1
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
2
|
Sosa-Acosta P, Quiñones-Vega M, Guedes JDS, Rocha D, Guida L, Vasconcelos Z, Nogueira FCS, Domont GB. Multiomics Approach Reveals Serum Biomarker Candidates for Congenital Zika Syndrome. J Proteome Res 2024; 23:1200-1220. [PMID: 38390744 DOI: 10.1021/acs.jproteome.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jéssica de S Guedes
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Danielle Rocha
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | - Letícia Guida
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | | | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
3
|
Wang J, Chen P, Hu B, Cai F, Xu Q, Pan S, Wu Y, Song W. Distinct effects of SDC3 and FGFRL1 on selective neurodegeneration in AD and PD. FASEB J 2023; 37:e22773. [PMID: 36629784 DOI: 10.1096/fj.202201359r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are age-dependent neurodegenerative disorders. There is a profound neuronal loss in the basal forebrain cholinergic system in AD and severe dopaminergic deficiency within the nigrostriatal pathway in PD. Swedish APP (APPSWE ) and SNCAA53T mutations promote Aβ generation and α-synuclein aggregation, respectively, and have been linked to the pathogenesis of AD and PD. However, the mechanisms underlying selective cholinergic and dopaminergic neurodegeneration in AD and PD are still unknown. We demonstrated that APPSWE mutation enhanced Aβ generation and increased cell susceptibility to Aβ oligomer in cholinergic SN56 cells, whereas SNCAA53T mutations promoted aggregates formation and potentiated mutant α-synuclein oligomer-induced cytotoxicity in MN9D cells. Furthermore, syndecan-3 (SDC3) and fibroblast growth factor receptor-like 1 (FGFRL1) genes were differentially expressed in SN56 and MN9D cells carrying APPSWE or SNCAA53T mutation. SDC3 and FGFRL1 proteins were preferentially expressed in the cholinergic nucleus and dopaminergic neurons of APPSWE and SNCAA53T mouse models, respectively. Finally, the knockdown of SDC3 and FGFRL1 attenuated oxidative stress-induced cell death in SN56-APPSWE and MN9D-SNCAA53T cells. The results demonstrate that SDC3 and FGFRL1 mediated the specific effects of APPSWE and SNCAA53T on cholinergic and dopaminergic neurodegeneration in AD and PD, respectively. Our study suggests that SDC3 and FGFRL1 could be potential targets to alleviate the selective neurodegeneration in AD and PD.
Collapse
Affiliation(s)
- Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Peiye Chen
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Bolang Hu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Qin Xu
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sipei Pan
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Yili Wu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| |
Collapse
|
4
|
Hassink GC, Raiss CC, Segers-Nolten IMJ, van Wezel RJA, Subramaniam V, le Feber J, Claessens MMAE. Exogenous α-synuclein hinders synaptic communication in cultured cortical primary rat neurons. PLoS One 2018; 13:e0193763. [PMID: 29565978 PMCID: PMC5863964 DOI: 10.1371/journal.pone.0193763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/17/2018] [Indexed: 12/25/2022] Open
Abstract
Amyloid aggregates of the protein α-synuclein (αS) called Lewy Bodies (LB) and Lewy Neurites (LN) are the pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. We have previously shown that high extracellular αS concentrations can be toxic to cells and that neurons take up αS. Here we aimed to get more insight into the toxicity mechanism associated with high extracellular αS concentrations (50-100 μM). High extracellular αS concentrations resulted in a reduction of the firing rate of the neuronal network by disrupting synaptic transmission, while the neuronal ability to fire action potentials was still intact. Furthermore, many cells developed αS deposits larger than 500 nm within five days, but otherwise appeared healthy. Synaptic dysfunction clearly occurred before the establishment of large intracellular deposits and neuronal death, suggesting that an excessive extracellular αS concentration caused synaptic failure and which later possibly contributed to neuronal death.
Collapse
Affiliation(s)
- G. C. Hassink
- Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
| | - C. C. Raiss
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Postbus, Enschede, the Netherlands
| | - I. M. J. Segers-Nolten
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Postbus, Enschede, the Netherlands
| | - R. J. A. van Wezel
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Postbus, The Netherlands
| | - V. Subramaniam
- Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Postbus, Enschede, the Netherlands
| | - J. le Feber
- Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- Biomedical Signal and Systems, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
- * E-mail:
| | - M. M. A. E. Claessens
- Clinical Neurophysiology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Postbus, Enschede, the Netherlands
| |
Collapse
|
5
|
Cobb CA, Cole MP. Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis 2015; 84:4-21. [PMID: 26024962 DOI: 10.1016/j.nbd.2015.04.020] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022] Open
Abstract
Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage.
Collapse
Affiliation(s)
- Catherine A Cobb
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
6
|
Awan MUF, Deng Y. Role of autophagy and its significance in cellular homeostasis. Appl Microbiol Biotechnol 2014; 98:5319-28. [PMID: 24743981 DOI: 10.1007/s00253-014-5721-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 12/18/2022]
Abstract
Autophagy is a catabolic pathway that regulates homeostasis in cells. It is an exceptional pathway of membrane trafficking. Autophagy is characterized by the formation of double-membrane vesicles; autophagosomes that are responsible for delivering damaged organelle and extra proteins to lysosome for recycling. A series of actions including environmental and genetic factors are responsible for induction of autophagy. In the past few decades, the research on autophagy has been immensely expanded because it is a vital process in maintaining cellular balance as well as deeply connected with pathogenesis of a number of diseases. The aim of this review is to present an overview of modern work on autophagy and highlight some essential genetic role in the induction of autophagy. There is an emerging need to identify, quantify, and manipulate the pathway of autophagy, due to its close relationship with a variety of developmental pathways and functions especially in cancer, diabetes, neurodegenerative disorders, and infectious diseases.
Collapse
Affiliation(s)
- M Umer Farooq Awan
- School of Life Sciences, Beijing Institute of Technology, No. 5 Zhongguancunn South Street, Beijing, 100081, People's Republic of China
| | | |
Collapse
|
7
|
Sutachan JJ, Casas Z, Albarracin SL, Stab BR, Samudio I, Gonzalez J, Morales L, Barreto GE. Cellular and molecular mechanisms of antioxidants in Parkinson's disease. Nutr Neurosci 2013; 15:120-6. [DOI: 10.1179/1476830511y.0000000033] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Prabhakaran K, Chapman GD, Gunasekar PG. α-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-κB-mediated pathway. Toxicol Mech Methods 2011; 21:435-43. [DOI: 10.3109/15376516.2011.560210] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Cai T, Yao T, Zheng G, Chen Y, Du K, Cao Y, Shen X, Chen J, Luo W. Manganese induces the overexpression of α-synuclein in PC12 cells via ERK activation. Brain Res 2010; 1359:201-7. [PMID: 20735995 DOI: 10.1016/j.brainres.2010.08.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Manganese has been known to induce neurological disorders. In the present study, we determined the effect of manganese on the expression of α-synuclein in PC12 cells and its role in manganese-induced cytotoxicity. We also investigated the relationship between α-synuclein expression and the change of ERK1/2 MAPK activity. In our research, manganese exposure induced the overexpression of α-synuclein, while siRNA knockdown of α-synuclein reversed manganese-induced cytotoxicity. Furthermore, manganese induced the activation of ERK1/2 MAPK. The MEK1 inhibitor PD98059, which inhibits the activation of ERK MAPK, attenuated the overexpression of α-synuclein and the cytotoxicity induced by manganese. In conclusion, our studies show that manganese may induce the overexpression of α-synuclein via ERK1/2 activation, which may play a role in manganese-induced cytotoxicity.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Autophagy is a term used to describe the process by which lysosomes degrade intracellular components. Known originally as an adaptive response to nutrient deprivation, autophagy has now been recognized to play important roles in several human disorders including neurodegenerative diseases. Experimental results from genetic, cellular, and toxicological studies indicate that many of the etiological factors associated with Parkinson disease (PD) can perturb the autophagic process in various model systems. Thus, the emerging data support the view that dysregulation of autophagy may play a critical role in the pathogenic process of PD.
Collapse
Affiliation(s)
- Qian Yang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322-3090, USA
| | | |
Collapse
|
11
|
Ito S, Nakaso K, Imamura K, Takeshima T, Nakashima K. Endogenous catecholamine enhances the dysfunction of unfolded protein response and α-synuclein oligomerization in PC12 cells overexpressing human α-synuclein. Neurosci Res 2010; 66:124-30. [DOI: 10.1016/j.neures.2009.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/29/2009] [Accepted: 10/06/2009] [Indexed: 11/26/2022]
|
12
|
Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener 2009; 4:9. [PMID: 19193223 PMCID: PMC2646729 DOI: 10.1186/1750-1326-4-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/04/2009] [Indexed: 11/16/2022] Open
Abstract
α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Building 35, Room 1A116, MSC 3707, 35 Convent Drive, Bethesda, MD 20982-3707, USA.
| |
Collapse
|
13
|
Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE. Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol 2008; 115:479-89. [PMID: 18189141 DOI: 10.1007/s00401-007-0332-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 12/20/2022]
Abstract
Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.
Collapse
Affiliation(s)
- Neeraj Pandey
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Cookson MR, van der Brug M. Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp Neurol 2007; 209:5-11. [PMID: 17603039 PMCID: PMC2231843 DOI: 10.1016/j.expneurol.2007.05.022] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/02/2007] [Accepted: 05/28/2007] [Indexed: 10/25/2022]
Abstract
Mutations in the SNCA gene are causal for familial Parkinson disease/Lewy body disease. alpha-Synuclein is a small acidic protein that binds loosely to the surface of vesicles and may play a role in synaptic dynamics, although its normal function remains somewhat unclear. What is clear is that point mutations or increased expression of wild type alpha-synuclein causes disease. A great deal of literature supports the overall hypothesis that alpha-synuclein is damaging to neurons because it is inherently prone to aggregation; mutations or increased concentration of the protein both increase this tendency. An unproven, but popular, contention is that the toxic species are small oligomers that are relatively soluble, which may react with membranes to damage key processes within the cell. The details of this process, especially in determining the order of events and the requirement of particular processes in cell death, are unclear. Derangements in vesicle processing, including synaptic function, protein turnover, mitochondrial function and oxidative stress, have all been suggested to occur. Whether there is a sequence of events or whether these are interacting effects is unclear, but the outcome is to trigger cell death, by both apoptotic and non-apoptotic mechanisms depending on the system studied. In this article, we develop a framework for thinking about alpha-synuclein in terms of initiating events and secondary processes that are required to trigger neuronal dysfunction and cell death.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20982-3707, USA.
| | | |
Collapse
|