1
|
Noori H, Alazzeh ZJ, Rehman OU, Idrees M, Marsool MDM, Abdul Rehman K, Gohil KM, Ahmad SS, Subash T, Dixon K. Endoplasmic reticulum's role in multiple sclerosis, exploring potential biomarkers, and pioneering therapeutic strategies: a comprehensive review of literature. Neurol Sci 2024:10.1007/s10072-024-07766-4. [PMID: 39269572 DOI: 10.1007/s10072-024-07766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a complex and chronic autoimmune disease that affects the central nervous system. Inflammation and demyelination characterize it, which results in a range of neurological impairments. The increasing worldwide occurrence of MS, affecting an estimated 2.8 million individuals in 2020, highlights the urgent requirement for further research to tackle the significant impact it has on individuals and healthcare systems globally. OBJECTIVE In this study, we wanted to explore the complex function of the endoplasmic reticulum (ER) in the origin, development, and resolution of MS, emphasizing its importance in neuroinflammatory illnesses. The ER has become a central focus in comprehending the pathogenesis of MS. Upon reviewing the literature, we observed a lack of thorough analysis that explores the involvement of endoplasmic reticulum stress in multiple sclerosis. Thus, we aimed through this research to examine the correlations between ER stress and its influence on immunological dysregulation, demyelination, and neurodegeneration in MS. FINDINGS Based on the latest clinical trials, we suggested theories that explore possible biomarkers linked to ER stress and the unfolded protein response. Identifying molecules that are suggestive of early stages of illness and can serve as prognostic tools for improving our understanding of the heterogeneity of MS and offering novel approaches for managing the disease. Finally, through our comprehensive search, we wanted to offer a plan for future research, suggesting new and creative methods for managing MS and encouraging the creation of specific treatments that aim to reduce the impact of MS on individuals worldwide.
Collapse
Affiliation(s)
- Hamid Noori
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Level 6, West Wing, Oxford, OX3 9DU, UK
| | | | - Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | | | | | - Khawaja Abdul Rehman
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan.
| | - Krutika Mahendra Gohil
- Topiwala National Medical College & Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, India
| | | | | | - Kayla Dixon
- University of Birmingham Medical School, Birmingham, UK
| |
Collapse
|
2
|
Lei Z, Lin W. Mechanisms Governing Oligodendrocyte Viability in Multiple Sclerosis and Its Animal Models. Cells 2024; 13:116. [PMID: 38247808 PMCID: PMC10814231 DOI: 10.3390/cells13020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory demyelinating disease of the central nervous system (CNS), which is triggered by an autoimmune assault targeting oligodendrocytes and myelin. Recent research indicates that the demise of oligodendrocytes due to an autoimmune attack contributes significantly to the pathogenesis of MS and its animal model experimental autoimmune encephalomyelitis (EAE). A key challenge in MS research lies in comprehending the mechanisms governing oligodendrocyte viability and devising therapeutic approaches to enhance oligodendrocyte survival. Here, we provide an overview of recent findings that highlight the contributions of oligodendrocyte death to the development of MS and EAE and summarize the current literature on the mechanisms governing oligodendrocyte viability in these diseases.
Collapse
Affiliation(s)
- Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Withana M, Castorina A. Potential Crosstalk between the PACAP/VIP Neuropeptide System and Endoplasmic Reticulum Stress-Relevance to Multiple Sclerosis Pathophysiology. Cells 2023; 12:2633. [PMID: 37998368 PMCID: PMC10670126 DOI: 10.3390/cells12222633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder characterized by focal demyelination and chronic inflammation of the central nervous system (CNS). Although the exact etiology is unclear, mounting evidence indicates that endoplasmic reticulum (ER) stress represents a key event in disease pathogenesis. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that are abundant in the CNS and are known to exert neuroprotective and immune modulatory roles. Activation of this endogenous neuropeptide system may interfere with ER stress processes to promote glial cell survival and myelin self-repair. However, the potential crosstalk between the PACAP/VIP system and ER stress remains elusive. In this review, we aim to discuss how these peptides ameliorate ER stress in the CNS, with a focus on MS pathology. Our goal is to emphasize the importance of this potential interaction to aid in the identification of novel therapeutic targets for the treatment of MS and other demyelinating disorders.
Collapse
Affiliation(s)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
4
|
Amatruda M, Harris K, Matis A, Davies AL, McElroy D, Clark M, Linington C, Desai R, Smith KJ. Oxygen treatment reduces neurological deficits and demyelination in two animal models of multiple sclerosis. Neuropathol Appl Neurobiol 2023; 49:e12868. [PMID: 36520661 PMCID: PMC10107096 DOI: 10.1111/nan.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIMS The objective of the study is to explore the importance of tissue hypoxia in causing neurological deficits and demyelination in the inflamed CNS, and the value of inspiratory oxygen treatment, using both active and passive experimental autoimmune encephalomyelitis (EAE). METHODS Normobaric oxygen treatment was administered to Dark Agouti rats with either active or passive EAE, compared with room air-treated, and naïve, controls. RESULTS Severe neurological deficits in active EAE were significantly improved after just 1 h of breathing approximately 95% oxygen. The improvement was greater and more persistent when oxygen was applied either prophylactically (from immunisation for 23 days), or therapeutically from the onset of neurological deficits for 24, 48, or 72 h. Therapeutic oxygen for 72 h significantly reduced demyelination and the integrated stress response in oligodendrocytes at the peak of disease, and protected from oligodendrocyte loss, without evidence of increased oxidative damage. T-cell infiltration and cytokine expression in the spinal cord remained similar to that in untreated animals. The severe neurological deficit of animals with passive EAE occurred in conjunction with spinal hypoxia and was significantly reduced by oxygen treatment initiated before their onset. CONCLUSIONS Severe neurological deficits in both active and passive EAE can be caused by hypoxia and reduced by oxygen treatment. Oxygen treatment also reduces demyelination in active EAE, despite the autoimmune origin of the disease.
Collapse
Affiliation(s)
- Mario Amatruda
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kate Harris
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Alina Matis
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew L Davies
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Daniel McElroy
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Michael Clark
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Christopher Linington
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Roshni Desai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
5
|
Interferon-Stimulated Genes-Mediators of the Innate Immune Response during Canine Distemper Virus Infection. Int J Mol Sci 2019; 20:ijms20071620. [PMID: 30939763 PMCID: PMC6480560 DOI: 10.3390/ijms20071620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
The demyelinating canine distemper virus (CDV)-leukoencephalitis represents a translational animal model for multiple sclerosis. The present study investigated the expression of type I interferon (IFN-I) pathway members in CDV-induced cerebellar lesions to gain an insight into their role in lesion development. Gene expression of 110 manually selected genes in acute, subacute and chronic lesions was analyzed using pre-existing microarray data. Interferon regulatory factor (IRF) 3, IRF7, signal transducer and activator of transcription (STAT) 1, STAT2, MX protein, protein kinase R (PKR), 2'-5'-oligoadenylate synthetase (OAS) 1 and interferon-stimulated gene (ISG) 15 expression were also evaluated using immunohistochemistry. Cellular origin of STAT1, STAT2, MX and PKR were determined using immunofluorescence. CDV infection caused an increased expression of the antiviral effector proteins MX, PKR, OAS1 and ISG15, which probably contributed to a restricted viral replication, particularly in neurons and oligodendrocytes. This increase might be partly mediated by IRF-dependent pathways due to the lack of changes in IFN-I levels and absence of STAT2 in astrocytes. Nevertheless, activated microglia/macrophages showed a strong expression of STAT1, STAT2 and MX proteins in later stages of the disease, indicating a strong activation of the IFN-I signaling cascade, which might be involved in the aggravation of bystander demyelination.
Collapse
|
6
|
Grajchen E, Hendriks JJA, Bogie JFJ. The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol Commun 2018; 6:124. [PMID: 30454040 PMCID: PMC6240956 DOI: 10.1186/s40478-018-0628-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system characterized by massive infiltration of immune cells, demyelination, and axonal loss. Active MS lesions mainly consist of macrophages and microglia containing abundant intracellular myelin remnants. Initial studies showed that these foamy phagocytes primarily promote MS disease progression by internalizing myelin debris, presenting brain-derived autoantigens, and adopting an inflammatory phenotype. However, more recent studies indicate that phagocytes can also adopt a beneficial phenotype upon myelin internalization. In this review, we summarize and discuss the current knowledge on the spatiotemporal physiology of foamy phagocytes in MS lesions, and elaborate on extrinsic and intrinsic factors regulating their behavior. In addition, we discuss and link the physiology of myelin-containing phagocytes to that of foamy macrophages in other disorders such atherosclerosis.
Collapse
Affiliation(s)
- Elien Grajchen
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium.
| |
Collapse
|
7
|
LoPresti P. Tau in Oligodendrocytes Takes Neurons in Sickness and in Health. Int J Mol Sci 2018; 19:ijms19082408. [PMID: 30111714 PMCID: PMC6121290 DOI: 10.3390/ijms19082408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
Oligodendrocytes (OLGs), the myelin-forming cells of the central nervous system (CNS), are lifelong partners of neurons. They adjust to the functional demands of neurons over the course of a lifetime to meet the functional needs of a healthy CNS. When this functional interplay breaks down, CNS degeneration follows. OLG processes are essential features for OLGs being able to connect with the neurons. As many as fifty cellular processes from a single OLG reach and wrap an equal number of axonal segments. The cellular processes extend to meet and wrap axonal segments with myelin. Further, transport regulation, which is critical for myelination, takes place within the cellular processes. Because the microtubule-associated protein tau plays a crucial role in cellular process extension and myelination, alterations of tau in OLGs have deleterious effects, resulting in neuronal malfunction and CNS degeneration. Here, we review current concepts on the lifelong role of OLGs and myelin for brain health and plasticity. We present key studies of tau in OLGs and select important studies of tau in neurons. The extensive work on tau in neurons has considerably advanced our understanding of how tau promotes either health or disease. Because OLGs are crucial to neuronal health at any age, an understanding of the functions and regulation of tau in OLGs could uncover new therapeutics for selective CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA.
| |
Collapse
|
8
|
Hasselmann JPC, Karim H, Khalaj AJ, Ghosh S, Tiwari-Woodruff SK. Consistent induction of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice for the longitudinal study of pathology and repair. J Neurosci Methods 2017; 284:71-84. [PMID: 28396177 DOI: 10.1016/j.jneumeth.2017.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/15/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND While many groups use experimental autoimmune encephalomyelitis (EAE) as a model to uncover therapeutic targets and understand the pathology underlying multiple sclerosis (MS), EAE protocol variability introduces discrepancies in central nervous system (CNS) pathogenesis and clinical disease, limiting the comparability between studies and slowing much-needed translational research. OPTIMIZED METHOD Here we describe a detailed, reliable protocol for chronic EAE induction in C57BL/6 mice utilizing two injections of myelin oligodendrocyte glycoprotein (35-55) peptide mixed with complete Freund's adjuvant and paired with pertussis toxin. RESULTS The active MOG35-55-EAE protocol presented here induces ascending paralysis in 80-100% of immunized mice. We observe: (1) consistent T cell immune activation, (2) robust CNS infiltration by peripheral immune cells, and (3) perivascular demyelinating lesions concurrent with axon damage in the spinal cord and various brain regions, including the optic nerve, cortex, hippocampus, internal capsule, and cerebellum. COMPARISON WITH EXISTING METHOD(S) Lack of detailed protocols, combined with variability between laboratories, make EAE results difficult to compare and hinder the use of this model for therapeutic development. We provide the most detailed active MOG35-55-EAE protocol to date. With this protocol, we observe high disease incidence and a consistent, reliable disease course. The resulting pathology is MS-like and includes optic neuritis, perivascular mononuclear infiltration, CNS axon demyelination, and axon damage in both infiltrating lesions and otherwise normal-appearing white matter. CONCLUSIONS By providing a detailed active MOG35-55-EAE protocol that yields consistent and robust pathology, we aim to foster comparability between pre-clinical studies and facilitate the discovery of MS therapeutics.
Collapse
Affiliation(s)
| | - Hawra Karim
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA
| | - Anna J Khalaj
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA
| | - Subir Ghosh
- Department of Statistics, UCR-CNAS, Riverside, CA 92521, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, UCR School of Medicine, Riverside, CA 92521, USA; Department of Neuroscience, UCR School of Medicine, Riverside, CA 92521, USA; Center for Glial-Neuronal Interactions, UCR School of Medicine, CA 92506, USA.
| |
Collapse
|
9
|
Merckx E, Albertini G, Paterka M, Jensen C, Albrecht P, Dietrich M, Van Liefferinge J, Bentea E, Verbruggen L, Demuyser T, Deneyer L, Lewerenz J, van Loo G, De Keyser J, Sato H, Maher P, Methner A, Massie A. Absence of system x c- on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J Neuroinflammation 2017; 14:9. [PMID: 28086920 PMCID: PMC5237180 DOI: 10.1186/s12974-016-0787-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System xc- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. METHODS Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system xc-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT-/-) mice and irradiated mice reconstituted in xCT-/- bone marrow (BM), to their proper wild type (xCT+/+) controls. RESULTS xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT+/+ mice, xCT-/- mice were equally susceptible to EAE, whereas mice transplanted with xCT-/- BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. CONCLUSIONS Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system xc- on immune cells invading the CNS participates to EAE. Since a total loss of system xc- had no net beneficial effects, these results have important implications for targeting system xc- for treatment of MS.
Collapse
Affiliation(s)
- Ellen Merckx
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Giulia Albertini
- Center for Neurosciences (C4N), Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Paterka
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Cathy Jensen
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Joeri Van Liefferinge
- Center for Neurosciences (C4N), Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eduard Bentea
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Lise Verbruggen
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Thomas Demuyser
- Center for Neurosciences (C4N), Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lauren Deneyer
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Jan Lewerenz
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Geert van Loo
- Inflammation Research Center, VIB and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jacques De Keyser
- Center for Neurosciences (C4N), Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Axel Methner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ann Massie
- Center for Neurosciences (C4N), Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
10
|
Clayton BLL, Popko B. Endoplasmic reticulum stress and the unfolded protein response in disorders of myelinating glia. Brain Res 2016; 1648:594-602. [PMID: 27055915 PMCID: PMC5036997 DOI: 10.1016/j.brainres.2016.03.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 12/12/2022]
Abstract
Myelin is vital to the proper function of the nervous system. Oligodendrocytes in the CNS and Schwann cells in the PNS are the glial cells responsible for generating the myelin sheath. Myelination requires the production of a vast amount of proteins and lipid-rich membrane, which puts a heavy load on the secretory pathway of myelinating glia and leaves them susceptible to endoplasmic reticulum (ER) stress. Cells respond to ER stress by activating the unfolded protein response (UPR). The UPR is initially protective but in situations of prolonged unresolved stress the UPR can lead to the apoptotic death of the stressed cell. There is strong evidence that ER stress and the UPR play a role in a number of disorders of myelin and myelinating glia, including multiple sclerosis, Pelizaeus-Merzbacher disease, Vanishing White Matter Disease, and Charcot-Marie-Tooth disease. In this review we discuss the role that ER stress and the UPR play in these disorders of myelin. In addition, we discuss the progress that has been made in our understanding of the effect genetic and pharmacological manipulation of the UPR has in mouse models of these disorders and the novel therapeutic potential of targeting the UPR that these studies support. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Benjamin L L Clayton
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, IL 60637, United States
| | - Brian Popko
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, IL 60637, United States.
| |
Collapse
|
11
|
Di Giannantonio M, Frydas S, Kempuraj D, Karagouni E, Hatzistilianou M, Conti CM, Boucher W, Papadopoulou N, Donelan J, Cao J, Madhappan B, Boscolo P, Petrarca C, Castellani L, Quartesan L, Doyle R, Ferro FM. Cytokines in Stress. Int J Immunopathol Pharmacol 2016; 18:1-5. [PMID: 15698505 DOI: 10.1177/039463200501800101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
12
|
Stone S, Lin W. The unfolded protein response in multiple sclerosis. Front Neurosci 2015; 9:264. [PMID: 26283904 PMCID: PMC4518158 DOI: 10.3389/fnins.2015.00264] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/14/2015] [Indexed: 01/08/2023] Open
Abstract
The unfolded protein response (UPR) occurs in response to endoplasmic reticulum (ER) stress caused by the accumulation of unfolded or misfolded proteins in the ER. The UPR is comprised of three signaling pathways that promote cytoprotective functions to correct ER stress; however, if ER stress cannot be resolved the UPR results in apoptosis of affected cells. The UPR is an important feature of various human diseases, including multiple sclerosis (MS). Recent studies have shown several components of the UPR are upregulated in the multiple cell types in MS lesions, including oligodendrocytes, T cells, microglia/macrophages, and astrocytes. Data from animal model studies, particularly studies of experimental autoimmune encephalomyelitis (EAE) and the cuprizone model, imply an important role of the UPR activation in oligodendrocytes in the development of MS. In this review we will cover current literature on the UPR and the evidence for its role in the development of MS.
Collapse
Affiliation(s)
- Sarrabeth Stone
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA ; Institute for Translational Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA ; Institute for Translational Neuroscience, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
13
|
Kapil P, Stohlman SA, Hinton DR, Bergmann CC. PKR mediated regulation of inflammation and IL-10 during viral encephalomyelitis. J Neuroimmunol 2014; 270:1-12. [PMID: 24642385 PMCID: PMC4019976 DOI: 10.1016/j.jneuroim.2014.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/21/2022]
Abstract
Double-stranded RNA-dependent protein kinase (PKR) regulates antiviral activity, immune responses, apoptosis and neurotoxicity. Gliatropic coronavirus infection induced PKR activation in infected as well uninfected cells within the central nervous system (CNS). However, PKR deficiency only modestly increased viral replication and did not affect IFN-α/β or IL-1β expression. Despite reduced Il-6, Ccl5, and Cxcl10 mRNA, protein levels remained unaltered. Furthermore, PKR deficiency selectively reduced IL-10 production in CD4, but not CD8 T cells, without affecting CNS pathology. The results demonstrate the ability of PKR to balance neuroinflammation by selectively modulating key cytokines and chemokines in CNS resident and CD4 T cells.
Collapse
Affiliation(s)
- Parul Kapil
- Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stephen A Stohlman
- Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - David R Hinton
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cornelia C Bergmann
- Department of Neurosciences, NC-30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
14
|
Lin Y, Huang G, Jamison S, Li J, Harding HP, Ron D, Lin W. PERK activation preserves the viability and function of remyelinating oligodendrocytes in immune-mediated demyelinating diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:507-19. [PMID: 24269558 DOI: 10.1016/j.ajpath.2013.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/24/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Remyelination occurs in multiple sclerosis (MS) lesions but is generally considered to be insufficient. One of the major challenges in MS research is to understand the causes of remyelination failure and to identify therapeutic targets that promote remyelination. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress modulates cell viability and function under stressful conditions. There is evidence that PERK is activated in remyelinating oligodendrocytes in demyelinated lesions in both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). In this study, we sought to determine the role of PERK signaling in remyelinating oligodendrocytes in MS and EAE using transgenic mice that allow temporally controlled activation of PERK signaling specifically in oligodendrocytes. We demonstrated that persistent PERK activation was not deleterious to myelinating oligodendrocytes in young, developing mice or to remyelinating oligodendrocytes in cuprizone-induced demyelinated lesions. We found that enhancing PERK activation, specifically in (re)myelinating oligodendrocytes, protected the cells and myelin against the detrimental effects of interferon-γ, a key proinflammatory cytokine in MS and EAE. More important, we showed that enhancing PERK activation in remyelinating oligodendrocytes at the recovery stage of EAE promoted cell survival and remyelination in EAE demyelinated lesions. Thus, our data provide direct evidence that PERK activation cell-autonomously enhances the survival and preserves function of remyelinating oligodendrocytes in immune-mediated demyelinating diseases.
Collapse
Affiliation(s)
- Yifeng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Guangcun Huang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Stephanie Jamison
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Jin Li
- Department of Ophthalmology, 9th Hospital, Shanghai Jiaotong University School of Medical Science, Shanghai, China
| | - Heather P Harding
- University of Cambridge Metabolic Research Laboratories, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - David Ron
- University of Cambridge Metabolic Research Laboratories, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
15
|
Ní Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, FitzGerald U. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun 2013; 1:37. [PMID: 24252779 PMCID: PMC3893522 DOI: 10.1186/2051-5960-1-37] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/28/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Calreticulin (CRT) is a chaperone protein, which aids correct folding of glycosylated proteins in the endoplasmic reticulum (ER). Under conditions of ER stress, CRT is upregulated and may be displayed on the surface of cells or be secreted. This 'ecto-CRT' may activate the innate immune response or it may aid clearance of apoptotic cells. Our and other studies have demonstrated upregulation of ER stress markers CHOP, BiP, ATF4, XBP1 and phosphorylated e-IF2 alpha (p-eIF2 alpha) in biopsy and post-mortem human multiple sclerosis (MS) samples. We extend this work by analysing changes in expression of CRT, BiP, CHOP, XBP1 and p-eIF2 alpha in a rat model of inflammatory demyelination. Demyelination was induced in the spinal cord by intradermal injection of recombinant mouse MOG mixed with incomplete Freund's adjuvant (IFA) at the base of the tail. Tissue samples were analysed by semi-quantitative scoring of immunohistochemically stained frozen tissue sections. Data generated following sampling of tissue from animals with spinal cord lesions, was compared to that obtained using tissue derived from IFA- or saline-injected controls. CRT present in rat serum and in a cohort of human serum derived from 14 multiple sclerosis patients and 11 healthy controls was measured by ELISA. RESULTS Stained tissue scores revealed significantly (p<0.05) increased amounts of CRT, CHOP and p-eIF2 alpha in the lesion, lesion edge and normal-appearing white matter when compared to controls. CHOP and p-eIF2 alpha were also significantly raised in regions of grey matter and the central canal (p<0.05). Immunofluorescent dual-label staining confirmed expression of these markers in astrocytes, microglia or neurons. Dual staining of rat and human spinal cord lesions with Oil Red O and CRT antibody showed co-localisation of CRT with the rim of myelin fragments. ELISA testing of sera from control and EAE rats demonstrated significant down-regulation (p<0.05) of CRT in the serum of EAE animals, compared to saline and IFA controls. This contrasted with significantly increased amounts of CRT detected in the sera of MS patients (p<0.05), compared to controls. CONCLUSION This data highlights the potential importance of CRT and other ER stress proteins in inflammatory demyelination.
Collapse
|
16
|
Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J Neurosci 2013; 33:5980-91. [PMID: 23554479 DOI: 10.1523/jneurosci.1636-12.2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.
Collapse
|
17
|
Yoshida K, Okamura H, Hoshino Y, Shono M, Yoshioka M, Hinode D, Yoshida H. Interaction between PKR and PACT mediated by LPS-inducible NF-κB in human gingival cells. J Cell Biochem 2012; 113:165-73. [PMID: 21882225 DOI: 10.1002/jcb.23340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The double-stranded RNA-dependent protein kinase (PKR) is a serine/threonine kinase expressed constitutively in mammalian cells. PKR is activated upon virus infection by double-stranded RNA (dsRNA), and plays a critical role in host antiviral defense mechanisms. PKR is also known to regulate various biological responses, including cell differentiation and apoptosis. However, whether PKR is involved in the progress of periodontitis is not clear. The present study explained the phosphorylation of PKR by LPS in the human gingival cell line, Sa3. Expression of genes encoding LPS receptors was detected in Sa3 cells and treatment of cells with 1 µg/mL LPS for 6 h caused PKR phosphorylation. LPS elevated the expression of the protein activator of PKR (PACT) mRNA and protein, followed by the enhanced association between PACT and PKR within 3 h. In addition, LPS treatment induced the translocation of NF-κB to the nucleus after 30 min, and inhibition of NF-κB decreased the PACT-PKR interaction induced by LPS. The level of pro-inflammatory cytokine mRNA, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), appeared within 45 min and reached at the maximal levels by 90 min after the addition of LPS. This induction of pro-inflammatory cytokines was not affected by RNAi-mediated silencing of PKR and a pharmacological inhibitor of PKR, whereas the inhibition of NF-κB decreased it. These results indicated that LPS induces PKR phosphorylation and the PACT-PKR association in Sa3 cells. Our results also suggest that NF-κB is involved in the PACT-PKR interaction and the production of pro-inflammatory cytokines in periodontitis.
Collapse
Affiliation(s)
- Kaya Yoshida
- Departments of Fundamental Oral Health Science, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Myelinating cells, oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system produce an enormous amount of plasma membrane during the myelination process, making them particularly susceptible to disruptions of the secretory pathway. Endoplasmic reticulum stress, initiated by the accumulation of unfolded or misfolded proteins, activates the unfolded protein response, which adapts cells to the stress. If this adaptive response is insufficient, the unfolded protein response activates an apoptotic program to eliminate the affected cells. Recent observations suggest that endoplasmic reticulum stress in myelinating cells is important in the pathogenesis of various disorders of myelin, including Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher disease and Vanishing White Matter Disease, as well as in the most common myelin disorder, multiple sclerosis. A better understanding of endoplasmic reticulum stress in myelinating cells has laid the groundwork for the design of new therapeutic strategies for promoting myelinating cell survival in these disorders.
Collapse
Affiliation(s)
- Wensheng Lin
- Department of Cell Biology & Neuroscience, University of South Alabama, 307 University Blvd, MSB1201, Mobile, AL 36688. ()
| | - Brian Popko
- The Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, 5841 South Maryland Avenue MC2030, Chicago, IL 60637. ()
| |
Collapse
|
19
|
Lin W, Bailey SL, Ho H, Harding HP, Ron D, Miller SD, Popko B. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J Clin Invest 2007; 117:448-56. [PMID: 17273557 PMCID: PMC1783809 DOI: 10.1172/jci29571] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 11/14/2006] [Indexed: 12/21/2022] Open
Abstract
In response to ER stress, the pancreatic endoplasmic reticulum kinase (PERK) coordinates an adaptive program known as the integrated stress response (ISR) by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha). IFN-gamma, which activates the ER stress response in oligodendrocytes, is believed to play a critical role in the immune-mediated CNS disorder multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). Here we report that CNS delivery of IFN-gamma before EAE onset ameliorated the disease course and prevented demyelination, axonal damage, and oligodendrocyte loss. The beneficial effects of IFN-gamma were accompanied by PERK activation in oligodendrocytes and were abrogated in PERK-deficient animals. Our results indicate that IFN-gamma activation of PERK in mature oligodendrocytes attenuates EAE severity and suggest that therapeutic approaches to activate the ISR could prove beneficial in MS.
Collapse
MESH Headings
- Animals
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Demyelinating Diseases/prevention & control
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Endoplasmic Reticulum/physiology
- Humans
- Interferon-gamma/administration & dosage
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Oligodendroglia/immunology
- Oligodendroglia/pathology
- Oligodendroglia/physiology
- Recombinant Proteins
- Stress, Physiological/immunology
- Stress, Physiological/pathology
- Stress, Physiological/physiopathology
- eIF-2 Kinase/deficiency
- eIF-2 Kinase/genetics
- eIF-2 Kinase/physiology
Collapse
Affiliation(s)
- Wensheng Lin
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, Chicago, Illinois, USA.
Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Samantha L. Bailey
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, Chicago, Illinois, USA.
Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Hanson Ho
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, Chicago, Illinois, USA.
Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Heather P. Harding
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, Chicago, Illinois, USA.
Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - David Ron
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, Chicago, Illinois, USA.
Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Stephen D. Miller
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, Chicago, Illinois, USA.
Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Brian Popko
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, Chicago, Illinois, USA.
Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
20
|
Carpentier PA, Williams BR, Miller SD. Distinct roles of protein kinase R and toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia 2007; 55:239-52. [PMID: 17091495 DOI: 10.1002/glia.20450] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Impaired immune surveillance and constitutive immunosuppressive properties make the central nervous system (CNS) a particular challenge to immune defense, and require that CNS-resident cells be capable of rapidly recognizing and responding to infection. We have previously shown that astrocytes respond to treatment with a TLR3 ligand, poly I:C, with the upregulation of innate immune functions. In the current study, we examine the activation of innate immune functions of astrocytes by Theiler's murine encephalomyelitis virus (TMEV), a picornavirus, which establishes a persistent infection in the CNS of susceptible strains of mice and leads to the development of an autoimmune demyelinating disease that resembles human multiple sclerosis. Astrocytes infected with TMEV are activated to produce type I interferons, the cytokine IL-6, and chemokines CCL2 and CXCL10. We further examined the mechanisms that are responsible for the activation of astrocytes in response to direct viral infection and treatment with poly I:C. We found that the cytoplasmic dsRNA-activated kinase PKR is important for innate immune responses to TMEV infection, but has no role in their induction by poly I:C delivered extracellularly. In contrast, we found that TLR3 has only a minor role in responses to TMEV infection, but is important for responses to poly I:C. These results highlight the differences between responses induced by direct, nonlytic virus infection and extracellular poly I:C. The activation of astrocytes through these different pathways has implications for the initiation and progression of viral encephalitis and demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Pamela A Carpentier
- Department of Microbiology-Immunology, Interdepartmental Immunobiology Center, Northwestern University Institute for Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
21
|
Lucas M, Suarez R, Marcos A, Solano F, Venegas A, Garcia-Sanchez MI, Ortiz L, Izquierdo G. Arg113His mutation of vanishing white matter is not present in multiple sclerosis. Mult Scler 2007; 13:424-7. [PMID: 17439913 DOI: 10.1177/1352458506070248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vanishing white matter (VWM) is a childhood leukoencephalopathy with central hypomyelination, white matter rarefaction, and cystic degeneration. Adult onset, variable phenotype, and high frequency characterize Arg113His mutation caused by G338A polymorphism associated with VWM. A patient with trauma-associated onset, and clinical features compatible with multiple sclerosis (MS), was homozygous for G338A mutation of eukaryotic translation initiation factor (eIF2B5). The authors checked a cohort of 101 MS patients, including 19 with head/neck trauma-associated onset, and failed to find the mutation, described above, in MS chromosomes. Our report does not exclude the presence in MS chromosomes of other mutations in the eIF2B gene family. Multiple Sclerosis 2007; 13: 424-427. http://msj.sagepub.com
Collapse
Affiliation(s)
- M Lucas
- Molecular Biology Service, Virgen Macarena University Hospital, Seville, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lin W, Kemper A, Dupree JL, Harding HP, Ron D, Popko B. Interferon-gamma inhibits central nervous system remyelination through a process modulated by endoplasmic reticulum stress. ACTA ACUST UNITED AC 2006; 129:1306-18. [PMID: 16504972 DOI: 10.1093/brain/awl044] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interferon-gamma (IFN-gamma) is believed to play a deleterious role in the immune-mediated demyelinating disorder multiple sclerosis. Here we have exploited transgenic mice that ectopically express IFN-gamma in a temporally controlled manner in the CNS to specifically study its effects on remyelination in the cuprizone-induced demyelination model and in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. CNS delivery of IFN-gamma severely suppressed remyelination in both models and impaired the clinical recovery of the mice experiencing EAE. These observations correlated with a dramatic reduction of oligodendroglial repopulation in the demyelinated lesions. Moreover, we found that in cuprizone-treated mice the detrimental actions of IFN-gamma were associated with endoplasmic reticulum (ER) stress in remyelinating oligodendrocytes. Compared with a wild-type genetic background, the presence of IFN-gamma in mice heterozygous for a loss of function mutation in the pancreatic ER kinase (PERK), a kinase that responds specifically to ER stress, further reduced the percentage of remyelinated axons and oligodendrocyte numbers in cuprizone-induced demyelinated lesions. Thus, these data suggest that IFN-gamma is capable of inhibiting remyelination in demyelinated lesions and that ER stress modulates the response of remyelinating oligodendrocytes to this cytokine.
Collapse
Affiliation(s)
- Wensheng Lin
- Department of Neurology, Jack Miller Center for Peripheral Neuropathy, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
23
|
Fleming KK, Bovaird JA, Mosier MC, Emerson MR, LeVine SM, Marquis JG. Statistical analysis of data from studies on experimental autoimmune encephalomyelitis. J Neuroimmunol 2005; 170:71-84. [PMID: 16198426 DOI: 10.1016/j.jneuroim.2005.08.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/26/2005] [Indexed: 11/21/2022]
Abstract
Research in multiple sclerosis often employs animal models of the disease, especially experimental autoimmune encephalomyelitis (EAE) in rodents. The statistical analysis procedures chosen for these studies are often suboptimal, either because of violations of the assumptions of the procedure or because the analysis selected is inappropriate for the research question. In this paper, we discuss the types of research questions frequently asked in EAE studies and suggest appropriate and useful research designs and statistical methods that will optimize the information contained within the data. We also discuss other troublesome issues such as missing data, atypical disease profiles, and power analysis.
Collapse
Affiliation(s)
- Kandace K Fleming
- Research Design and Analysis Unit, Life Span Institute, 1052 Dole Building, University of Kansas, 1000 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lin W, Harding HP, Ron D, Popko B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. ACTA ACUST UNITED AC 2005; 169:603-12. [PMID: 15911877 PMCID: PMC2171696 DOI: 10.1083/jcb.200502086] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interferon-gamma (IFN-gamma) is believed to contribute to immune-mediated demyelinating disorders by targeting the myelin-producing oligodendrocyte, a cell known to be highly sensitive to the disruption of protein synthesis and to the perturbation of the secretory pathway. We found that apoptosis induced by IFN-gamma in cultured rat oligodendrocytes was associated with endoplasmic reticulum (ER) stress. ER stress also accompanied oligodendrocyte apoptosis and hypomyelination in transgenic mice that inappropriately expressed IFN-gamma in the central nervous system (CNS). Compared with a wild-type genetic background, the enforced expression of IFN-gamma in mice that were heterozygous for a loss of function mutation in pancreatic ER kinase (PERK) dramatically reduced animal survival, promoted CNS hypomyelination, and enhanced oligodendrocyte loss. PERK encodes an ER stress-inducible kinase that phosphorylates eukaryotic translation initiation factor 2alpha and specifically maintains client protein homeostasis in the stressed ER. Therefore, the hypersensitivity of PERK+/- mice to IFN-gamma implicates ER stress in demyelinating disorders that are induced by CNS inflammation.
Collapse
Affiliation(s)
- Wensheng Lin
- Jack Miller Center for Peripheral Neuropathy, Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
25
|
Chakrabarty A, Fleming KK, Marquis JG, LeVine SM. Quantifying immunohistochemical staining of phospho-eIF2alpha, heme oxygenase-2 and NADPH cytochrome P450 reductase in oligodendrocytes during experimental autoimmune encephalomyelitis. J Neurosci Methods 2005; 144:227-34. [PMID: 15910982 DOI: 10.1016/j.jneumeth.2004.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/08/2004] [Accepted: 11/10/2004] [Indexed: 11/23/2022]
Abstract
As a consequence of inflammation associated with multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), stress responses are induced in many cells within the CNS, however, those that occur within the primary pathological target, the oligodendrocyte, are not fully established. Recently, we found that phosphorylated eukaryotic initiation factor-2alpha (eIF2alpha), an inhibitor of protein translation associated with the stress response, is expressed in a greater number of oligodendrocytes in EAE animals compared to controls. However, since numerous oligodendrocytes in control animals also expressed phospho-eIF2alpha, a method was developed to detect expression levels within oligodendrocytes that did not rely on the number of oligodendrocytes that were stained. This method utilized a high dilution of the primary antibody so that the staining density was kept below a maximum plateau which could eliminate expression differences. Furthermore, the staining density within oligodendrocytes, as determined by image analysis, was corrected by the background density or that within neurons. In either case, the density of staining was greater in oligodendrocytes from EAE animals versus controls. The expression of heme oxygenase-2 and NADPH cytochrome P450 reductase also were examined, but unlike phospho-eIF2alpha, neither was increased in oligodendrocytes from EAE animals compared to controls. In summary, a protocol involving a high dilution of primary antibody and image analysis revealed that the expression of phospho-eIF2alpha within oligodendrocytes was increased in EAE animals compared to control animals.
Collapse
Affiliation(s)
- Anuradha Chakrabarty
- Department of Molecular and Integrative Physiology, Mail Stop 3043, Ralph L. Smith Mental Retardation Research Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|