1
|
Bhattacharya R, Singh P, John JJ, Gujar NL. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time-dependent effects. Drug Chem Toxicol 2018; 42:577-584. [PMID: 29609494 DOI: 10.1080/01480545.2018.1451876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cyanide-induced chemical hypoxia is responsible for pronounced oxidative damage in the central nervous system. The disruption of mitochondrial oxidative metabolism has been associated with upregulation of uncoupling proteins (UCPs). The present study addresses the dose- and time-dependent effect of sub-acute cyanide exposure on various non-enzymatic and enzymatic oxidative stress markers and their correlation with inducible-nitric oxide synthase (iNOS) and uncoupling protein-2 (UCP-2) expression. Animals received (oral) triple distilled water (vehicle control), 0.25 LD50 potassium cyanide (KCN) or 0.50 LD50 KCN daily for 21 d. Animals were sacrificed on 7, 14 and 21 d post-exposure to measure serum cyanide and nitrite, and brain malondialdehyde (MDA), reduced glutathione (GSH), glutathione disulfide (GSSG), cytochrome c oxidase (CCO), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CA) levels, together with iNOS and UCP-2 expression, and DNA damage. The study revealed that a dose- and time-dependent increase in cyanide concentration was accompanied by corresponding CCO inhibition and elevated MDA levels. Decrease in GSH levels was not followed by reciprocal change in GSSG levels. Diminution of SOD, GPx, GR and CA activity was congruent with elevated nitrite levels and upregulation of iNOS and UCP-2 expression, without any DNA damage. It was concluded that long-term cyanide exposure caused oxidative stress, accompanied by upregulation of iNOS. The upregulation of UCP-2 further sensitized the cells to cyanide and accentuated the oxidative stress, which was independent of DNA damage.
Collapse
Affiliation(s)
- Rahul Bhattacharya
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - Poonam Singh
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - Jebin Jacob John
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - Niranjan L Gujar
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
2
|
Bhattacharya R, Gujar NL, Kumar D, John JJ. Protective efficacy of various carbonyl compounds and their metabolites, and nutrients against acute toxicity of some cyanogens in rats: biochemical and physiological studies. Interdiscip Toxicol 2018; 10:1-10. [PMID: 30123030 PMCID: PMC6096866 DOI: 10.1515/intox-2017-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/24/2017] [Indexed: 11/15/2022] Open
Abstract
Cyanogens are widely used in industries and their toxicity is mainly due to cyanogenesis. The antidotes for cyanide are usually instituted for the management of cyanogen poisoning. The present study reports the protective efficacy of 14 carbonyl compounds and their metabolites, and nutrients (1.0 g/kg; oral; +5 min) against acute oral toxicity of acetonitrile (ATCN), acrylonitrile (ACN), malononitrile (MCN), propionitrile (PCN), sodium nitroprusside (SNP), succinonitrile (SCN), and potassium ferricyanide (PFCN) in rats. Maximum protection index was observed for alpha-ketoglutarate (A-KG) against MCN and PCN (5.60), followed by dihydroxyacetone (DHA) against MCN (2.79). Further, MCN (0.75 LD50) caused significant increase in cyanide concentration in brain, liver and kidney and inhibition of cytochrome c oxidase activity in brain and liver, which favorably responded to A-KG and DHA treatment. Up-regulation of inducible nitric oxide synthase by MCN, PCN and SNP, and uncoupling protein by PCN and SNP observed in the brain was abolished by A-KG administration. However, no DNA damage was detected in the brain. MCN and SNP significantly decreased the mean arterial pressure, heart rate, respiratory rate and neuromuscular transmission, which were resolved by A-KG. The study suggests a beneficial effect of A-KG in the treatment of acute cyanogen poisoning.
Collapse
Affiliation(s)
- Rahul Bhattacharya
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, (M.P.), India
| | - Niranjan L Gujar
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, (M.P.), India
| | - Deo Kumar
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, (M.P.), India
| | - Jebin Jacob John
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, (M.P.), India
| |
Collapse
|
3
|
Cambal LK, Swanson MR, Yuan Q, Weitz AC, Li HH, Pitt BR, Pearce LL, Peterson J. Acute, sublethal cyanide poisoning in mice is ameliorated by nitrite alone: complications arising from concomitant administration of nitrite and thiosulfate as an antidotal combination. Chem Res Toxicol 2011; 24:1104-12. [PMID: 21534623 DOI: 10.1021/tx2001042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sodium nitrite alone is shown to ameliorate sublethal cyanide toxicity in mice when given from ∼1 h before until 20 min after the toxic dose as demonstrated by the recovery of righting ability. An optimum dose (12 mg/kg) was determined to significantly relieve cyanide toxicity (5.0 mg/kg) when administered to mice intraperitoneally. Nitrite so administered was shown to rapidly produce NO in the bloodsteam as judged by the dose-dependent appearance of EPR signals attributable to nitrosylhemoglobin and methemoglobin. It is argued that antagonism of cyanide inhibition of cytochrome c oxidase by NO is the crucial antidotal activity rather than the methemoglobin-forming action of nitrite. Concomitant addition of sodium thiosulfate to nitrite-treated blood resulted in the detection of sulfidomethemoblobin by EPR spectroscopy. Sulfide is a product of thiosulfate hydrolysis and, like cyanide, is known to be a potent inhibitor of cytochrome c oxidase, the effects of the two inhibitors being essentially additive under standard assay conditions rather than dominated by either one. The findings afford a plausible explanation for an observed detrimental effect in mice associated with the use of the standard nitrite-thiosulfate combination therapy at sublethal levels of cyanide intoxication.
Collapse
Affiliation(s)
- Leah K Cambal
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh, 100 Technology Drive, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abdel-Zaher AO, Abdel-Hady RH, Abdel Moneim WM, Salim SY. Alpha-lipoic acid protects against potassium cyanide-induced seizures and mortality. ACTA ACUST UNITED AC 2009; 63:161-5. [PMID: 19962284 DOI: 10.1016/j.etp.2009.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 11/01/2009] [Accepted: 11/10/2009] [Indexed: 11/29/2022]
Abstract
This study was proposed to investigate the potential protective effect of alpha-lipoic acid (α-LA) against potassium cyanide (KCN)-induced seizures and lethality in mice. The intraperitoneal ED(50) value of KCN, as measured by induction of clonic and tonic seizures was increased by pretreatment of mice with α-LA (25, 50 and 100 mg/kg) intraperitoneally in a dose-dependent manner. Similarly, the intraperitoneal LD(50) value of KCN, based on 24h mortality, was increased by pretreatment with α-LA in a dose-dependent manner. Intraperitoneal injection of the estimated ED(50) of KCN (4.8 mg/kg) into mice increased, 1h later, nitric oxide (NO) production and brain glutamate and malondialdehyde (MDA) levels. The estimated ED(50) of KCN also decreased brain intracellular reduced glutathione (GSH) level and glutathione peroxidase (GSH-Px) activity in these animals. Administration of the estimated LD(50) of KCN (6 mg/kg) produced, 24h later, similar marked biochemical alterations in surviving animals. Pretreatment of mice with α-LA inhibited; dose-dependently KCN (ED(50) and LD(50))-induced an increase in NO production and brain MDA level as well as a decrease in brain intracellular GSH level and GSH-Px activity. The elevation induced by KCN in brain glutamate level was not inhibited by α-LA. It can be concluded that the protective effect of α-LA against KCN-induced seizures and lethality may be due to inhibition of NO overproduction and maintenance of intracellular antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Ahmed O Abdel-Zaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | | | | |
Collapse
|
5
|
Zhang X, Li L, Zhang L, Borowitz JL, Isom GE. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression. Toxicol Appl Pharmacol 2009; 238:11-9. [PMID: 19361538 PMCID: PMC2696033 DOI: 10.1016/j.taap.2009.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 03/27/2009] [Accepted: 03/28/2009] [Indexed: 01/11/2023]
Abstract
Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H2O2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H2O2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H2O2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.
Collapse
Affiliation(s)
- X Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-1333, USA
| | | | | | | | | |
Collapse
|
6
|
Li L, Prabhakaran K, Zhang X, Zhang L, Liu H, Borowitz JL, Isom GE. 1Alpha,25-dihydroxyvitamin D3 attenuates cyanide-induced neurotoxicity by inhibiting uncoupling protein-2 up-regulation. J Neurosci Res 2008; 86:1397-408. [PMID: 18183618 DOI: 10.1002/jnr.21596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
1Alpha,25-dihydroxyvitamin D(3) (VD(3)) is a neuroprotectant that can reduce cytotoxicity produced by a variety of toxicants. The mechanism of the neuroprotection was studied in rat primary cortical cells in which Wy14,643, an agonist of peroxisome proliferator activated receptor-alpha (PPARalpha), enhances cyanide (KCN) neurotoxicity. In this cell model, Wy14,643 pretreatment enhanced cyanide-induced cell death, and the increased cell death was linked to up-regulation of uncoupling protein-2 (UCP-2). VD(3) reversed cyanide-induced mitochondrial dysfunction in cells pretreated with Wy14,643, as reflected by restoration of cellular ATP and mitochondrial membrane potential (DeltaPsi(m)). Analysis of cellular state 4 oxygen consumption showed increased mitochondrial uncoupling accompanied by up-regulation of UPC-2. The uncoupling was attenuated by prior treatment with VD(3). The interaction of VD(3) with UCP-2 was attributed to increased expression of IkappaB, an inhibitor of NF-kappaB (transcription factor that regulates UCP-2 expression). The increased IkappaB levels lead to reduced nuclear translocation and DNA binding of nuclear factor-kappaB. The role of oxidative stress in the response was then evaluated. Cotreatment with Wy14,643 and cyanide markedly increased reactive oxygen species generation and decreased reduced glutathione levels. The oxidative stress was blocked by VD(3) pretreatment. It was concluded that VD(3) blocks Wy14,643 enhancement of cyanide neurotoxicity by suppressing the redox-mediated transcriptional up-regulation of UCP-2, resulting in reduced mitochondrial proton leak and stabilization of mitochondrial function.
Collapse
Affiliation(s)
- L Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Crankshaw DL, Goon DJW, Briggs JE, DeLong D, Kuskowski M, Patterson SE, Nagasawa HT. A novel paradigm for assessing efficacies of potential antidotes against neurotoxins in mice. Toxicol Lett 2007; 175:111-7. [PMID: 18024011 DOI: 10.1016/j.toxlet.2007.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 01/10/2023]
Abstract
Historically, antidotal potencies of cyanide antagonists were measured as increases in the experimental LD(50) for cyanide elicited by the antidotes. This required the use of high doses of cyanide following pre-treatment with the putative antidote. Since IACUC guidelines at our institutions strongly discourage LD(50) determinations: we developed a new test paradigm that allowed for maximal survival of cyanide-treated animals with greatly reduced numbers of animals. Symptoms of cyanide toxicity include disruption of neuromuscular coordination, i.e., the righting reflex. Therefore, to establish a dose-response curve, the times required for recovery of this righting reflex with increasing doses of cyanide were measured. A cyanide dose that disrupted this righting reflex for approximately 1h with minimal deaths was then selected. Using this paradigm, the current cyanide antidotes, viz., nitrite plus thiosulfate and hydroxocobalamin, as well as some potential cyanide antidotes that we developed, were evaluated pre- and post-cyanide. This allowed, for the first time, the assessment of the post-cyanide effectiveness of the current antidotes against cyanide poisoning in a live animal. In addition, some prototype compounds were found to exhibit antidotal efficacy not only when injected i.p. following cyanide, but also when administered orally 30 min before cyanide. Pre-cyanide oral efficacy suggests that such compounds have the potential of being administered prophylactically before exposure to cyanide. This new test paradigm was found to be a powerful tool for assessing the efficacies of some novel antidotes against cyanide and should be equally applicable for evaluating putative antidotes for other neurotoxins.
Collapse
Affiliation(s)
- Daune L Crankshaw
- Center for Drug Design, Academic Health Center, University of Minnesota, MN, United States.
| | | | | | | | | | | | | |
Collapse
|
8
|
Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Isom GE. Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity. Toxicol Sci 2007; 101:101-11. [PMID: 17906319 DOI: 10.1093/toxsci/kfm254] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute cyanide toxicity is attributed to inhibition of cytochrome c oxidase (CcOX), the oxygen-reducing component of mitochondrial electron transport; however, the mitochondrial action of cyanide is complex and not completely understood. State-3 oxygen consumption and CcOX activity were studied in rat N27 mesencephalic cells to examine the functional interaction of cyanide and nitric oxide (NO). KCN produced a concentration-dependent inhibition of cellular respiration. Cyanide's median inhibitory concentration (IC50) of oxygen consumption (13.2 +/- 1.8microM) was higher than the CcOX IC50 (7.2 +/- 0.1microM). Based on respiratory threshold analysis, 60% inhibition of CcOX was necessary before oxygen consumption was decreased. Addition of high levels of exogenous NO (100microM S-nitroso-N-acetyl-DL-penicillamine) attenuated cyanide inhibition of both respiration and CcOX. On the other hand, when endogenous NO generation was blocked by an NOS inhibitor (N(omega)-monomethyl-L-arginine ester), the cyanide IC50 for both respiration and CcOX increased to 59.6 +/- 0.9microM and 102 +/- 10microM, respectively, thus showing constitutive, low-level NO production enhanced cyanide inhibition. Laser scanning cytometry showed that cyanide elevated mitochondrial NO, which then was available to interact with CcOX to enhance the inhibition. It is concluded that the rapid, potent action of cyanide is due in part to mitochondrial generation of NO, which enhances inhibition of CcOX. At low mitochondrial oxygen tensions, the cyanide-NO interaction would be increased. Also, the antidotal action of sodium nitrite is partly explained by generation of high mitochondrial levels of NO, which antagonizes the CcOX inhibition.
Collapse
Affiliation(s)
- Heather B Leavesley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333, USA
| | | | | | | | | |
Collapse
|
9
|
Zhang L, Li L, Liu H, Prabhakaran K, Zhang X, Borowitz JL, Isom GE. HIF-1alpha activation by a redox-sensitive pathway mediates cyanide-induced BNIP3 upregulation and mitochondrial-dependent cell death. Free Radic Biol Med 2007; 43:117-27. [PMID: 17561100 PMCID: PMC2048659 DOI: 10.1016/j.freeradbiomed.2007.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/02/2007] [Accepted: 04/02/2007] [Indexed: 12/21/2022]
Abstract
Cyanide produces degeneration of the nervous system in which different modes of cell death are activated in the vulnerable brain areas. In brain, the mechanism underlying the cell death is not clear. In this study, an immortalized dopaminergic cell line was used to characterize the cell death signaling cascade activated by cyanide. Cyanide-treated cells exhibited a time- and concentration-dependent apoptosis that was caspase independent. Cyanide induced a rapid surge of intracellular reactive oxygen species (ROS) generation, followed by p38 mitogen-activated protein kinase (MAPK) activation and nuclear accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). Activation of p38 MAPK and HIF-1alpha accumulation were attenuated by N-acetyl-L-cysteine (antioxidant), catalase (hydrogen peroxide scavenger), or a selective p38 MAPK inhibitor (SB203580). Cyanide activated the hypoxia response element (HRE) promoter, which was also blocked by the antioxidants and SB203580. HRE activation was followed by increased BNIP3 gene transcription, as reflected by elevated BNIP3 mRNA and protein levels. BNIP3 upregulation was reduced by selective RNAi knockdown of HIF-1alpha. Overexpression of BNIP3 produced mitochondrial dysfunction (reduced membrane potential), caspase-independent apoptosis, and sensitization of the cells to cyanide-induced toxicity. Expression of a dominant-negative mutant or RNAi knockdown of BNIP3 protected the cells from cyanide. It was concluded that cyanide activated the HIF-1alpha-mediated pathway of BNIP3 induction through a redox-sensitive process. Increased BNIP3 expression then served as an initiator of mitochondrial-mediated death.
Collapse
Affiliation(s)
- L Zhang
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|