1
|
Gareev K, Tagaeva R, Bobkov D, Yudintceva N, Goncharova D, Combs SE, Ten A, Samochernych K, Shevtsov M. Passing of Nanocarriers across the Histohematic Barriers: Current Approaches for Tumor Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1140. [PMID: 37049234 PMCID: PMC10096980 DOI: 10.3390/nano13071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Over the past several decades, nanocarriers have demonstrated diagnostic and therapeutic (i.e., theranostic) potencies in translational oncology, and some agents have been further translated into clinical trials. However, the practical application of nanoparticle-based medicine in living organisms is limited by physiological barriers (blood-tissue barriers), which significantly hampers the transport of nanoparticles from the blood into the tumor tissue. This review focuses on several approaches that facilitate the translocation of nanoparticles across blood-tissue barriers (BTBs) to efficiently accumulate in the tumor. To overcome the challenge of BTBs, several methods have been proposed, including the functionalization of particle surfaces with cell-penetrating peptides (e.g., TAT, SynB1, penetratin, R8, RGD, angiopep-2), which increases the passing of particles across tissue barriers. Another promising strategy could be based either on the application of various chemical agents (e.g., efflux pump inhibitors, disruptors of tight junctions, etc.) or physical methods (e.g., magnetic field, electroporation, photoacoustic cavitation, etc.), which have been shown to further increase the permeability of barriers.
Collapse
Affiliation(s)
- Kamil Gareev
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Ruslana Tagaeva
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Danila Bobkov
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Daria Goncharova
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Artem Ten
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Konstantin Samochernych
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| |
Collapse
|
2
|
Zhang X, Xu H, Bi X, Hou G, Liu A, Zhao Y, Wang G, Cao X. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways. Cell Death Dis 2021; 12:931. [PMID: 34642304 PMCID: PMC8511016 DOI: 10.1038/s41419-021-04221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Studies have shown that matrine has antitumor activity against many types of cancers. However, the direct target in cancer cells of its anticancer effect has not been identified. The purpose of this study was to find the molecular target of matrine to inhibit the proliferation of cancer cells and explore its mechanism of action. Herein we showed that matrine inhibited the proliferation of cancer in vitro and in vivo. Pull-down assay with matrine-amino coupling resins and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) identified Src as the target of matrine. Cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) provided solid evidences that matrine directly bound to Src. Bioinformatics prediction and pull-down experiment demonstrated that Src kinase domain was required for its interaction with matrine and Ala392 in the kinase domain participated in matrine-Src interaction. Intriguingly, matrine was proven to inhibit Src kinase activity in a non-ATP-competitive manner by blocking the autophosphorylation of Tyr419 in Src kinase domain. Matrine down-regulated the phosphorylation levels of MAPK/ERK, JAK2/STAT3, and PI3K/Akt signaling pathways via targeting Src. Collectively, matrine targeted Src, inhibited its kinase activity, and down-regulated its downstream MAPK/ERK, JAK2/STAT3, and PI3K/Akt phosphorylation signaling pathways to inhibit the proliferation of cancer cells.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hui Xu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyang Bi
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guoqing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Andong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youyun Zhao
- Department of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430073, China
| | - Guoping Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: Current and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183298. [PMID: 32353377 DOI: 10.1016/j.bbamem.2020.183298] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is the one of the most robust physical barriers in the body, comprised of tight junction (TJ) proteins in brain microvascular endothelial cells. The need for drugs to treat central nervous systems diseases is ever increasing, however the presence of the BBB significantly hampers the uptake of drugs into the brain. To overcome or circumvent the barrier, many kinds of techniques are being developed. Modulating the paracellular route by disruption of the TJ complex has been proposed as a potential drug delivery system to treat brain diseases, however, it has several limitations and is still in a developmental stage. However, recent significant advance in medical equipment /tools such as targeted ultra-sound technologies may resolve these limitations. In this review, we introduce recent advances in site- or molecular size-selective BBB disruption/modulation technologies and we include details on pharmacological inhibitory molecules against intercellular TJ proteins to modulate the BBB.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| |
Collapse
|
4
|
Fabian E, Reglodi D, Horvath G, Opper B, Toth G, Fazakas C, Vegh AG, Wilhelm I, Krizbai IA. Pituitary adenylate cyclase activating polypeptide acts against neovascularization in retinal pigment epithelial cells. Ann N Y Acad Sci 2019; 1455:160-172. [PMID: 31317557 DOI: 10.1111/nyas.14189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine whether pituitary adenylate cyclase activating polypeptide (PACAP) could influence the neovascularization processes in hyperosmotic and oxidative stress in retinal pigment epithelial cells. Hyperosmotic conditions and oxidative stress were induced by 200 mM sucrose and 250 µM hydrogen peroxide (H2 O2 ), respectively. Morphology and elasticity of adult retinal pigment epithelial (ARPE-19) cells were measured by atomic force microscopy, while the investigation of junctional molecules, such as occludin and ZO-1, was carried out using immunofluorescence. For cell viability measurement, the MTT test was used. The effect of PACAP on the key angiogenic factors, such as vascular endothelial growth factor, angiogenin, and endothelin-1, was measured by an angiogenesis array and flow cytometry. Hyperosmotic stress-induced reorganization of the cytoskeleton and impairment of the junctions decreased cell viability and upregulated several angiogenic factors. In oxidative stress, we found that opening of the junctions decreased viability and upregulated the expression of angiogenic factors. PACAP was shown to be protective in both conditions. Retinal pigment epithelium cells play an important role in several diseases, such as diabetic retinopathy and macular edema. Therefore, protecting retinal pigment epithelial (RPE) cells with PACAP could be a novel and potential treatment in these diseases.
Collapse
Affiliation(s)
- Eszter Fabian
- Department of Anatomy, University of Pécs, Medical School, MTA-PTE PACAP Research Group, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, University of Pécs, Medical School, MTA-PTE PACAP Research Group, Pécs, Hungary
| | - Gabriella Horvath
- Department of Anatomy, University of Pécs, Medical School, MTA-PTE PACAP Research Group, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, University of Pécs, Medical School, MTA-PTE PACAP Research Group, Pécs, Hungary
| | - Gabor Toth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Vegh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Istvan A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
5
|
Lu T, Wang Z, Prativa S, Xu Y, Wang T, Zhang Y, Yu L, Xu N, Tang J, You W, Chen G, Zhang JH. Macrophage stimulating protein preserves blood brain barrier integrity after intracerebral hemorrhage through recepteur d'origine nantais dependent GAB1/Src/β-catenin pathway activation in a mouse model. J Neurochem 2018; 148:114-126. [PMID: 30380151 DOI: 10.1111/jnc.14622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/26/2018] [Accepted: 10/19/2018] [Indexed: 02/04/2023]
Abstract
Blood brain barrier (BBB) disruption is an important contributor to brain edema and neurological deficits following intracerebral hemorrhage (ICH). Macrophage stimulating protein (MSP) is a hepatocyte growth factor-like protein that mediates its functions via activating receptor tyrosine kinase recepteur d'origine nantais (RON). Grb2-associated binder 1 (GAB1) is a docking protein that mediates downstream receptor signal transduction pathways. This study aimed to evaluate the role of MSP and RON activated signaling pathway in preserving BBB integrity after collagenase-induced ICH. ICH mice received recombinant human MSP (rhMSP) or rhMSP combined with siRNA knockdown of RON or GAB1. rhMSP was administered by intranasal route 1 h after ICH. Brain edema, neurobehavior, BBB tight junction protein expression, and BBB permeability were evaluated. The expression of endogenous MSP and p-RON was decreased after ICH. Exogenous rhMSP administration reduced brain edema, neurological deficits, BBB permeability, and increased the expression of tight junction proteins in ICH mice. rhMSP administration increased the expression of p-RON, p-GAB1, p-Src, nuclear β-catenin, and tight junction proteins after ICH. These effects were reversed with RON and GAB1 siRNA. We conclude that MSP activation of RON preserved BBB integrity via GAB-1/Src/β-catenin pathway, thereby reducing brain edema and neurological deficits after ICH in mice.
Collapse
Affiliation(s)
- Tai Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sherchan Prativa
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yang Xu
- Department of Neurology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital, Wuhu, China
| | - Tian Wang
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yiting Zhang
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Lingyan Yu
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Ningbo Xu
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jiping Tang
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - John H Zhang
- Department of Anesthesiology and Physiology, School of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
6
|
Taniuchi K, Furihata M, Naganuma S, Saibara T. ARHGEF4 predicts poor prognosis and promotes cell invasion by influencing ERK1/2 and GSK-3α/β signaling in pancreatic cancer. Int J Oncol 2018; 53:2224-2240. [PMID: 30226582 DOI: 10.3892/ijo.2018.4549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/05/2018] [Indexed: 11/06/2022] Open
Abstract
Rho guanine nucleotide exchange factor 4 (ARHGEF4) is a guanine nucleotide exchange factor that is specific for Rac1 and Cdc42. The aim of the present study was to investigate the role of ARHGEF4 in the motility and invasiveness of pancreatic cancer cells. Evaluation of an immunohistochemical staining of 102 resected pancreatic cancer samples demonstrated that high ARHGEF4 expression was correlated with an independent predictor of worse overall survival in univariate and multivariate analyses. Immunofluorescence analyses and Matrigel invasion assays demonstrated that suppression of ARHGEF4 inhibited the formation of membrane protrusions, and in turn inhibited cell motility and invasion. A phosphoprotein array analysis demonstrated that knockdown of ARHGEF4 decreased phosphorylated extracellular signal-regulated kinase (ERK)1/2 and glycogen synthase kinase-3 (GSK-3)α/β in pancreatic cancer cells, and ERK1/2 and GSK-3α/β were associated with ARHGEF4-related motility and invasiveness through an increase in cell protrusions. These results suggested that ARHGEF4 stimulates ERK1/2 and GSK-3α/β, and provided evidence that ARHGEF4 promotes cell motility and invasiveness. Inhibition of ARHGEF4 may be a novel approach to a targeted molecular therapy, as any such therapy would limit the motility and invasiveness of pancreatic cancer cells.
Collapse
Affiliation(s)
- Keisuke Taniuchi
- Departments of Endoscopic Diagnostics and Therapeutics, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Mutsuo Furihata
- Departments of Pathology, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Seiji Naganuma
- Departments of Pathology, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Departments of Endoscopic Diagnostics and Therapeutics, Kochi University, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
7
|
Giuliani A, Balducci AG, Zironi E, Colombo G, Bortolotti F, Lorenzini L, Galligioni V, Pagliuca G, Scagliarini A, Calzà L, Sonvico F. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Deliv 2018; 25:376-387. [PMID: 29382237 PMCID: PMC6058489 DOI: 10.1080/10717544.2018.1428242] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nasal administration has been proposed as a potential approach for the delivery of drugs to the central nervous system. Ribavirin (RBV), an antiviral drug potentially useful to treat viral infections both in humans and animals, has been previously demonstrated to attain several brain compartments after nasal administration. Here, a powder formulation in the form of agglomerates comprising micronized RBV and spray-dried microparticles containing excipients with potential absorption enhancing properties, i.e. mannitol, chitosan, and α-cyclodextrin, was developed for nasal insufflation. The agglomerates were characterized for particle size, agglomeration yield, and ex vivo RBV permeation across rabbit nasal mucosa as well as delivery from an animal dry powder insufflator device. Interestingly, permeation enhancers such as chitosan and mannitol showed a lower amount of RBV permeating across the excised nasal tissue, whereas α-cyclodextrin proved to outperform the other formulations and to match the highly soluble micronized RBV powder taken as a reference. In vivo nasal administration to rats of the agglomerates containing α-cyclodextrin showed an overall higher accumulation of RBV in all the brain compartments analyzed as compared with the micronized RBV administered as such without excipient microparticles. Hence, powder agglomerates are a valuable approach to obtain a nasal formulation potentially attaining nose-to-brain delivery of drugs with minimal processing of the APIs and improvement of the technological and biopharmaceutical properties of micronized API and excipients, as they combine optimal flow properties for handling and dosing, suitable particle size for nasal deposition, high surface area for drug dissolution, and penetration enhancing properties from excipients such as cyclodextrins.
Collapse
Affiliation(s)
- Alessandro Giuliani
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Anna Giulia Balducci
- b Department of Food and Drug , University of Parma , Parma , Italy.,c Interdepartmental Center for Health Products - Biopharmanet TEC, University of Parma , Parma , Italy
| | - Elisa Zironi
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Gaia Colombo
- d Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | - Fabrizio Bortolotti
- d Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | | | - Viola Galligioni
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Giampiero Pagliuca
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Alessandra Scagliarini
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Laura Calzà
- e IRET Foundation , Ozzano , (BO) , Italy.,f Department of Pharmacy and Biotechnology , Ozzano , Italy
| | - Fabio Sonvico
- b Department of Food and Drug , University of Parma , Parma , Italy.,c Interdepartmental Center for Health Products - Biopharmanet TEC, University of Parma , Parma , Italy
| |
Collapse
|
8
|
Ke L, Xiang Y, Guo X, Lu J, Xia W, Yu Y, Peng Y, Wang L, Wang G, Ye Y, Yang J, Liang H, Kang T, Lv X. c-Src activation promotes nasopharyngeal carcinoma metastasis by inducing the epithelial-mesenchymal transition via PI3K/Akt signaling pathway: a new and promising target for NPC. Oncotarget 2017; 7:28340-55. [PMID: 27078847 PMCID: PMC5053730 DOI: 10.18632/oncotarget.8634] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 03/18/2016] [Indexed: 01/21/2023] Open
Abstract
Aberrant activation of cellular Src (c-Src), a non-receptor tyrosine kinase, could promote cancer progression through activating its downstream signaling pathways. However, the roles of c-Src and phosphorylated-Src (p-Src) in nasopharyngeal carcinoma (NPC) progression are rarely investigated. Herein, we have identified high c-Src concentrations in the serum of NPC patients with distant metastasis using high-throughput protein microarrays. Levels of c-Src in serum and p-Src in human primary NPC samples were unfavorable independent prognostic factors for cancer-specific survival, disease-free survival, and distant metastasis-free survival. Depletion or inactivation of c-Src in NPC cells using sgRNA with CRISPR/Cas9 system or PP2 decreased cell viability, colony formation, migration and invasion in vitro and metastasis in vivo. In contrast, these malignancies could be up-regulated by overexpressed c-Src in a NPC cell line with low-metastasis potential. Furthermore, p-Src was involved in promoting NPC cell metastasis by inducing the epithelial-mesenchymal transition (EMT) process via activating the PI3K/Akt pathway and cytoskeleton remodeling. The p-Src-induced EMT process could be retarded by PP2, which mediated by down-regulating the PI3K/Akt pathway. In conclusion, elevated levels of c-Src in serum and p-Src in primary NPC tissue correlated with poor outcomes of NPC patients. And aberrant activation of c-Src facilitated NPC cells with malignant potential, especially metastasis ability, which mediated by the PI3K/Akt pathway activation and sequentially induced the EMT process. These findings unveiled a promising approach for targeted therapy of advanced NPC.
Collapse
Affiliation(s)
- Liangru Ke
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanqun Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jinping Lu
- Medical Research Center and Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai People's Hospital, Zhuhai, China
| | - Weixiong Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yahui Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yongjian Peng
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Gang Wang
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanfang Ye
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tiebang Kang
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
9
|
Wilhelm I, Nyúl-Tóth Á, Kozma M, Farkas AE, Krizbai IA. Role of pattern recognition receptors of the neurovascular unit in inflamm-aging. Am J Physiol Heart Circ Physiol 2017; 313:H1000-H1012. [PMID: 28801521 DOI: 10.1152/ajpheart.00106.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/18/2023]
Abstract
Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and .,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and
| | - Mihály Kozma
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and
| | - Attila E Farkas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary; and.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
10
|
Tanouchi A, Taniuchi K, Furihata M, Naganuma S, Dabanaka K, Kimura M, Watanabe R, Kohsaki T, Shimizu T, Saito M, Hanazaki K, Saibara T. CCDC88A, a prognostic factor for human pancreatic cancers, promotes the motility and invasiveness of pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:190. [PMID: 27919290 PMCID: PMC5139074 DOI: 10.1186/s13046-016-0466-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Coiled-Coil Domain Containing 88A (CCDC88A) was identified as a substrate of the serine/threonine kinase Akt that is capable of binding to the actin cytoskeleton. The aim of this study was to investigate the potential role of CCDC88A in the migration and invasiveness of pancreatic ductal adenocarcinoma (PDAC) cells. METHODS Immunohistochemistry was performed to determine whether high CCDC88A expression in human PDAC tissues is correlated with poor prognosis. Immunoprecipitation, immunoblotting and immunocytochemistry were performed to determine the intracellular distribution of CCDC88A, and its association with the serine/threonine kinase Akt and actin-filaments in PDAC cells. Phosphoprotein array analysis was performed to determine CCDC88A-associated intracellular signaling pathways. Finally, immunofluorescence analyses and Matrigel invasion assays were performed to examine the effects of CCDC88A on the formation of cell protrusions and PDAC cell invasion. RESULTS Expression of CCDC88A in PDAC tissue was significantly correlated with overall survival. CCDC88A was co-localized with peripheral actin structures in cell protrusions of migrating PDAC cells. Knockdown of CCDC88A inhibited the migration and invasiveness of PDAC cells through a decrease in cell protrusions. Although CCDC88A has been previously reported to be a binding partner and substrate of Akt, the level of active Akt was not associated with the translocation of CCDC88A towards cell protrusions. CCDC88A-dependent promotion of cell migration and invasiveness was not modulated by Akt signaling. Knockdown of CCDC88A decreased phosphorylated Src and ERK1/2 and increased phosphorylated AMPK1 in PDAC cells. Knockdown of AMPK1 inhibited the migration and invasiveness of PDAC cells. The combined data suggest that CCDC88A may be a useful marker for predicting the outcome of patients with PDAC and that CCDC88A can promote PDAC cell migration and invasion through a signaling pathway that involves phosphorylation of Src and ERK1/2 and/or dephosphorylation of AMPK1. CONCLUSIONS CCDC88A was accumulated in cell protrusions, contributed to the formation of membrane protrusions, and increased the migration and invasiveness of PDAC cells.
Collapse
Affiliation(s)
- Aki Tanouchi
- Department of Gastroenterology and Hepatology; Kochi Medical School, Kochi University, Kochi, Japan.
| | - Keisuke Taniuchi
- Department of Gastroenterology and Hepatology; Kochi Medical School, Kochi University, Kochi, Japan.,Departments of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Mutsuo Furihata
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ken Dabanaka
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masashi Kimura
- Department of Surgery, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Ryohei Watanabe
- Department of Surgery, Matsuyama Shimin Hospital, Matsuyama, Japan
| | - Takuhiro Kohsaki
- Department of Gastroenterology and Hepatology; Kochi Medical School, Kochi University, Kochi, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kazuhiro Hanazaki
- Department of Surgery, Kochi Medical School, Kochi University, Kochi, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology; Kochi Medical School, Kochi University, Kochi, Japan.,Departments of Endoscopic Diagnostics and Therapeutics, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
11
|
Lee CG, Lee J, Lee DG, Kim JW, Alnaeeli M, Park YI, Park JK. Immunostimulating activity of polyhydric alcohol isolated from Taxus cuspidata. Int J Biol Macromol 2016; 85:505-13. [PMID: 26791584 DOI: 10.1016/j.ijbiomac.2016.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 12/11/2022]
Abstract
A polyhydric alcohol (PAL) was isolated from Taxus cuspidata and its immunostimulatory activities were assessed. The primary monosaccharide composition of the PAL was determined to be glucose, where HPAEC analysis showed no significant amount of any other sugars. However, glycerol and xylitol were identified as the main sugar alcohols. Fourier-transform infrared (FT-IR) analysis indicated that the purified PAL is a complex glycitol, which structurally contains significant amount of hydroxyl groups. MALDI-TOF mass spectroscopy also demonstrated that PAL is a complex glycitol built in hexose polymerization. Enzyme linked immunosorbent assay showed that the PAL stimulates the release of the proinflammatory cytokines TNF-α and IL-6 in a dose-dependent manner. Furthermore, treatment of RAW 264.7 cells with PAL for 24h remarkably increased the phosphorylation levels of ERK, p38 and JNK in a dose-dependent manner, whereas the total protein levels of ERK (t-ERK), p38 (t-p38) and JNK (t-JNK) remained unchanged. These results clearly demonstrate that PAL stimulates the immune response in RAW 264.7 cells through the activation of MAPKs (ERK, p38 and JNK) signaling pathway. To the best of our knowledge, this is the first study to demonstrate the primary structure and immune-stimulating activities of PAL from the fruit of T. cuspidata.
Collapse
Affiliation(s)
- Choon Guen Lee
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, South Korea
| | - Jisun Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon 420-743, South Korea
| | - Da Gyung Lee
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, South Korea
| | - Joo Won Kim
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, South Korea
| | - Mawadda Alnaeeli
- Division of Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon 420-743, South Korea
| | - Jae Kweon Park
- Department of Life Sciences, Gachon University, Seongnamdaero 1342, Seongnam-si, Gyeonggi-do 461-701, South Korea.
| |
Collapse
|
12
|
Yusubalieva GM, Levinskiy AB, Zorkina YA, Baklaushev VP, Goryaynov SA, Pavlova GV, Mel'nikov PA, Gorlachev GE, Golanov AV, Potapov AA, Chekhonin VP. [Blood-brain barrier permeability in healthy rats and rats with experimental C6 glioma after fractionated radiotherapy of the brain]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2015; 79:15-26. [PMID: 26529530 DOI: 10.17116/neiro201579315-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the effect of fractionated radiotherapy on permeability of the blood-brain barrier in healthy rats and rats with C6 glioma in vivo. MATERIAL AND METHODS An increase in BBB permeability in C6 glioma was assessed by dynamic MRI monitoring (glioma size before and after radiation therapy in combination with immunotherapy, n=30) and confocal microscopy (fluorescence imaging of tumor invasion boundaries in a dose-dependent experiment for the amount of injected antibodies). In healthy rats, BBB permeability to macromolecular substances (MMS) was assessed by ELISA (n=23, 192 plasma samples) and confocal microscopy (n=7). RESULTS It was shown that BBB permeability to biological macromolecules in blood-brain and brain-blood directions was increased after fractionated radiotherapy. CONCLUSION Drug delivery to the brain can be improved using therapeutic doses of radiation treatment that affects the BBB and minimizes the risk of serious side effects that are often associated with the drug dose.
Collapse
Affiliation(s)
- G M Yusubalieva
- V.P. Serbsky State Research Center for Social and Forensic Psychiatry, Department of Fundamental and Applied Neurobiology; N.I. Pirogov Russian State Medical University, Department of Medical Nano-biotechnology
| | - A B Levinskiy
- N.I. Pirogov Russian State Medical University, Department of Medical Nano-biotechnology
| | - Ya A Zorkina
- V.P. Serbsky State Research Center for Social and Forensic Psychiatry, Department of Fundamental and Applied Neurobiology
| | - V P Baklaushev
- N.I. Pirogov Russian State Medical University, Department of Medical Nano-biotechnology
| | - S A Goryaynov
- Burdenko Neurosurgical Institute, Russian Academy of Medical Sciences
| | - G V Pavlova
- Institute of Gene Biology, Russian Academy of Sciences
| | - P A Mel'nikov
- N.I. Pirogov Russian State Medical University, Department of Medical Nano-biotechnology
| | - G E Gorlachev
- V.P. Serbsky State Research Center for Social and Forensic Psychiatry, Department of Fundamental and Applied Neurobiology; N.I. Pirogov Russian State Medical University, Department of Medical Nano-biotechnology; Burdenko Neurosurgical Institute, Russian Academy of Medical Sciences; Institute of Gene Biology, Russian Academy of Sciences
| | - A V Golanov
- V.P. Serbsky State Research Center for Social and Forensic Psychiatry, Department of Fundamental and Applied Neurobiology; N.I. Pirogov Russian State Medical University, Department of Medical Nano-biotechnology; Burdenko Neurosurgical Institute, Russian Academy of Medical Sciences; Institute of Gene Biology, Russian Academy of Sciences
| | - A A Potapov
- Burdenko Neurosurgical Institute, Russian Academy of Medical Sciences
| | - V P Chekhonin
- V.P. Serbsky State Research Center for Social and Forensic Psychiatry, Department of Fundamental and Applied Neurobiology; N.I. Pirogov Russian State Medical University, Department of Medical Nano-biotechnology
| |
Collapse
|
13
|
Hülper P, Veszelka S, Walter FR, Wolburg H, Fallier-Becker P, Piontek J, Blasig IE, Lakomek M, Kugler W, Deli MA. Acute effects of short-chain alkylglycerols on blood-brain barrier properties of cultured brain endothelial cells. Br J Pharmacol 2014; 169:1561-73. [PMID: 23617601 DOI: 10.1111/bph.12218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/07/2013] [Accepted: 04/05/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The blood-brain barrier (BBB) restricts drug penetration to the brain preventing effective treatment of patients suffering from brain tumours. Intra-arterial injection of short-chain alkylglycerols (AGs) opens the BBB and increases delivery of molecules to rodent brain parenchyma in vivo. The mechanism underlying AG-mediated modification of BBB permeability is still unknown. Here, we have tested the effects of AGs on barrier properties of cultured brain microvascular endothelial cells. EXPERIMENTAL APPROACH The effects of two AGs, 1-O-pentylglycerol and 2-O-hexyldiglycerol were examined using an in vitro BBB model consisting of primary cultures of rat brain endothelial cells, co-cultured with rat cerebral glial cells. Integrity of the paracellular, tight junction-based, permeation route was analysed by functional assays, immunostaining for junctional proteins, freeze-fracture electron microscopy, and analysis of claudin-claudin trans-interactions. KEY RESULTS AG treatment (5 min) reversibly reduced transendothelial electrical resistance and increased BBB permeability for fluorescein accompanied by changes in cell morphology and immunostaining for claudin-5 and β-catenin. These short-term changes were not accompanied by alterations of inter-endothelial tight junction strand complexity or the trans-interaction of claudin-5. CONCLUSION AND IMPLICATIONS AG-mediated increase in brain endothelial paracellular permeability was short, reversible and did not affect tight junction strand complexity. Redistribution of junctional proteins and alterations in the cell shape indicate the involvement of the cytoskeleton in the action of AGs. These data confirm the results from in vivo studies in rodents characterizing AGs as adjuvants that transiently open the BBB.
Collapse
Affiliation(s)
- P Hülper
- Department of Pediatrics I, University Medical Center Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cerebral ischemia, a pathological condition in which brain tissue experiences a shortage of cerebral blood flow, is associated with cerebrovascular disease, brain trauma, epilepsy, and cardiac arrest. A reduction in blood flow leaves the brain tissue unsupplied with oxygen and glucose, thus leading to cell death in the ischemic core as well as subsequent peripheral injury in the penumbra. Neurons in the penumbra, where reperfusion occurs, are functionally inactive but still viable. Many biochemical changes, which may lead to neuronal cell death, thereby induce dysfunction of the central nervous system. However, the mechanisms responsible for ischemic stroke-induced cell damage remain to be determined. Protein phosphorylation has been implicated in the regulation of diverse cellular responses in the brain. Initially, tyrosine phosphorylation was considered to be involved in the regulation of cell growth and development. In addition, a variety of synaptic and cellular functions mediated by tyrosine phosphorylation in the brain were found to be associated with relatively high levels of protein tyrosine kinase activity. However, the involvement of this protein tyrosine kinase activity in ischemic cell death is still not fully understood. This review summarizes recent advances dealing with the possible implications of protein tyrosine phosphorylation in the ischemic brain.
Collapse
Affiliation(s)
- Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, Japan
| |
Collapse
|
15
|
Role of the blood-brain barrier in the formation of brain metastases. Int J Mol Sci 2013; 14:1383-411. [PMID: 23344048 PMCID: PMC3565326 DOI: 10.3390/ijms14011383] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/11/2023] Open
Abstract
The majority of brain metastases originate from lung cancer, breast cancer and malignant melanoma. In order to reach the brain, parenchyma metastatic cells have to transmigrate through the endothelial cell layer of brain capillaries, which forms the morphological basis of the blood-brain barrier (BBB). The BBB has a dual role in brain metastasis formation: it forms a tight barrier protecting the central nervous system from entering cancer cells, but it is also actively involved in protecting metastatic cells during extravasation and proliferation in the brain. The mechanisms of interaction of cancer cells and cerebral endothelial cells are largely uncharacterized. Here, we provide a comprehensive review on our current knowledge about the role of junctional and adhesion molecules, soluble factors, proteolytic enzymes and signaling pathways mediating the attachment of tumor cells to brain endothelial cells and the transendothelial migration of metastatic cells. Since brain metastases represent a great therapeutic challenge, it is indispensable to understand the mechanisms of the interaction of tumor cells with the BBB in order to find targets of prevention of brain metastasis formation.
Collapse
|
16
|
Kang EJ, Major S, Jorks D, Reiffurth C, Offenhauser N, Friedman A, Dreier JP. Blood-brain barrier opening to large molecules does not imply blood-brain barrier opening to small ions. Neurobiol Dis 2013; 52:204-18. [PMID: 23291193 DOI: 10.1016/j.nbd.2012.12.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/10/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022] Open
Abstract
Neuroimaging of exogenous tracer extravasation has become the technique of choice in preclinical and clinical studies of blood-brain barrier permeability. Such tracers have a larger molecular weight than small ions, neurotransmitters and many drugs. Therefore, it is assumed that tracer extravasation indicates both permeability to these and the cancelation of the electrical polarization across the barrier. Electrophysiological anomalies following intracarotideal administration of dehydrocholate, a bile salt causing extravasation of the albumin-binding tracer Evans blue, seemingly supported this. By contrast, electron microscopic studies suggested a different hierarchical pattern of blood-brain barrier dysfunction, a milder degree of impairment being characterized by increased function of the transcellular pathway and a severe degree by opening of the tight junctions. This would imply that the extravasation of macromolecules can occur before disruption of the electrical barrier. However, functional evidence for this has been lacking. Here, we further investigated the electrophysiological anomalies following intracarotideal application of dehydrocholate in rats and found that it caused focal cerebral ischemia by middle cerebral artery thrombosis, the electrophysiological recordings being characteristic of long-lasting spreading depolarization. These observations indicated that intracarotideal dehydrocholate is not a suitable model to study the isolated dysfunction of the blood-brain barrier. Second, we studied the topical application of dehydrocholate to the brain and the application of mannitol into the carotid artery. In both models, we found significant extravasation of Evans blue but no changes in either extracellular potassium or the CO(2)-dependent intracortical direct current deflection. The latter is assumed to depend on the proton gradient across the barrier in rats which we confirmed in additional experiments in vivo and in vitro. The stability of the extracellular potassium concentration and the CO(2)-dependent direct current deflection are two functional tests which indicate the integrity of the electrical barrier. Hence, our results provide functional evidence that the blood-brain barrier opening to large molecules does not necessarily imply the opening to small ions consistent with the hierarchy of damage in the previous electron microscopic studies.
Collapse
Affiliation(s)
- E J Kang
- Department of Experimental Neurology, Charité Universitätsmedizin, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Luissint AC, Federici C, Guillonneau F, Chrétien F, Camoin L, Glacial F, Ganeshamoorthy K, Couraud PO. Guanine nucleotide-binding protein Gαi2: a new partner of claudin-5 that regulates tight junction integrity in human brain endothelial cells. J Cereb Blood Flow Metab 2012; 32:860-73. [PMID: 22333621 PMCID: PMC3345908 DOI: 10.1038/jcbfm.2011.202] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The blood-brain barrier (BBB) selectively controls the exchanges between the blood and the brain: it is formed by tight junctions (TJs) between adjacent microvascular endothelial cells. The transmembrane protein claudin-5 is known as a key TJ protein at the BBB, although, the molecular mechanisms by which it regulates TJ tightness are poorly understood. To identify putative claudin-5 partners that contribute to TJ integrity, claudin-5-enriched membrane microdomains were prepared by cell fractionation, using the human brain endothelial cell line hCMEC/D3 and claudin-5 immunoprecipitates were submitted to tandem mass spectrometry. Because a high concentration of mannitol is known to transiently destabilize TJs, this analysis was performed in basal conditions, after mannitol treatment, and after recovery of TJ integrity. We here demonstrate that the G-protein subunit αi2 (Gαi2) interacts with claudin-5 and that association is correlated with TJ integrity in hCMEC/D3 cells; also, a selective expression of Gαi2 is observed in human brain vasculature in situ. Moreover, small interfering RNA-mediated depletion of Gαi2 or claudin-5 in hCMEC/D3 cells similarly increases their paracellular permeability and delays TJ recovery after mannitol treatment. Altogether, our results identify Gαi2 as a novel claudin-5 partner required for TJ integrity in brain endothelial cells.
Collapse
|
18
|
Warfel JM, D’Agnillo F. Anthrax lethal toxin-mediated disruption of endothelial VE-cadherin is attenuated by inhibition of the Rho-associated kinase pathway. Toxins (Basel) 2011; 3:1278-93. [PMID: 22069696 PMCID: PMC3210462 DOI: 10.3390/toxins3101278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/01/2011] [Accepted: 10/09/2011] [Indexed: 01/01/2023] Open
Abstract
Systemic anthrax disease is characterized by vascular leakage pathologies. We previously reported that anthrax lethal toxin (LT) induces human endothelial barrier dysfunction in a cell death-independent manner with actin stress fiber formation and disruption of adherens junctions (AJs). In the present study, we further characterize the molecular changes in the AJ complex and investigate whether AJ structure and barrier function can be preserved by modulating key cytoskeletal signaling pathways. Here, we show that LT reduces total VE-cadherin protein and gene expression but the expression of the key linker protein beta-catenin remained unchanged. The changes in VE-cadherin expression correlated temporally with the appearance of actin stress fibers and a two-fold increase in phosphorylation of the stress fiber-associated protein myosin light chain (p-MLC) and cleavage of Rho-associated kinase-1 (ROCK-1). Co-treatment with ROCK inhibitors (H-1152 and Y27632), but not an inhibitor of MLC kinase (ML-7), blocked LT-induced p-MLC enhancement and stress fiber formation. This was accompanied by the restoration of VE-cadherin expression and membrane localization, and attenuation of the LT-induced increase in monolayer permeability to albumin. Together, these findings suggest the ROCK pathway may be a relevant target for countering LT-mediated endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Jason M. Warfel
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, MD 20892, USA;
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Felice D’Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, MD 20892, USA;
| |
Collapse
|
19
|
Végh AG, Fazakas C, Nagy K, Wilhelm I, Krizbai IA, Nagyoszi P, Szegletes Z, Váró G. Spatial and temporal dependence of the cerebral endothelial cells elasticity. J Mol Recognit 2011; 24:422-8. [PMID: 21504019 DOI: 10.1002/jmr.1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The reliable determination of the mechanical properties of a living cell is one of the most important challenges of the atomic force microscopic measurements. In the present study the spatial and temporal dependency of the force measurements on cerebral endothelial cells was investigated. Besides imaging the cells, two different sequences of force measurements were applied: Acquisition of force curves in short time at several points across the cell surface investigating spatial dependence of the elasticity. Acquisition of force curves for long time at a previously determined place, over the cell nucleus, which provides the temporal stability/variation of the measured forces/values. Three different stages of endothelial cell cultures of the hCMEC/D3 cells were used: sub-confluent living, confluent living, and confluent fixed cells. The Young's modulus was calculated from the force curves using the Hertz model and the results were plotted against time or location correspondingly. The rational of using the three stage of culture was to clarify whether the observed effect belongs to the individual cell, to the ensemble of cells or just to some, not living cell component. In case of sub-confluent cells the results revealed a softer nuclear region compared to the periphery, while an attenuated oscillation like fluctuation in time, with a period of about 10-30 min, was observed. Confluent living cells showed similar tendencies to the sub-confluent cells, but the changes were larger and the temporal oscillations had longer period. The spatial dependency of the elasticity on confluent cells was confirmed by force-volume measurement too. In case of fixed cells neither spatial nor temporal differences were observed between the nuclear and peripheral region, however the Young's modulus and the error of the measurement was larger, compared to the sub-confluent living cells.
Collapse
Affiliation(s)
- Attila G Végh
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang JQ, Hou L, Yi N, Zhang RF, Zou XY. Molecular analysis and its expression of a pou homeobox protein gene during development and in response to salinity stress from brine shrimp, Artemia sinica. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:36-43. [PMID: 21911072 DOI: 10.1016/j.cbpa.2011.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
Brine shrimps of the genus Artemia are aquatic species of economic importance because of their important significance to aquaculture and are used as a model species in physiology and developmental biology. Research on Artemia POU homeobox gene function will enhance our understanding of the physiological and developmental processes of POU homeobox gene in animals. Herein, a full-length cDNA encoding an Artemia POU homeobox protein gene 1 (APH-1) from Artemia sinica (designated as As-APH-1) was cloned and characterized by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE) method. The As-APH-1 gene encoded a protein of 388 amino acid polypeptide with a calculated molecular mass of 42.85kDa and an isoelectric point of 6.90 and the protein belongs to the POU III family. Multiple sequence alignments revealed that A. sinica As-APH-1 protein sequence shared a conserved POU homeobox domain with other species. The early and persistent expression of As-APH-1 in the naupliar stages by semi-quantitative RT-PCR and whole-mount embryonic immunohistochemistry suggest that As-APH-1 functions very early in the salt gland and may be required continuously in this organ. Later in development, expression of As-APH-1 begins to dramatically decrease and disappear in salt gland of the sub-adult Artemia. In addition, we also discovered that As-APH-1 increased obviously as the salinity increased, indicating that As-APH-1 might be used as a good indicator of salinity stress. In summary, we are the first to identify the As-APH-1 gene and to determine its gene expression patterns in early embryogenesis stages and in different salinity stress in brine shrimp, A. sinica. The result of expression of As-APH-1 affected by salinity changes will provide us further understanding of the underlying mechanisms of osmoregulation in Artemia early embryonic development.
Collapse
Affiliation(s)
- Jia-Qing Wang
- College of Science and Technology, Shenyang Agricultural University, Fushun, PR China
| | | | | | | | | |
Collapse
|
21
|
Li X, Hou L, Ma J, Liu Y, Zheng L, Zou X. Cloning and characterization of β-catenin gene in early embryonic developmental stage of Artemia sinica. Mol Biol Rep 2011; 39:701-7. [PMID: 21584700 DOI: 10.1007/s11033-011-0788-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 04/29/2011] [Indexed: 01/09/2023]
Abstract
β-Catenin plays a crucial role in embryonic development and responds to the activation of several signal transduction pathways. In this paper, in order to understand the functions of β-catenin gene in early embryonic development of Artemia sinica, the complete cDNA sequence was cloned for the first time using RACE technology, then the sequence was analyzed by some bioinformatic methods. The expression of the β-catenin gene was investigated at various stages during the embryonic development using quantitative real-time PCR and immunohistochemistry assay. Through the investigation, the result of real-time PCR illustrated that β-catenin gene might relate to the response of A. sinica's immune system and osmotic pressure system in early embryonic developmental stage. Meanwhile, Immunohistochemistry assay demonstrated that during embryonic development, β-catenin was mainly expressed in the cephalothorax. Besides, we discovered that β-catenin might not be a maternal gene in A. sinica, and this new phenomenon may explain a constitutive and regional expression during the early embryonic development of A. sinica.
Collapse
Affiliation(s)
- Xiang Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, China
| | | | | | | | | | | |
Collapse
|
22
|
Majid S, Saini S, Dar AA, Hirata H, Shahryari V, Tanaka Y, Yamamura S, Ueno K, Zaman MS, Singh K, Chang I, Deng G, Dahiya R. MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res 2011; 71:2611-21. [PMID: 21330408 DOI: 10.1158/0008-5472.can-10-3666] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Src family of protein kinases (SFK) plays key roles in regulating fundamental cellular processes, including cell growth, differentiation, cell shape, migration, and survival, and specialized cell signals in various malignancies. The pleiotropic functions of SFKs in cancer make them promising targets for intervention. Here, we sought to investigate the role of microRNA-205 (miR-205) in inhibition of Src-mediated oncogenic pathways in renal cancer. We report that expression of miR-205 was significantly suppressed in renal cancer cell lines and tumors when compared with normal tissues and a nonmalignant cell line and is correlated inversely with the expression of SFKs. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR (untranslated region) sequences complementary to either Src, Lyn, or Yes, which was abolished by mutations in these 3'-UTR regions. Overexpression of miR-205 in A498 cells reduced Src, Lyn, and Yes expression, both at mRNA and protein levels. Proliferation of renal cancer cells was suppressed by miR-205, mediated by the phospho-Src-regulated ERK1/2 pathway. Cell motility factor FAK (focal adhesion kinase) and STAT3 activation were also inhibited by miR-205. Transient and stable overexpression of miR-205 in A498 cells resulted in induction of G₀/G₁ cell-cycle arrest and apoptosis, as indicated by decreased levels of cyclin D1 and c-Myc, suppressed cell proliferation, colony formation, migration, and invasion in renal cancer cells. miR-205 also inhibited tumor cell growth in vivo. This is the first study showing that miR-205 inhibits proto-oncogenic SFKs, indicating a therapeutic potential of miR-205 in the treatment of renal cancer.
Collapse
Affiliation(s)
- Shahana Majid
- Department of Urology, VA Medical Center and University of California San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The constituents of the blood-brain barrier, including its efflux transporter system, can efficiently limit brain penetration of potential CNS therapeutics. Effective extrusion from the brain by transporters is a frequent reason for the pharmaceutical industry to exclude novel compounds from further development for CNS therapeutics. Moreover, high transporter expression levels that are present in individual patients or may be generally associated with the pathophysiology seem to be a major cause of therapeutic failure in a variety of CNS diseases including brain tumors, epilepsy, brain HIV infection, and psychiatric disorders. Increasing knowledge of the structure and function of the blood-brain barrier creates a basis for the development of strategies which aim to enhance brain uptake of beneficial pharmaceutical compounds. The different strategies discussed in this review aim to modulate blood-brain barrier function or to bypass constituents of the blood-brain barrier.
Collapse
|
24
|
Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:892-910. [DOI: 10.1016/j.bbamem.2008.09.016] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 02/06/2023]
|
25
|
Chang YM, Bai L, Liu S, Yang JC, Kung HJ, Evans CP. Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene 2008; 27:6365-75. [PMID: 18679417 DOI: 10.1038/onc.2008.250] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is the most frequently diagnosed cancer in American men. We have previously demonstrated that Src mediates androgen-independent proliferation in prostate cancer. We sought to investigate the Src-mediated oncogenic pathways and tumor biology using AZD0530, a novel Src family kinase/Abl dual-kinase inhibitor that is entering phase II clinical trials. We show that while both Src and Abl are expressed in all prostate cancer cell lines, Src but not Abl is activated in the prostate. Furthermore, Src activation is inhibited by AZD0530 in a rapid and dose-dependent manner. We show that Src mediates cell proliferation in DU145 and PC3 cells at the G1 phase of cell cycle. Src inhibition resulted in decreased binding of beta-catenin to the promoters of G1 phase cell cycle regulators cyclin D1 and c-Myc. C-Myc may also be regulated at the protein level by extracellular signal-regulated kinase 1/2 and GSK3beta. Cell motility factors focal adhesion kinase, p130CAS and paxillin activation in DU145 and PC3 cells were also inhibited. Administration of AZD0530 in mice reduced orthotopic DU145 xenograft growth by 45%. We have further delineated the Src-mediated oncogenic growth and migration pathways in prostate cancer and established mechanistic rationale for Src inhibition as novel therapy in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Y-M Chang
- Department of Urology, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wilhelm I, Nagyoszi P, Farkas AE, Couraud PO, Romero IA, Weksler B, Fazakas C, Dung NTK, Bottka S, Bauer H, Bauer HC, Krizbai IA. Hyperosmotic stress induces Axl activation and cleavage in cerebral endothelial cells. J Neurochem 2008; 107:116-26. [PMID: 18673450 DOI: 10.1111/j.1471-4159.2008.05590.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because of the relative impermeability of the blood-brain barrier (BBB), many drugs are unable to reach the CNS in therapeutically relevant concentration. One method to deliver drugs to the CNS is the osmotic opening of the BBB using mannitol. Hyperosmotic mannitol induces a strong phosphorylation on tyrosine residues in a broad spectrum of proteins in cerebral endothelial cells, the principal components of the BBB. Previously, we have shown that among targets of tyrosine phosphorylation are beta-catenin, extracellular signal-regulated kinase 1/2 and the non-receptor tyrosine kinase Src. The aim of this study was to identify new signalling pathways activated by hypertonicity in cerebral endothelial cells. Using an antibody array and immunoprecipitation we identified the receptor tyrosine kinase Axl to become tyrosine phosphorylated in response to hyperosmotic mannitol. Besides activation, Axl was also cleaved in response to osmotic stress. Degradation of Axl proved to be metalloproteinase- and proteasome-dependent and resulted in 50-55 kDa C-terminal products which remained phosphorylated even after degradation. Specific knockdown of Axl increased the rate of apoptosis in hyperosmotic mannitol-treated cells; therefore, we assume that activation of Axl may be a protective mechanism against hypertonicity-induced apoptosis. Our results identify Axl as an important element of osmotic stress-induced signalling.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Colgan OC, Collins NT, Ferguson G, Murphy RP, Birney YA, Cahill PA, Cummins PM. Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function. Brain Res 2008; 1193:84-92. [DOI: 10.1016/j.brainres.2007.11.072] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 11/15/2007] [Accepted: 11/20/2007] [Indexed: 01/27/2023]
|
28
|
Bálint Z, Krizbai IA, Wilhelm I, Farkas AE, Párducz A, Szegletes Z, Váró G. Changes induced by hyperosmotic mannitol in cerebral endothelial cells: an atomic force microscopic study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:113-20. [PMID: 17115151 DOI: 10.1007/s00249-006-0112-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/20/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
Understanding the reaction of living cells in response to different extracellular stimuli, such as hyperosmotic stress, is of primordial importance. Mannitol, a cell-impermeable non-toxic alcohol, has been used successfully for reversible opening of the blood-brain barrier in hyperosmotic concentrations. In this study we analyzed the effect of hyperosmotic mannitol on the shape and surface structure of living cerebral endothelial cells by atomic force microscope imaging technique. Addition of clinically relevant concentrations of mannitol to the culture medium of the confluent cells induced a decrease of about 40% in the observed height of the cells. This change was consistent both at the nuclear and peripheral region of the cells. After mannitol treatment even a close examination of the contact surface between the cells did not reveal gap between them. We could observe the appearance of surface protrusions of about 100 nm. By force measurements the elasticity of the cells were estimated. While the Young's modulus of the control cells appeared to be 8.04 +/- 0.12 kPa, for the mannitol-treated cells it decreased to an estimated value of 0.93 +/- 0.04 kPa which points to large structural changes inside the cell.
Collapse
Affiliation(s)
- Zoltán Bálint
- Institute of Biophysics, Biological Research Center of Hungarian Academy of Sciences, Temesvari krt 62, Szeged 6726, Hungary
| | | | | | | | | | | | | |
Collapse
|
29
|
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7:41-53. [PMID: 16371949 DOI: 10.1038/nrn1824] [Citation(s) in RCA: 3680] [Impact Index Per Article: 204.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier, which is formed by the endothelial cells that line cerebral microvessels, has an important role in maintaining a precisely regulated microenvironment for reliable neuronal signalling. At present, there is great interest in the association of brain microvessels, astrocytes and neurons to form functional 'neurovascular units', and recent studies have highlighted the importance of brain endothelial cells in this modular organization. Here, we explore specific interactions between the brain endothelium, astrocytes and neurons that may regulate blood-brain barrier function. An understanding of how these interactions are disturbed in pathological conditions could lead to the development of new protective and restorative therapies.
Collapse
Affiliation(s)
- N Joan Abbott
- Wolfson Centre for Age-Related Diseases, King's College London, UK.
| | | | | |
Collapse
|