentiate, and to secrete factors possibly beneficial for the host brain tissue in vivo. METHODS Using a succession of distinct culture media, mononuclear cells were stimulated by growth factor combinations, e.g., epidermal growth factor (EGF)/fibroblast growth factor-2 (FGF-2) or nerve growth factor (NGF)/retinoic acid (RA). Expression of hematological and neural marker proteins was investigated by immunoblotting, immunocytochemistry, and fluorescence-activated cell analysis. Secretion of proteins was assayed using a human cytokine antibody array, and quantified via enzyme-linked immunosorbent assay. RESULTS Mononuclear cells were shown to undergo proliferation in the presence of EGF/FGF-2. When cells were cultured in NGF/RA-containing medium, neuronal and glial marker proteins were expressed, indicating differentiation. In the presence of either growth factor combination, cells in vitro secrete interleukins, growth factors, and chemotactic proteins. CONCLUSION Although capable of incipient differentiation, cytokine secretion of hUCB-derived mononuclear cells envisages the potential of an indirect effect in vivo. Most factors detected in conditioned medium are renowned for their anti-inflammatory, neuroprotective, angiogenic, or chemotactic actions, thus, providing the means for a therapeutic outcome mediated by secondary effects.
Collapse
Affiliation(s)
- Sandra Neuhoff
- Experimental Neurobiology, Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Anderson L, Caldwell MA. Human neural progenitor cell transplants into the subthalamic nucleus lead to functional recovery in a rat model of Parkinson’s disease. Neurobiol Dis 2007; 27:133-40. [PMID: 17587588 DOI: 10.1016/j.nbd.2007.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/21/2007] [Accepted: 03/27/2007] [Indexed: 01/03/2023] Open
Abstract
Despite the success of foetal nigral transplantation for the treatment of Parkinson's disease, supply limitations of tissue means that alternative sources must be found. Transplantation of human neural progenitor cells (HNPCs) may offer a solution, however few studies have shown functional recovery in animal models of PD without cell modification. Here we show that unmodified HNPC grafted into the subthalamic nucleus (STN) show excellent survival of up to 5 months and induce significant functional recovery following amphetamine-induced rotations within 4 weeks. For the first time we also show that HNPCs, which remain in an immature nestin-positive state, produce VEGF in vivo allowing further modification of the host brain. This suggests that even in the absence of cell replacement strategies utilising immature progenitor cells could be of real therapeutic value.
Collapse
Affiliation(s)
- Lucy Anderson
- Centre for Brain Repair and Department of Clinical Neurosciences, University Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | |
Collapse
|
11
|
Enzmann GU, Benton RL, Talbott JF, Cao Q, Whittemore SR. Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma 2006; 23:479-95. [PMID: 16629631 DOI: 10.1089/neu.2006.23.479] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cells hold great promise for therapeutic repair after spinal cord injury (SCI). This review compares the current experimental approaches taken towards a stem cell-based therapy for SCI. It critically evaluates stem cell sources, injury paradigms, and functional measurements applied to detect behavioral changes after transplantation into the spinal cord. Many of the documented improvements do not exclusively depend on lineage-specific cellular differentiation. In most of the studies, the functional tests used cannot unequivocally demonstrate how differentiation of the transplanted cells contributes to the observed effects. Standardized cell isolation and transplantation protocols could facilitate the assessment of the true contribution of various experimental parameters on recovery. We conclude that at present embryonic stem (ES)-derived cells hold the most promise for therapeutic utility, but that non-neural cells may ultimately be optimal if the mechanism of possible transdifferentiation can be elucidated.
Collapse
Affiliation(s)
- Gaby U Enzmann
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
12
|
Navarro-Galve B, Martinez-Serrano A. “Is there any need to argue…” about the nature and genetic signature of in vitro neural stem cells? Exp Neurol 2006; 199:20-5. [PMID: 16740262 DOI: 10.1016/j.expneurol.2006.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 03/05/2006] [Indexed: 01/23/2023]
Affiliation(s)
- Beatriz Navarro-Galve
- Department of Molecular Biology and Center of Molecular Biology "Severo Ochoa", Laboratory CX-450, Autonomous University of Madrid and Spanish Council for Research [UAM-CSIC], Campus Cantoblanco, 28049-Madrid, Spain
| | | |
Collapse
|
13
|
Pollock K, Stroemer P, Patel S, Stevanato L, Hope A, Miljan E, Dong Z, Hodges H, Price J, Sinden JD. A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol 2006; 199:143-55. [PMID: 16464451 DOI: 10.1016/j.expneurol.2005.12.011] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 12/05/2005] [Indexed: 01/19/2023]
Abstract
Transplantation of neural stem cells into the brain is a novel approach to the treatment of chronic stroke disability. For clinical application, safety and efficacy of defined, stable cell lines produced under GMP conditions are required. To this end, a human neural stem cell line, CTX0E03, was derived from human somatic stem cells following genetic modification with a conditional immortalizing gene, c-mycER(TAM). This transgene generates a fusion protein that stimulates cell proliferation in the presence of a synthetic drug 4-hydroxy-tamoxifen (4-OHT). The cell line is clonal, expands rapidly in culture (doubling time 50-60 h) and has a normal human karyotype (46 XY). In the absence of growth factors and 4-OHT, the cells undergo growth arrest and differentiate into neurons and astrocytes. Transplantation of CTX0E03 in a rat model of stroke (MCAo) caused statistically significant improvements in both sensorimotor function and gross motor asymmetry at 6-12 weeks post-grafting. In addition, cell migration and long-term survival in vivo were not associated with significant cell proliferation. These data indicate that CTX0E03 has the appropriate biological and manufacturing characteristics necessary for development as a therapeutic cell line.
Collapse
Affiliation(s)
- Kenneth Pollock
- ReNeuron Ltd., 10 Nugent Road, Surrey Research Park, Guildford, Surrey GU2 7AF, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Döbrössy MD, Dunnett SB. Optimising plasticity: environmental and training associated factors in transplant-mediated brain repair. Rev Neurosci 2005; 16:1-21. [PMID: 15810651 DOI: 10.1515/revneuro.2005.16.1.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With progressively ageing populations, degeneration of nerve cells of the brain, due to accident or disease, represents one of the major problems for health and welfare in the developed world. The molecular environment in the adult brain promotes stability limiting its ability to regenerate or to repair itself following injury. Cell transplantation aims to repair the nervous system by introducing new cells that can replace the function of the compromised or lost cells. Alternatives to primary embryonic tissue are actively being sought but this is at present the only source that has been shown reliably to survive grafting into the adult brain and spinal cord, connect with the host nervous system, and influence behaviour. Based on animal studies, several clinical trials have now shown that embryonic tissue grafts can partially alleviate symptoms in Parkinson's disease, and related strategies are under evaluation for Huntington's disease, spinal cord injury, stroke and other CNS disorders. The adult brain is at its most plastic in the period following injury, offering a window of opportunity for therapeutic intervention. Enriched environment, behavioural experience and grafting can each separately influence neuronal plasticity and recovery of function after brain damage, but the extent to which these factors interact is at present unknown. To improve the outcome following brain damage, transplantation must make use of the endogenous potential for plasticity of both the host and the graft and optimise the external circumstances associated with graft-mediated recovery. Our understanding of mechanisms of brain plasticity subsequent to brain damage needs to be associated with what we know about enhancing intrinsic recovery processes in order to improve neurobiological and surgical strategies for repair at the clinical level. With the proof of principle beginning to emerge from clinical trials, a rich area for innovative research with profound therapeutic application, even broader than the specific context of transplantation, is now opening for investigation.
Collapse
Affiliation(s)
- Màtè Daniel Döbrössy
- The Brain Repair Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|