1
|
Kil HK, Kim KW, Lee DH, Lee SM, Lee CH, Kim SY. Changes in the Gene Expression Profiles of the Inferior Colliculus Following Unilateral Cochlear Ablation in Adult Rats. Biochem Genet 2021; 59:731-750. [PMID: 33515340 DOI: 10.1007/s10528-021-10034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to explore gene expression changes in the inferior colliculus (IC) after single-sided deafness (SSD). Forty 8-week-old female Sprague-Dawley rats were used. Twenty rats underwent right-side cochlear ablation, and IC tissues were harvested after 2 weeks (SSD 2-week group). Twenty rats underwent a sham operation and were sacrificed after 2 weeks (control group). Both sides of the IC were analyzed using a gene expression array. Pathway analyses were performed on genes that were differentially expressed compared with their levels in the control group. The expression levels of genes involved in the candidate pathways were confirmed using reverse transcription polymerase chain reaction (RT-PCR). Among the genes with ≥ 1.5-fold changes in expression levels and P < 0.05, there were 7 and 9 genes with increased and decreased expression, respectively, in the ipsilateral IC and 10 and 12 genes with increased and decreased expression, respectively, in the contralateral IC. The pathway analysis did not identify significantly related pathway. In the bilateral analysis, a total of 14 genes were ≥ 1.3-fold downregulated in both the ipsilateral and contralateral IC in the SSD 2-week group compared with their expression in the control group. Pathway analyses of these 14 genes included 7 genes, namely, amine compound solute carrier (Slc)5a7; Slc18a3; Slc6a5; synaptic vesicle glycoprotein 2C (Sv2c); S100 calcium binding protein A10 (S100a10); a gene with sequence similarity to family 111, member A (Fam111a); and peripherin (Prph), that were related to the acetylcholine neurotransmitter release cycle, SLC transporters, and the neurotransmitter release cycle pathways. RT-PCR showed reduced expression of Slc5a7, Sv2c, and Prph in the contralateral IC and Slc18a3 and Slc6a5 in the ipsilateral IC of the SSD 2-week group compared with that in the control group.
Collapse
Affiliation(s)
- Hog Kwon Kil
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Kyung Woon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Da-Hye Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Chang Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea.
| |
Collapse
|
2
|
Manohar S, Ramchander PV, Salvi R, Seigel GM. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience 2018; 399:184-198. [PMID: 30593923 DOI: 10.1016/j.neuroscience.2018.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28 d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.
Collapse
Affiliation(s)
- S Manohar
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - P V Ramchander
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - R Salvi
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - G M Seigel
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| |
Collapse
|
3
|
Linker LA, Carlson L, Godfrey DA, Parli JA, Ross CD. Quantitative distribution of choline acetyltransferase activity in rat trapezoid body. Hear Res 2018; 370:264-271. [PMID: 30177425 PMCID: PMC6240496 DOI: 10.1016/j.heares.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/06/2018] [Accepted: 08/22/2018] [Indexed: 02/04/2023]
Abstract
There is evidence for a function of acetylcholine in the cochlear nucleus, primarily in a feedback, modulatory effect on auditory processing. Using a microdissection and quantitative microassay approach, choline acetyltransferase activity was mapped in the trapezoid bodies of rats, in which the activity is relatively higher than in cats or hamsters. Maps of series of sections through the trapezoid body demonstrated generally higher choline acetyltransferase activity rostrally than caudally, particularly in its portion ventral to the medial part of the spinal trigeminal tract. In the lateral part of the trapezoid body, near the cochlear nucleus, activities tended to be higher in more superficial portions than in deeper portions. Calculation of choline acetyltransferase activity in the total trapezoid body cross-section of a rat with a comprehensive trapezoid body map gave a value 3-4 times that estimated for the centrifugal labyrinthine bundle, which is mostly composed of the olivocochlear bundle, in the same rat. Comparisons with other rats suggest that the ratio may not usually be this high, but it is still consistent with our previous results suggesting that the centrifugal cholinergic innervation of the rat cochlear nucleus reaching it via a trapezoid body route is much higher than that reaching it via branches from the olivocochlear bundle. The higher choline acetyltransferase activity rostrally than caudally in the trapezoid body is consistent with evidence that the centrifugal cholinergic innervation of the cochlear nucleus derives predominantly from locations at or rostral to its anterior part, in the superior olivary complex and pontomesencephalic tegmentum.
Collapse
Affiliation(s)
- Lauren A Linker
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lissette Carlson
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Donald A Godfrey
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Judy A Parli
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - C David Ross
- Department of Neurology and Division of Otolaryngology & Dentistry, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
4
|
Godfrey DA, Chen K, O'Toole TR, Mustapha AI. Amino acid and acetylcholine chemistry in the central auditory system of young, middle-aged and old rats. Hear Res 2017; 350:173-188. [DOI: 10.1016/j.heares.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/24/2017] [Accepted: 05/03/2017] [Indexed: 02/04/2023]
|
5
|
Gao Y, Manzoor N, Kaltenbach JA. Evidence of activity-dependent plasticity in the dorsal cochlear nucleus, in vivo, induced by brief sound exposure. Hear Res 2016; 341:31-42. [PMID: 27490001 DOI: 10.1016/j.heares.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
The purpose of the present study was to investigate the immediate effects of acute exposure to intense sound on spontaneous and stimulus-driven activity in the dorsal cochlear nucleus (DCN). We examined the levels of multi- and single-unit spontaneous activity before and immediately following brief exposure (2 min) to tones at levels of either 109 or 85 dB SPL. Exposure frequency was selected to either correspond to the units' best frequency (BF) or fall within the borders of its inhibitory side band. The results demonstrate that these exposure conditions caused significant alterations in spontaneous activity and responses to BF tones. The induced changes have a fast onset (minutes) and are persistent for durations of at least 20 min. The directions of the change were found to depend on the frequency of exposure relative to BF. Transient decreases followed by more sustained increases in spontaneous activity were induced when the exposure frequency was at or near the units' BF, while sustained decreases of activity resulted when the exposure frequency fell inside the inhibitory side band. Follow-up studies at the single unit level revealed that the observed activity changes were found on unit types having properties which have previously been found to represent fusiform cells. The changes in spontaneous activity occurred despite only minor changes in response thresholds. Noteworthy changes also occurred in the strength of responses to BF tones, although these changes tended to be in the direction opposite those of the spontaneous rate changes. We discuss the possible role of activity-dependent plasticity as a mechanism underlying the rapid emergence of increased spontaneous activity after tone exposure and suggest that these changes may represent a neural correlate of acute noise-induced tinnitus.
Collapse
Affiliation(s)
- Y Gao
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - N Manzoor
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - J A Kaltenbach
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
6
|
Impact of peripheral hearing loss on top-down auditory processing. Hear Res 2016; 343:4-13. [PMID: 27260270 DOI: 10.1016/j.heares.2016.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 01/17/2023]
Abstract
The auditory system consists of an intricate set of connections interposed between hierarchically arranged nuclei. The ascending pathways carrying sound information from the cochlea to the auditory cortex are, predictably, altered in instances of hearing loss resulting from blockage or damage to peripheral auditory structures. However, hearing loss-induced changes in descending connections that emanate from higher auditory centers and project back toward the periphery are still poorly understood. These pathways, which are the hypothesized substrate of high-level contextual and plasticity cues, are intimately linked to the ascending stream, and are thereby also likely to be influenced by auditory deprivation. In the current report, we review both the human and animal literature regarding changes in top-down modulation after peripheral hearing loss. Both aged humans and cochlear implant users are able to harness the power of top-down cues to disambiguate corrupted sounds and, in the case of aged listeners, may rely more heavily on these cues than non-aged listeners. The animal literature also reveals a plethora of structural and functional changes occurring in multiple descending projection systems after peripheral deafferentation. These data suggest that peripheral deafferentation induces a rebalancing of bottom-up and top-down controls, and that it will be necessary to understand the mechanisms underlying this rebalancing to develop better rehabilitation strategies for individuals with peripheral hearing loss.
Collapse
|
7
|
Chen Z, Yuan W. Central plasticity and dysfunction elicited by aural deprivation in the critical period. Front Neural Circuits 2015; 9:26. [PMID: 26082685 PMCID: PMC4451366 DOI: 10.3389/fncir.2015.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
The acoustic signal is crucial for animals to obtain information from the surrounding environment. Like other sensory modalities, the central auditory system undergoes adaptive changes (i.e., plasticity) during the developmental stage as well as other stages of life. Owing to its plasticity, auditory centers may be susceptible to various factors, such as medical intervention, variation in ambient acoustic signals and lesion of the peripheral hearing organ. There are critical periods during which auditory centers are vulnerable to abnormal experiences. Particularly in the early postnatal development period, aural inputs are essential for functional maturity of auditory centers. An aural deprivation model, which can be achieved by attenuating or blocking the peripheral acoustic afferent input to the auditory center, is ideal for investigating plastic changes of auditory centers. Generally, auditory plasticity includes structural and functional changes, some of which can be irreversible. Aural deprivation can distort tonotopic maps, disrupt the binaural integration, reorganize the neural network and change the synaptic transmission in the primary auditory cortex or at lower levels of the auditory system. The regulation of specific gene expression and the modified signal pathway may be the deep molecular mechanism of these plastic changes. By studying this model, researchers may explore the pathogenesis of hearing loss and reveal plastic changes of the auditory cortex, facilitating the therapeutic advancement in patients with severe hearing loss. After summarizing developmental features of auditory centers in auditory deprived animals and discussing changes of central auditory remodeling in hearing loss patients, we aim at stressing the significant of an early and well-designed auditory training program for the hearing rehabilitation.
Collapse
Affiliation(s)
- Zhiji Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Southwest Hospital, Third Military Medical University Chongqing, China
| | - Wei Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Southwest Hospital, Third Military Medical University Chongqing, China
| |
Collapse
|
8
|
Fetoni AR, Troiani D, Petrosini L, Paludetti G. Cochlear injury and adaptive plasticity of the auditory cortex. Front Aging Neurosci 2015; 7:8. [PMID: 25698966 PMCID: PMC4318425 DOI: 10.3389/fnagi.2015.00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Department of Head and Neck Surgery, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| | - Laura Petrosini
- Department of Psychology, Sapienza University of Rome and IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gaetano Paludetti
- Department of Head and Neck Surgery, Medical School, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
9
|
Lee AC, Godfrey DA. Cochlear damage affects neurotransmitter chemistry in the central auditory system. Front Neurol 2014; 5:227. [PMID: 25477858 PMCID: PMC4237057 DOI: 10.3389/fneur.2014.00227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/20/2014] [Indexed: 02/04/2023] Open
Abstract
Tinnitus, the perception of a monotonous sound not actually present in the environment, affects nearly 20% of the population of the United States. Although there has been great progress in tinnitus research over the past 25 years, the neurochemical basis of tinnitus is still poorly understood. We review current research about the effects of various types of cochlear damage on the neurotransmitter chemistry in the central auditory system and document evidence that different changes in this chemistry can underlie similar behaviorally measured tinnitus symptoms. Most available data have been obtained from rodents following cochlear damage produced by cochlear ablation, intense sound, or ototoxic drugs. Effects on neurotransmitter systems have been measured as changes in neurotransmitter level, synthesis, release, uptake, and receptors. In this review, magnitudes of changes are presented for neurotransmitter-related amino acids, acetylcholine, and serotonin. A variety of effects have been found in these studies that may be related to animal model, survival time, type and/or magnitude of cochlear damage, or methodology. The overall impression from the evidence presented is that any imbalance of neurotransmitter-related chemistry could disrupt auditory processing in such a way as to produce tinnitus.
Collapse
Affiliation(s)
- Augustine C Lee
- Department of Neurology, University of Toledo College of Medicine , Toledo, OH , USA ; Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine , Toledo, OH , USA
| | - Donald A Godfrey
- Department of Neurology, University of Toledo College of Medicine , Toledo, OH , USA ; Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine , Toledo, OH , USA
| |
Collapse
|
10
|
He S, Wang YX, Petralia RS, Brenowitz SD. Cholinergic modulation of large-conductance calcium-activated potassium channels regulates synaptic strength and spine calcium in cartwheel cells of the dorsal cochlear nucleus. J Neurosci 2014; 34:5261-72. [PMID: 24719104 PMCID: PMC3983802 DOI: 10.1523/jneurosci.3728-13.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/05/2014] [Accepted: 03/11/2014] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine is a neuromodulatory transmitter that controls synaptic plasticity and sensory processing in many brain regions. The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that integrates auditory signals from the cochlea with multisensory inputs from several brainstem nuclei and receives prominent cholinergic projections. In the auditory periphery, cholinergic modulation serves a neuroprotective function, reducing cochlear output under high sound levels. However, the role of cholinergic signaling in the DCN is less understood. Here we examine postsynaptic mechanisms of cholinergic modulation at glutamatergic synapses formed by parallel fiber axons onto cartwheel cells (CWCs) in the apical DCN circuit from mouse brainstem slice using calcium (Ca) imaging combined with two-photon laser glutamate uncaging onto CWC spines. Activation of muscarinic acetylcholine receptors (mAChRs) significantly increased the amplitude of both uncaging-evoked EPSPs (uEPSPs) and spine Ca transients. Our results demonstrate that mAChRs in CWC spines act by suppressing large-conductance calcium-activated potassium (BK) channels, and this effect is mediated through the cAMP/protein kinase A signaling pathway. Blocking BK channels relieves voltage-dependent magnesium block of NMDA receptors, thereby enhancing uEPSPs and spine Ca transients. Finally, we demonstrate that mAChR activation inhibits L-type Ca channels and thus may contribute to the suppression of BK channels by mAChRs. In summary, we demonstrate a novel role for BK channels in regulating glutamatergic transmission and show that this mechanism is under modulatory control of mAChRs.
Collapse
Affiliation(s)
- Shan He
- Section on Synaptic Transmission and
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | - Ronald S. Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
11
|
Godfrey DA, Jin YM, Liu X, Godfrey MA. Effects of cochlear ablation on amino acid levels in the rat cochlear nucleus and superior olive. Hear Res 2014; 309:44-54. [PMID: 24291808 PMCID: PMC5819880 DOI: 10.1016/j.heares.2013.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022]
Abstract
Amino acids have important roles in the chemistry of the auditory system, including communication among neurons. There is much evidence for glutamate as a neurotransmitter from auditory nerve fibers to cochlear nucleus neurons. Previous studies in rodents have examined effects of removal of auditory nerve input by cochlear ablation on levels, uptake and release of glutamate in cochlear nucleus subdivisions, as well as on glutamate receptors. Effects have also been reported on uptake and release of γ-aminobutyrate (GABA) and glycine, two other amino acids strongly implicated in cochlear nucleus synaptic transmission. We mapped the effects of cochlear ablation on the levels of amino acids, including glutamate, GABA, glycine, aspartate, glutamine, taurine, serine, threonine, and arginine, in microscopic subregions of the rat cochlear nucleus. Submicrogram-size samples microdissected from freeze-dried brainstem sections were assayed for amino acid levels by high performance liquid chromatography. After cochlear ablation, glutamate and aspartate levels decreased by 2 days in regions receiving relatively dense innervation from the auditory nerve, whereas the levels of most other amino acids increased. The results are consistent with a close association of glutamate and aspartate with auditory nerve fibers and of other amino acids with other neurons and glia in the cochlear nucleus. A consistent decrease of GABA level in the lateral superior olive could be consistent with a role in some lateral olivocochlear neurons. The results are compared with those obtained with the same methods for the rat vestibular nerve root and nuclei after vestibular ganglionectomy.
Collapse
Affiliation(s)
- Donald A Godfrey
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, OH, USA.
| | - Yong-Ming Jin
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, OH, USA
| | - Xiaochen Liu
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, OH, USA
| | - Matthew A Godfrey
- Department of Neurology and Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, OH, USA
| |
Collapse
|
12
|
Godfrey DA, Kaltenbach JA, Chen K, Ilyas O. Choline acetyltransferase activity in the hamster central auditory system and long-term effects of intense tone exposure. J Neurosci Res 2013; 91:987-96. [PMID: 23605746 PMCID: PMC4469331 DOI: 10.1002/jnr.23227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/18/2013] [Accepted: 02/27/2013] [Indexed: 12/19/2022]
Abstract
Acoustic trauma often leads to loss of hearing of environmental sounds, tinnitus, in which a monotonous sound not actually present is heard, and/or hyperacusis, in which there is an abnormal sensitivity to sound. Research on hamsters has documented physiological effects of exposure to intense tones, including increased spontaneous neural activity in the dorsal cochlear nucleus. Such physiological changes should be accompanied by chemical changes, and those chemical changes associated with chronic effects should be present at long times after the intense sound exposure. Using a microdissection mapping procedure combined with a radiometric microassay, we have measured activities of choline acetyltransferase (ChAT), the enzyme responsible for synthesis of the neurotransmitter acetylcholine, in the cochlear nucleus, superior olive, inferior colliculus, and auditory cortex of hamsters 5 months after exposure to an intense tone compared with control hamsters of the same age. In control hamsters, ChAT activities in auditory regions were never more than one-tenth of the ChAT activity in the facial nerve root, a bundle of myelinated cholinergic axons, in agreement with a modulatory rather than a dominant role of acetylcholine in hearing. Within auditory regions, relatively higher activities were found in granular regions of the cochlear nucleus, dorsal parts of the superior olive, and auditory cortex. In intense-tone-exposed hamsters, ChAT activities were significantly increased in the anteroventral cochlear nucleus granular region and the lateral superior olivary nucleus. This is consistent with some chronic upregulation of the cholinergic olivocochlear system influence on the cochlear nucleus after acoustic trauma.
Collapse
Affiliation(s)
- Donald A Godfrey
- Department of Neurology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | | | | | |
Collapse
|
13
|
Manzoor NF, Chen G, Kaltenbach JA. Suppression of noise-induced hyperactivity in the dorsal cochlear nucleus following application of the cholinergic agonist, carbachol. Brain Res 2013; 1523:28-36. [PMID: 23721928 DOI: 10.1016/j.brainres.2013.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 01/23/2023]
Abstract
Increased spontaneous firing (hyperactivity) is induced in fusiform cells of the dorsal cochlear nucleus (DCN) following intense sound exposure and is implicated as a possible neural correlate of noise-induced tinnitus. Previous studies have shown that in normal hearing animals, fusiform cell activity can be modulated by activation of parallel fibers, which represent the axons of granule cells. The modulation consists of a transient excitation followed by a more prolonged period of inhibition, presumably reflecting direct excitatory inputs to fusiform cells and an indirect inhibitory input to fusiform cells from the granule cell-cartwheel cell system. We hypothesized that since granule cells can be activated by cholinergic inputs, it might be possible to suppress tinnitus-related hyperactivity of fusiform cells using the cholinergic agonist, carbachol. To test this hypothesis, we recorded multiunit spontaneous activity in the fusiform soma layer (FSL) of the DCN in control and tone-exposed hamsters (10 kHz, 115 dB SPL, 4h) before and after application of carbachol to the DCN surface. In both exposed and control animals, 100 μM carbachol had a transient excitatory effect on spontaneous activity followed by a rapid weakening of activity to near or below normal levels. In exposed animals, the weakening of activity was powerful enough to completely abolish the hyperactivity induced by intense sound exposure. This suppressive effect was partially reversed by application of atropine and was usually not associated with significant changes in neural best frequencies (BF) or BF thresholds. These findings demonstrate that noise-induced hyperactivity can be pharmacologically controlled and raise the possibility that attenuation of tinnitus may be achievable by using an agonist of the cholinergic system.
Collapse
Affiliation(s)
- N F Manzoor
- Department of Neurosciences, Lerner Research Institute/Head and Neck Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA
| | | | | |
Collapse
|
14
|
Kraus KS, Canlon B. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 2012; 288:34-46. [DOI: 10.1016/j.heares.2012.02.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/09/2011] [Accepted: 02/22/2012] [Indexed: 01/01/2023]
|
15
|
Manzoor NF, Gao Y, Licari F, Kaltenbach JA. Comparison and contrast of noise-induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear Res 2012; 295:114-23. [PMID: 22521905 DOI: 10.1016/j.heares.2012.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/26/2012] [Accepted: 04/03/2012] [Indexed: 01/13/2023]
Abstract
Induction of hyperactivity in the central auditory system is one of the major physiological hallmarks of animal models of noise-induced tinnitus. Although hyperactivity occurs at various levels of the auditory system, it is not clear to what extent hyperactivity originating in one nucleus contributes to hyperactivity at higher levels of the auditory system. In this study we compared the time courses and tonotopic distribution patterns of hyperactivity in the dorsal cochlear nucleus (DCN) and inferior colliculus (IC). A model of acquisition of hyperactivity in the IC by passive relay from the DCN would predict that the two nuclei show similar time courses and tonotopic profiles of hyperactivity. A model of acquisition of hyperactivity in the IC by compensatory plasticity mechanisms would predict that the IC and DCN would show differences in these features, since each adjusts to changes of spontaneous activity of opposite polarity. To test the role of these two mechanisms, animals were exposed to an intense hyperactivity-inducing tone (10 kHz, 115 dB SPL, 4 h) then studied electrophysiologically at three different post-exposure recovery times (from 1 to 6 weeks after exposure). For each time frame, multiunit spontaneous activity was mapped as a function of location along the tonotopic gradient in the DCN and IC. Comparison of activity profiles from the two nuclei showed a similar progression toward increased activity over time and culminated in the development of a central peak of hyperactivity at a similar tonotopic location. These similarities suggest that the shape of the activity profile is determined primarily by passive relay from the cochlear nucleus. However, the absolute levels of activity were generally much lower in the IC than in the DCN, suggesting that the magnitude of hyperactivity is greatly attenuated by inhibition.
Collapse
Affiliation(s)
- N F Manzoor
- Department of Neurosciences, The Cleveland Clinic, NE-63, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
16
|
Kraus KS, Ding D, Jiang H, Lobarinas E, Sun W, Salvi RJ. Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: does synaptic plasticity in ventral cochlear nucleus suppress tinnitus? Neuroscience 2011; 194:309-25. [PMID: 21821100 PMCID: PMC3390756 DOI: 10.1016/j.neuroscience.2011.07.056] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
Aberrant, lesion-induced neuroplastic changes in the auditory pathway are believed to give rise to the phantom sound of tinnitus. Noise-induced cochlear damage can induce extensive fiber growth and synaptogenesis in the cochlear nucleus, but it is currently unclear if these changes are linked to tinnitus. To address this issue, we unilaterally exposed nine rats to narrow-band noise centered at 12 kHz at 126 dB sound pressure level (SPL) for 2 h and sacrificed them 10 weeks later for evaluation of synaptic plasticity (growth-associated protein 43 [GAP-43] expression) in the cochlear nucleus. Noise-exposed rats along with three age-matched controls were screened for tinnitus-like behavior with gap prepulse inhibition of the acoustic startle (GPIAS) before, 1-10 days after, and 8-10 weeks after the noise exposure. All nine noise-exposed rats showed similar patterns of severe hair cell loss at high- and mid-frequency regions in the exposed ear. Eight of the nine showed strong up-regulation of GAP-43 in auditory nerve fibers and pronounced shrinkage of the ventral cochlear nucleus (VCN) on the noise-exposed side, and strong up-regulation of GAP-43 in the medial ventral VCN, but not in the lateral VCN or the dorsal cochlear nucleus. GAP-43 up-regulation in VCN was significantly greater in Noise-No-Tinnitus rats than in Noise-Tinnitus rats. One Noise-No-Tinnitus rat showed no up-regulation of GAP-43 in auditory nerve fibers and only little VCN shrinkage, suggesting that auditory nerve degeneration plays a role in tinnitus generation. Our results suggest that noise-induced tinnitus is suppressed by strong up-regulation of GAP-43 in the medial VCN. GAP-43 up-regulation most likely originates from medial olivocochlear neurons. Their increased excitatory input on inhibitory neurons in VCN may possibly reduce central hyperactivity and tinnitus.
Collapse
Affiliation(s)
- Kari Suzanne Kraus
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Dalian Ding
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Ed Lobarinas
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Wei Sun
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Richard J Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| |
Collapse
|
17
|
Wang Y, O'Donohue H, Manis P. Short-term plasticity and auditory processing in the ventral cochlear nucleus of normal and hearing-impaired animals. Hear Res 2011; 279:131-9. [PMID: 21586317 DOI: 10.1016/j.heares.2011.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/23/2011] [Accepted: 04/28/2011] [Indexed: 11/19/2022]
Abstract
The dynamics of synaptic transmission between neurons plays a major role in neural information processing. In the cochlear nucleus, auditory nerve synapses have a relatively high release probability and show pronounced synaptic depression that, in conjunction with the variability of interspike intervals, shapes the information transmitted to the postsynaptic cells. Cellular mechanisms have been best analyzed at the endbulb synapses, revealing that the recent history of presynaptic activity plays a complex, non-linear, role in regulating release. Emerging evidence suggests that the dynamics of synaptic function differs according to the target neuron within the cochlear nucleus. One consequence of hearing loss is changes in evoked release at surviving auditory nerve synapses, and in some situations spontaneous release is greatly enhanced. In contrast, even with cochlear ablation, postsynaptic excitability is less affected. The existing evidence suggests that different modes of hearing loss can result in different dynamic patterns of synaptic transmission between the auditory nerve and postsynaptic neurons. These changes in dynamics in turn will affect the efficacy with which different kinds of information about the acoustic environment can be processed by the parallel pathways in the cochlear nucleus.
Collapse
Affiliation(s)
- Yong Wang
- Division of Otolaryngology and Neuroscience Program, 3C120 School of Medicine, 30 North, 1900 East, Salt Lake City, University of Utah, UT 84132, USA.
| | | | | |
Collapse
|
18
|
Mellott JG, Motts SD, Schofield BR. Multiple origins of cholinergic innervation of the cochlear nucleus. Neuroscience 2011; 180:138-47. [PMID: 21320579 DOI: 10.1016/j.neuroscience.2011.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/20/2011] [Accepted: 02/05/2011] [Indexed: 01/22/2023]
Abstract
Acetylcholine (Ach) affects a variety of cell types in the cochlear nucleus (CN) and is likely to play a role in numerous functions. Previous work in rats suggested that the acetylcholine arises from cells in the superior olivary complex, including cells that have axonal branches that innervate both the CN and the cochlea (i.e. olivocochlear cells) as well as cells that innervate only the CN. We combined retrograde tracing with immunohistochemistry for choline acetyltransferase to identify the source of ACh in the CN of guinea pigs. The results confirm a projection from cholinergic cells in the superior olivary complex to the CN. In addition, we identified a substantial number of cholinergic cells in the pedunculopontine tegmental nucleus (PPT) and the laterodorsal tegmental nucleus (LDT) that project to the CN. On average, the PPT and LDT together contained about 26% of the cholinergic cells that project to CN, whereas the superior olivary complex contained about 74%. A small number of additional cholinergic cells were located in other areas, including the parabrachial nuclei.The results highlight a substantial cholinergic projection from the pontomesencephalic tegmentum (PPT and LDT) in addition to a larger projection from the superior olivary complex. These different sources of cholinergic projections to the CN are likely to serve different functions. Projections from the superior olivary complex are likely to serve a feedback role, and may be closely tied to olivocochlear functions. Projections from the pontomesencephalic tegmentum may play a role in such things as arousal and sensory gating. Projections from each of these areas, and perhaps even the smaller sources of cholinergic inputs, may be important in conditions such as tinnitus as well as in normal acoustic processing.
Collapse
Affiliation(s)
- J G Mellott
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272, USA
| | | | | |
Collapse
|
19
|
Hamada S, Houtani T, Trifonov S, Kase M, Maruyama M, Shimizu JI, Yamashita T, Tomoda K, Sugimoto T. Histological Determination of the Areas Enriched in Cholinergic Terminals and m2 and m3 Muscarinic Receptors in the Mouse Central Auditory System. Anat Rec (Hoboken) 2010; 293:1393-9. [DOI: 10.1002/ar.21186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Pál B, Koszeghy A, Pap P, Bakondi G, Pocsai K, Szucs G, Rusznák Z. Targets, receptors and effects of muscarinic neuromodulation on giant neurones of the rat dorsal cochlear nucleus. Eur J Neurosci 2009; 30:769-82. [PMID: 19712095 DOI: 10.1111/j.1460-9568.2009.06868.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although cholinergic modulation of the cochlear nucleus (CN) is functionally important, neither its cellular consequences nor the types of receptors conveying it are precisely known. The aim of this work was to characterise the cholinergic effects on giant cells of the CN, using electrophysiology and quantitative polymerase chain reaction. Application of the cholinergic agonist carbachol increased the spontaneous activity of the giant cells; which was partly the consequence of the reduction in a K(+) conductance. This effect was mediated via M4 and M3 receptors. Cholinergic modulation also affected the synaptic transmission targeting the giant cells. Excitatory synaptic currents evoked by the stimulation of the superficial and deep regions of the CN were sensitive to cholinergic modulation: the amplitude of the first postsynaptic current was reduced, and the short-term depression was also altered. These changes were mediated via M3 receptors alone and via the combination of M4, M2 and M3 receptors, when the superficial and deep layers, respectively, were activated. Inhibitory synaptic currents evoked from the superficial layer showed short-term depression, but they were unaffected by carbachol. In contrast, inhibitory currents triggered by the activation of the deep parts exhibited no significant short-term depression, but they were highly sensitive to cholinergic activation, which was mediated via M3 receptors. Our results indicate that pre- and postsynaptic muscarinic receptors mediate cholinergic modulation on giant cells. The present findings shed light on the cellular mechanisms of a tonic cholinergic modulation in the CN, which may become particularly important in evoking contralateral excitatory responses under certain pathological conditions.
Collapse
Affiliation(s)
- B Pál
- Department of Physiology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bledsoe SC, Koehler S, Tucci DL, Zhou J, Le Prell C, Shore SE. Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways. J Neurophysiol 2009; 102:886-900. [PMID: 19458143 PMCID: PMC2724362 DOI: 10.1152/jn.91003.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 05/15/2009] [Indexed: 11/22/2022] Open
Abstract
In the normal guinea pig, contralateral sound inhibits more than a third of ventral cochlear nucleus (VCN) neurons but excites <4% of these neurons. However, unilateral conductive hearing loss (CHL) and cochlear ablation (CA) result in a major enhancement of contralateral excitation. The response properties of the contralateral excitation produced by CHL and CA are similar, suggesting similar pathways are involved for both types of hearing loss. Here we used the neurotoxin melittin to test the hypothesis that this "compensatory" contralateral excitation is mediated either by direct glutamatergic CN-commissural projections or by cholinergic neurons of the olivocochlear bundle (OCB) that send collaterals to the VCN. Unit responses were recorded from the left VCN of anesthetized, unilaterally deafened guinea pigs (CHL via ossicular disruption, or CA via mechanical destruction). Neural responses were obtained with 16-channel electrodes to enable simultaneous data collection from a large number of single- and multiunits in response to ipsi- and contralateral tone burst and noise stimuli. Lesions of each pathway had differential effects on the contralateral excitation. We conclude that contralateral excitation has a fast and a slow component. The fast excitation is likely mediated by glutamatergic neurons located in medial regions of VCN that send their commissural axons to the other CN via the dorsal/intermediate acoustic striae. The slow component is likely mediated by the OCB collateral projections to the CN. Commissural neurons that leave the CN via the trapezoid body are an additional source of fast, contralateral excitation.
Collapse
Affiliation(s)
- Sanford C Bledsoe
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan 48109-5616, USA
| | | | | | | | | | | |
Collapse
|
22
|
Central auditory plasticity after carboplatin-induced unilateral inner ear damage in the chinchilla: up-regulation of GAP-43 in the ventral cochlear nucleus. Hear Res 2009; 255:33-43. [PMID: 19435600 DOI: 10.1016/j.heares.2009.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/02/2009] [Accepted: 05/04/2009] [Indexed: 11/21/2022]
Abstract
Inner ear damage may lead to structural changes in the central auditory system. In rat and chinchilla, cochlear ablation and noise trauma result in fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between carboplatin-induced hair cell degeneration and VCN plasticity in the chinchilla. Unilateral application of carboplatin (5mg/ml) on the round window membrane resulted in massive hair cell loss. Outer hair cell degeneration showed a pronounced basal-to-apical gradient while inner hair cell loss was more equally distributed throughout the cochlea. Expression of the growth associated protein GAP-43, a well-established marker for synaptic plasticity, was up-regulated in the ipsilateral VCN at 15 and 31 days post-carboplatin, but not at 3 and 7 days. In contrast, the dorsal cochlear nucleus showed only little change. In VCN, the high-frequency area dorsally showed slightly yet significantly stronger GAP-43 up-regulation than the low-frequency area ventrally, possibly reflecting the high-to-low frequency gradient of hair cell degeneration. Synaptic modification or formation of new synapses may be a homeostatic process to re-adjust mismatched inputs from two ears. Alternatively, massive fiber growth may represent a deleterious process causing central hyperactivity that leads to loudness recruitment or tinnitus.
Collapse
|
23
|
Godfrey D, Chen K, Godfrey M, Jin YM, Robinson K, Hair C. Effects of cochlear ablation on amino acid concentrations in the chinchilla posteroventral cochlear nucleus, as compared to rat. Neuroscience 2008; 154:304-14. [DOI: 10.1016/j.neuroscience.2007.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/12/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
|
24
|
Sun Y, Godfrey DA, Godfrey TG, Rubin AM. Changes of amino acid concentrations in the rat vestibular nuclei after inferior cerebellar peduncle transection. J Neurosci Res 2007; 85:558-74. [PMID: 17131392 DOI: 10.1002/jnr.21136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although there is a close relationship between the vestibular nuclear complex (VNC) and the cerebellum, little is known about the contribution of cerebellar inputs to amino acid neurotransmission in the VNC. Microdissection of freeze-dried brain sections and high-performance liquid chromatography (HPLC) were combined to measure changes of amino acid concentrations within the VNC of rats following transection of the cerebellovestibular connections in the inferior cerebellar peduncle. Distributions of 12 amino acids within the VNC at 2, 4, 7, and 30 days after surgery were compared with those for control and sham-lesioned rats. Concentrations of gamma-aminobutyric acid (GABA) decreased by 2 days after unilateral peduncle transection in nearly all VNC regions on the lesioned side and to lesser extents on the unlesioned side and showed partial recovery up to 30 days postsurgery. Asymmetries between the two sides of the VNC were maintained through 30 days. Glutamate concentrations were reduced bilaterally in virtually all regions of the VNC by 2 days and showed complete recovery in most VNC regions by 30 days. Glutamine concentrations increased, starting 2 days after surgery, especially on the lesioned side, so that there was asymmetry generally opposite that of glutamate. Concentrations of taurine, aspartate, and glycine also underwent partially reversible changes after peduncle transection. The results suggest that GABA and glutamate are prominent neurotransmitters in bilateral projections from the cerebellum to the VNC and that amino acid metabolism in the VNC is strongly influenced by its cerebellar connections.
Collapse
Affiliation(s)
- Yizhe Sun
- Division of Otolaryngology and Dentistry, Department of Surgery, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
25
|
Meidinger MA, Hildebrandt-Schoenfeld H, Illing RB. Cochlear damage induces GAP-43 expression in cholinergic synapses of the cochlear nucleus in the adult rat: a light and electron microscopic study. Eur J Neurosci 2007; 23:3187-99. [PMID: 16820009 DOI: 10.1111/j.1460-9568.2006.04853.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies suggest a potential for activity-dependent reconstruction in the adult mammalian brainstem that exceeds previous expectations. We found that a unilateral cochlear lesion led within 1 week to a rise of choline acetyltransferase (ChAT) immunoreactivity in the ventral cochlear nucleus of the affected side, matching the lesion-induced expression of growth-associated protein 43 (GAP-43) previously described. The rise of both ChAT and GAP-43 immunoreactivity was reflected in the average density of the staining. Moreover, the number of light-microscopically identifiable boutons increased in both stains. GAP-43-positive boutons could, by distinct ultrastructural features, regularly be identified as presynaptic endings. However, GAP-43 immunoreactivity was not only found in presynaptic endings with a classical morphology, but also in profiles that suggest morphological dynamic structures by showing filopodia, assemblages of pleomorphic vesicles, large vesicles (diameter up to 200 nm) fusing with the presynaptic plasma membrane close to synaptic contacts, small dense-core vesicles (diameter about 80 nm) and presynaptic ribosomes. Moreover, we observed perforated synapses as well as GAP-43 immunoreactivity condensed in rafts, both indicative of growing or changing neuronal connections. Classical and untypical ultrastructural profiles that contained GAP-43 also contained ChAT. We conclude that there is extensive deafness-induced GAP-43-mediated synaptic plasticity in the cochlear nucleus, and that this plasticity is predominantly, if not exclusively, based on cholinergic afferents.
Collapse
Affiliation(s)
- Markus A Meidinger
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
26
|
Jin YM, Godfrey DA, Wang J, Kaltenbach JA. Effects of intense tone exposure on choline acetyltransferase activity in the hamster cochlear nucleus. Hear Res 2006; 216-217:168-75. [PMID: 16549284 DOI: 10.1016/j.heares.2006.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 02/06/2006] [Accepted: 02/10/2006] [Indexed: 11/28/2022]
Abstract
Choline acetyltransferase (ChAT) activity has been mapped in the cochlear nucleus (CN) of control hamsters and hamsters that had been exposed to an intense tone. ChAT activity in most CN regions of hamsters was only a third or less of the activity in rat CN, but in granular regions ChAT activity was similar in both species. Eight days after intense tone exposure, average ChAT activity increased on the tone-exposed side as compared to the opposite side, by 74% in the anteroventral CN (AVCN), by 55% in the granular region dorsolateral to it, and by 74% in the deep layer of the dorsal CN (DCN). In addition, average ChAT activity in the exposed-side AVCN and fusiform soma layer of DCN was higher than in controls, by 152% and 67%, respectively. Two months after exposure, average ChAT activity was still 53% higher in the exposed-side deep layer of DCN as compared to the opposite side. Increased ChAT activity after intense tone exposure may indicate that this exposure leads to plasticity of descending cholinergic innervation to the CN, which might affect spontaneous activity in the DCN that has been associated with tinnitus.
Collapse
Affiliation(s)
- Yong-Ming Jin
- Division of Otolaryngology, Department of Surgery, Medical University of Ohio, Toledo, 3065 Arlington Avenue, OH 43614-5807, USA
| | | | | | | |
Collapse
|
27
|
Jin YM, Godfrey DA. Effects of cochlear ablation on muscarinic acetylcholine receptor binding in the rat cochlear nucleus. J Neurosci Res 2006; 83:157-66. [PMID: 16307447 DOI: 10.1002/jnr.20706] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cholinergic synapses in the cochlear nucleus (CN) have been reported to modulate spontaneous activity via muscarinic acetylcholine receptors. In this study, muscarinic receptor binding was measured as specific binding of 1-[N-methyl-(3)H]scopolamine in CN regions of control rats and 7 days, 1 month, and 2 months after unilateral cochlear ablation. In control rats, the strongest binding was found in granular regions, followed in order by fusiform soma, molecular, and deep layers of the dorsal cochlear nucleus (DCN), with much lower binding in the anteroventral CN (AVCN) and posteroventral CN (PVCN). After unilateral cochlear ablation, binding in the AVCN, PVCN, and their associated granular regions on the lesion side became progressively greater than on the control side through 2 months after lesion. A significant asymmetry, with binding higher on the lesion side, was also found in the DCN fusiform soma layer at 7 days, and there and in the DCN deep layer at 1 and 2 months after lesion. There was also evidence of increased binding on the control side in most CN regions. By contrast, binding in the ipsilateral facial nucleus decreased, compared with the control side, by 7 days after the lesion and showed some recovery toward symmetry by 2 months after lesion, and there was no evidence for contralateral changes. These muscarinic receptor binding changes reflect receptor plasticity after loss of auditory nerve innervation. Such plasticity may underlie some of the central auditory functional changes that occur following peripheral lesions, such as tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Yong-Ming Jin
- Division of Otolaryngology, Department of Surgery, Medical University of Ohio, Toledo, 43614-5807, USA
| | | |
Collapse
|
28
|
Sumner CJ, Tucci DL, Shore SE. Responses of ventral cochlear nucleus neurons to contralateral sound after conductive hearing loss. J Neurophysiol 2005; 94:4234-43. [PMID: 16093339 DOI: 10.1152/jn.00401.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conductive hearing loss (CHL) is an attenuation of signals stimulating the cochlea, without damage to the auditory end organ. It can cause central auditory processing deficits that outlast the CHL itself. Measures of oxidative metabolism show a decrease in activity of nuclei receiving input originating at the affected ear but, surprisingly, an increase in the activity of second-order neurons of the opposite ear. In normal hearing animals, contralateral sound produces an inhibitory response to broadband noise in approximately one third of ventral cochlear nucleus (VCN) neurons. Excitatory responses also occur but are very rare. We looked for changes in the binaural properties of neurons in the VCN of guinea pigs at intervals immediately, 1 day, 1 wk, and 2 wk after the induction of a unilateral CHL by ossicular disruption. CHL was always induced in the ear ipsilateral to the VCN from which recordings were made. The main observations were as follows: 1) ipsilateral excitatory thresholds were raised by at least 40 dB; 2) contralateral inhibitory responses showed a small but statistically significant immediate decrease followed by an increase, returning to normal by 14 days; and 3) there was a large increase in the proportion of units with excitatory responses to contralateral BBN. The increase was immediate and lasting. The latencies of the excitatory responses were at least 6 ms, consistent with activation by a path involving several synapses and inconsistent with cross talk. The latencies and rate-level functions of contralateral excitation were similar to those seen occasionally in normal hearing animals, suggesting an upregulation of an existing pathway. In conclusion, contralateral excitatory inputs to the VCN exist, which are not normally effective, and can compensate rapidly for large changes in afferent input.
Collapse
|