1
|
Minocycline mitigates the effect of neonatal hypoxic insult on human brain organoids. Cell Death Dis 2019; 10:325. [PMID: 30975982 PMCID: PMC6459920 DOI: 10.1038/s41419-019-1553-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 11/23/2022]
Abstract
Neonatal hypoxic injury (NHI) is a devastating cause of disease that affects >60% of babies born with a very low birth weight, resulting in significant morbidity and mortality, including life-long neurological consequences such as seizures, cerebral palsy, and intellectual disability. Hypoxic injury results in increased neuronal death, which disrupts normal brain development. Although animal model systems have been useful to study the effects of NHI, they do not fully represent the uniqueness and complexities of the human brain. To better understand the effects of hypoxia on human brain development, we have generated a brain organoid protocol and evaluated these cells over the course of 6 months. As anticipated, the expression of a forebrain marker, FOXG1, increased and then remained expressed over time, while there was a transition in the expression of the deep-layer (TBR1) and upper-layer (SATB2) cortical markers. In addition, ventral genes (Eng1 and Nkx2.1) as well as markers of specialized nonneuronal cells (Olig2 and GFAP) also increased at later time points. We next tested the development of our in vitro cerebral organoid model at different oxygen concentrations and found that hypoxia repressed gene markers for forebrain, oligodendrocytes, glial cells, and cortical layers, as well as genes important for the migration of cortical neurons. In contrast, ventral markers were either unaffected or even increased in expression with hypoxic insult. Interestingly, the negative effect of hypoxia on the dorsal brain genes as well as oligodendrocytes, and neuronal progenitors could be mitigated by the use of minocycline, an FDA-approved small molecule. Taken together, we have generated a unique and relevant in vitro human brain model system to study diseases such as NHI as well as their potential treatments. Using this system, we have shown the efficacy of minocycline for human NHI.
Collapse
|
2
|
Sheldon RA, Windsor C, Ferriero DM. Strain-Related Differences in Mouse Neonatal Hypoxia-Ischemia. Dev Neurosci 2019; 40:490-496. [PMID: 30820007 DOI: 10.1159/000495880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 01/16/2023] Open
Abstract
Neonatal hypoxic-ischemic brain injury is commonly studied by means of the Vannucci procedure in mice or rats (unilateral common carotid artery occlusion followed by hypoxia). Previously, we modified the postnatal day 7 (P7) rat procedure for use in mice, and later demonstrated that genetic strain strongly influences the degree of brain injury in the P7 mouse model of hypoxia-ischemia (HI). Recently, the P9 or P10 mouse brain was recognized as the developmental equivalent of a term neonatal human brain, rather than P7. Consequently, the Vannucci procedure has again been modified, and a commonly used protocol employs 10% oxygen for 50 min in C57Bl/6 mice. Strain differences have yet to be described for the P9/P10 mouse model. In order to determine if the strain differences we previously reported in the P7 mouse model are present in the P9 model, we compared 2 commonly used strains, CD1 and C57Bl/6J, in both the P7 (carotid ligation [in this case, right] followed by exposure to 8% oxygen for 30 min) and P9 (carotid ligation [in this case left] followed by exposure to 10% oxygen) models of HI. Experiments using the P7 model were performed in 2001-2012 and those using the P9 model were performed in 2012-2016. Five to seven days after the HI procedure, mice were perfused with 4% paraformaldehyde, their brains were sectioned on a Vibratome (50 µm) and alternate sections were stained with Perl's iron stain or cresyl violet. Brain sections were examined microscopically and scored for the degree of injury. Since brains in the P7 group had been scored previously with a slightly different system, they were reanalyzed using our current scoring system which scores injury in 11 regions: the anterior, middle, and posterior cortex; the anterior, middle, and posterior striatum; CA1, CA2, CA3, and the dentate gyrus of the hippocampus and thalamus, on a scale from 0 (none) to 3 (cystic infarct) for a total score of 0-33. Brains in the P9 group were scored with the same system. Given the same insult, the P7 CD1 mice had greater injury than the C57Bl/6J mice, which agrees with our previous findings. The P9 CD1 mice also had greater injury than the C57Bl/6J mice. This study confirms that CD1 mice are more susceptible to injury than C57Bl/6J mice and that strain selection is important when using mouse models of HI.
Collapse
Affiliation(s)
- R Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA, .,Department of Newborn Brain Research Institute, University of California San Francisco, San Francisco, California, USA,
| | - Christine Windsor
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.,Department of Newborn Brain Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.,Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Department of Newborn Brain Research Institute, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Ponti G, Farinetti A, Marraudino M, Panzica G, Gotti S. Sex Steroids and Adult Neurogenesis in the Ventricular-Subventricular Zone. Front Endocrinol (Lausanne) 2018; 9:156. [PMID: 29686651 PMCID: PMC5900029 DOI: 10.3389/fendo.2018.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/22/2018] [Indexed: 12/28/2022] Open
Abstract
The forebrain ventricular-subventricular zone (V-SVZ) continuously generates new neurons throughout life. Neural stem cells (type B1 cells) along the lateral ventricle become activated, self-renew, and give rise to proliferating precursors which progress along the neurogenic lineage from intermediate progenitors (type C cells) to neuroblasts (type A cells). Neuroblasts proliferate and migrate into the olfactory bulb and differentiate into different interneuronal types. Multiple factors regulate each step of this process. Newly generated olfactory bulb interneurons are an important relay station in the olfactory circuits, controlling social recognition, reproductive behavior, and parental care. Those behaviors are strongly sexually dimorphic and changes throughout life from puberty through aging and in the reproductive age during estrous cycle and gestation. Despite the key role of sex hormones in regulating those behaviors, their contribution in modulating adult neurogenesis in V-SVZ is underestimated. Here, we compare the literature highlighting the sexual dimorphism and the differences across the physiological phases of the animal for the different cell types and steps through the neurogenic lineage.
Collapse
Affiliation(s)
- Giovanna Ponti
- Department of Veterinary Sciences, University of Turin, Grugliasco,Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy
- *Correspondence: Giovanna Ponti,
| | - Alice Farinetti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Li Q, Michaud M, Shankar R, Canosa S, Schwartz M, Madri JA. MMP-2: A modulator of neuronal precursor activity and cognitive and motor behaviors. Behav Brain Res 2017; 333:74-82. [DOI: 10.1016/j.bbr.2017.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
|
5
|
The role of endothelial HIF-1 αin the response to sublethal hypoxia in C57BL/6 mouse pups. J Transl Med 2017; 97:356-369. [PMID: 28092362 DOI: 10.1038/labinvest.2016.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic sublethal hypoxia, a complication of premature birth, is associated with cognitive and motor handicaps. Responsiveness to and recovery from this hypoxic environment is dependent on induction of HIF-1 α in the cells affected. Microvascular endothelial-glial and microvascular endothelial-neuronal precursor interactions have been found to be dynamic and reciprocal, involving autocrine and paracrine signaling, with response and recovery correlated with baseline levels and levels of induction of HIF-1 α.To ascertain the roles of endothelial HIF-1 α in the responses of brain microvascular endothelial cells (EC) and neuronal precursors to hypoxia, we examined the effects of the presence and absence of endothelial HIF-1 α expression in culture and in cells comprising the subventricular zone (SVZ) and dentate gyrus under normoxic and hypoxic conditions. We used C57BL/6 WT and EC HIF-1 α -deficient mice and brain microvascular ECs isolated from these mice in western blots, immunofluorescence, and behavioral studies to examine the roles of EC HIF-1 α behaviors of endothelial and neuronal precursor cells (NPCs) in SVZ and hippocampal tissues under normoxic and hypoxic conditions and behaviors of these mice in open field activity tests. Analyses of ECs and SVZ and dentate gyrus tissues revealed effects of the absence of endothelial HIF-1 α on proliferation and apoptosis as well as open field activity, with both ECs and neuronal cells exhibiting decreased proliferation, increased apoptosis, and pups exhibiting gender-specific differences in open field activities. Our studies demonstrate the autocrine and paracrine effects of EC HIF-1 α-modulating proliferative and apoptotic behaviors of EC and NPC in neurogenic regions of the brain and gender-specific behaviors in normoxic and hypoxic settings.
Collapse
|
6
|
Nouri F, Salehinejad P, Nematollahi-Mahani SN, Kamarul T, Zarrindast MR, Sharifi AM. Deferoxamine Preconditioning of Neural-Like Cells Derived from Human Wharton's Jelly Mesenchymal Stem Cells as a Strategy to Promote Their Tolerance and Therapeutic Potential: An In Vitro Study. Cell Mol Neurobiol 2016; 36:689-700. [PMID: 26242172 DOI: 10.1007/s10571-015-0249-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/26/2015] [Indexed: 01/22/2023]
Abstract
Transplantation of neural-like cells is considered as a promising therapeutic strategy developed for neurodegenerative disease in particular for ischemic stroke. Since cell survival is a major concern following cell implantation, a number of studies have underlined the protective effects of preconditioning with hypoxia or hypoxia mimetic pharmacological agents such as deferoxamine (DFO), induced by activation of hypoxia inducible factor-1 (HIF-1) and its target genes. The present study has investigated the effects of DFO preconditioning on some factors involved in cell survival, angiogenesis, and neurogenesis of neural-like cells derived from human Wharton's jelly mesenchymal stem cells (HWJ-MSCs) in presence of hydrogen peroxide (H2O2). HWJ-MSCs were differentiated toward neural-like cells for 14 days and neural cell markers were identified using immunocytochemistry. HWJ-MSC-derived neural-like cells were then treated with 100 µM DFO, as a known hypoxia mimetic agent for 48 h. mRNA and protein expression of HIF-1 target genes including brain-derived neurotrophic factors (BDNF) and vascular endothelial growth factor (VEGF) significantly increased using RT-PCR and Western blotting which were reversed by HIF-1α inhibitor, while, gene expression of Akt-1, Bcl-2, and Bax did not change significantly but pAkt-1 was up-regulated as compared to poor DFO group. However, addition of H2O2 to DFO-treated cells resulted in higher resistance to H2O2-induced cell death. Western blotting analysis also showed significant up-regulation of HIF-1α, BDNF, VEGF, and pAkt-1, and decrease of Bax/Bcl-2 ratio as compared to poor DFO. These results may suggest that DFO preconditioning of HWJ-MSC-derived neural-like cells improves their tolerance and therapeutic potential and might be considered as a valuable strategy to improve cell therapy.
Collapse
Affiliation(s)
- Fatemeh Nouri
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Parvin Salehinejad
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Tunku Kamarul
- Tissue Engineering Group (TEG) and Research, National Orthopedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopedics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Reza Zarrindast
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Science, Tehran, Iran.
- Tissue Engineering Group (TEG) and Research, National Orthopedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopedics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Rocha-Ferreira E, Phillips E, Francesch-Domenech E, Thei L, Peebles DM, Raivich G, Hristova M. The role of different strain backgrounds in bacterial endotoxin-mediated sensitization to neonatal hypoxic-ischemic brain damage. Neuroscience 2015; 311:292-307. [PMID: 26515746 PMCID: PMC4675086 DOI: 10.1016/j.neuroscience.2015.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
Strain background plays a role in the response to hypoxia–ischemia. LPS sensitizes the immature brain to hypoxia–ischemia across several mouse strains. Vehicle injection may induce immune response and sensitization to hypoxia–ischemia.
Genetic background is known to influence the outcome in mouse models of human disease, and previous experimental studies have shown strain variability in the neonatal mouse model of hypoxia–ischemia. To further map out this variability, we compared five commonly used mouse strains: C57BL/6, 129SVJ, BALB/c, CD1 and FVB in a pure hypoxic–ischemic setup and following pre-sensitization with lipopolysaccharide (LPS). Postnatal day 7 pups were subjected to unilateral carotid artery occlusion followed by continuous 30 min 8% oxygen exposure at 36 °C. Twelve hours prior, a third of the pups received a single intraperitoneal LPS (0.6 μg/g) or a saline (vehicle) administration, respectively; a further third underwent hypoxia–ischemia alone without preceding injection. Both C57BL/6 and 129SVJ strains showed minimal response to 30 min hypoxia–ischemia alone, BALB/c demonstrated a moderate response, and both CD1 and FVB revealed the highest brain damage. LPS pre-sensitization led to substantial increase in overall brain infarction, microglial and astrocyte response and cell death in four of the five strains, with exception of BALB/c that only showed a significant effect with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Saline administration prior to hypoxia–ischemia resulted in an increase in inflammatory-associated markers, particularly in the astroglial activation of C57BL/6 mice, and in combined microglial activation and neuronal cell loss in FVB mice. Finally, two of the four strongly affected strains – C57BL/6 and CD1 – revealed pronounced contralateral astrogliosis with a neuroanatomical localization similar to that observed on the occluded hemisphere. Overall, the current findings demonstrate strain differences in response to hypoxia–ischemia alone, to stress associated with vehicle injection, and to LPS-mediated pre-sensitization, which partially explains the high variability seen in the neonatal mouse models of hypoxia–ischemia. These results can be useful in future studies of fetal/neonatal response to inflammation and reduced oxygen–blood supply.
Collapse
Affiliation(s)
- E Rocha-Ferreira
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK.
| | - E Phillips
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - E Francesch-Domenech
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - L Thei
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - D M Peebles
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - G Raivich
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - M Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| |
Collapse
|
8
|
Li Q, Tsuneki M, Krauthammer M, Couture R, Schwartz M, Madri JA. Modulation of Sox10, HIF-1α, Survivin, and YAP by Minocycline in the Treatment of Neurodevelopmental Handicaps following Hypoxic Insult. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [PMID: 26209807 DOI: 10.1016/j.ajpath.2015.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Premature infants are at an increased risk of developing cognitive and motor handicaps due to chronic hypoxia. Although the current therapies have reduced the incidence of these handicaps, untoward side effects abound. Using a murine model of sublethal hypoxia, we demonstrated reduction in several transcription factors that modulate expression of genes known to be involved in several neural functions. We demonstrate the induction of these genes by minocycline, a tetracycline antibiotic with noncanonical functions, in both in vitro and in vivo studies. Specifically, there was induction of genes, including Sox10, Hif1a, Hif2a, Birc5, Yap1, Epo, Bdnf, Notch1 (cleaved), Pcna, Mag, Mobp, Plp1, synapsin, Adgra2, Pecam1, and reduction in activation of caspase 3, all known to affect proliferation, apoptosis, synaptic transmission, and nerve transmission. Minocycline treatment of mouse pups reared under sublethal hypoxic conditions resulted in improvement in open field testing parameters. These studies demonstrate beneficial effects of minocycline treatment following hypoxic insult, document up-regulation of several genes associated with improved cognitive function, and support the possibility of minocycline as a potential therapeutic target in the treatment of neurodevelopmental handicaps observed in the very premature newborn population. Additionally, these studies may aid in further interpretation of the effects of minocycline in the treatment trials and animal model studies of fragile X syndrome and multiple sclerosis.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Masayuki Tsuneki
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; Division of Cancer Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Michael Krauthammer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Rachael Couture
- Department Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Schwartz
- Department Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
9
|
Sheldon RA, Lee CL, Jiang X, Knox RN, Ferriero DM. Hypoxic preconditioning protection is eliminated in HIF-1α knockout mice subjected to neonatal hypoxia-ischemia. Pediatr Res 2014; 76:46-53. [PMID: 24713818 PMCID: PMC4167022 DOI: 10.1038/pr.2014.53] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/16/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hypoxic preconditioning (HPc) protects the neonatal brain in the setting of hypoxia-ischemia (HI). The mechanisms of protection may depend on activation of hypoxia-inducible factor (HIF-1α). This study sought to clarify the role of HIF-1α after HPc and HI. METHODS To induce HPc, HIF-1α knockout and wild-type (WT) mice were exposed to hypoxia at postnatal day 6. At day 7, the mice underwent HI. Brain injury was determined by histology. HIF-1α, downstream targets, and markers of cell death were measured by western blot. RESULTS HPc protected the WT brain compared with WT without HPc, but did not protect the HIF-1α knockout brain. In WT, HIF-1α increased after hypoxia and after HI, but not with HPc. The HIF-1α knockout showed no change in HIF-1α after hypoxia, HI, or HPc/HI. After HI, spectrin 145/150 was higher in HIF-1α knockout, but after HPc/HI, it was higher in WT. Lysosome-associated membrane protein was higher in WT early after HI, but not later. After HPc/HI, lysosome-associated membrane protein was higher in HIF-1α knockout. CONCLUSION These results indicate that HIF-1α is necessary for HPc protection in the neonatal brain and may affect cell death after HI. Different death and repair mechanisms depend on the timing of HPc.
Collapse
Affiliation(s)
- R. Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, US
| | - Christina L. Lee
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
| | - Xiangning Jiang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, US
| | - Renatta N. Knox
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, US
- Department of Neurology, University of California San Francisco, San Francisco, CA, US
| |
Collapse
|
10
|
Li Q, Canosa S, Flynn K, Michaud M, Krauthammer M, Madri JA. Modeling the neurovascular niche: unbiased transcriptome analysis of the murine subventricular zone in response to hypoxic insult. PLoS One 2013; 8:e76265. [PMID: 24146847 PMCID: PMC3795763 DOI: 10.1371/journal.pone.0076265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/22/2013] [Indexed: 01/13/2023] Open
Abstract
Premature infants often experience chronic hypoxia, resulting in cognitive & motor neurodevelopmental handicaps. These sometimes devastating handicaps are thought to be caused by compromised neural precursor cell (NPC) repair/recovery resulting in variable central nervous system (CNS) repair/recovery. We have identified differential responses of two mouse strains (C57BL/6 & CD1) to chronic hypoxia that span the range of responsiveness noted in the premature human population. We previously correlated several CNS tissue and cellular behaviors with the different behavioral parameters manifested by these two strains. In this report, we use unbiased array technology to interrogate the transcriptome of the subventricular zone (SVZ) in these strains. Our results illustrate differences in mRNA expression in the SVZ of both C57BL/6 and CD1 mice following hypoxia as well as differences between C57BL/6 and CD1 SVZ under both normoxic and hypoxic conditions. Differences in expression were found in gene sets associated with Sox10-mediated neural functions that explain, in part, the differential cognitive and motor responsiveness to hypoxic insult. This may shed additional light on our understanding of the variable responses noted in the human premature infant population and facilitate early intervention approaches. Further interrogation of the differentially expressed gene sets will provide a more complete understanding of the differential responses to, and recovery from, hypoxic insult allowing for more informed modeling of the ranges of disease severity observed in the very premature human population.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sandra Canosa
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kelly Flynn
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael Michaud
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael Krauthammer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joseph A. Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
11
|
Roche B, Vanden-Bossche A, Normand M, Malaval L, Vico L, Lafage-Proust MH. Validated Laser Doppler protocol for measurement of mouse bone blood perfusion - response to age or ovariectomy differs with genetic background. Bone 2013; 55:418-26. [PMID: 23571049 DOI: 10.1016/j.bone.2013.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/15/2013] [Accepted: 03/30/2013] [Indexed: 12/29/2022]
Abstract
The physiological role of bone vascularization in bone metabolism begins to be understood; however, its involvement in pathological situations remains poorly explored. Bone blood supply depends on both vascular density and blood flow. However, in mice, the specific evaluation of perfusion in bone suffers from a lack of easy-handling measurement tools. In the present study, we first developed a Laser Doppler Perfusion Measurement (LDPM) protocol in mouse tibia, which we validated with ex vivo and in vivo experiments. Then we carried out a study associating both structural (vascular quantitative histomorphometry) and functional (LDPM) approaches. We studied the effects of aging in 4, 7 and 17 month-old male mice and the early effects of ovariectomy in 4 month-old females. Both studies were carried out in inbred mice (C57BL/6) and in mice of mixed background (129sv/CD1). The significant differences we observed between strains in unchallenged 4 month-old animals concerned both perfusion and vascular density and depended on gender. Additionally, the age-related bone loss observed in male mice was not temporally associated with vascular changes in either strain. Between 7 and 17 months, we did not find any decrease in bone vascular density or perfusion. In contrast, ovariectomy triggered early vascular structural and functional adaptations which differed between genetic backgrounds. We observed that bone vessel density did not generally account for bone perfusion levels. In conclusion, we describe here a LDPM-based experimental protocol which provides a reproducible quantitative evaluation of bone perfusion in mouse tibia, hence allowing intergroup comparisons. This integrative structural and functional approach of bone vascularization showed that bone vascular adaptation occurs during aging or after ovariectomy and is affected by the genetic background.
Collapse
Affiliation(s)
- Bernard Roche
- INSERM U1059, Université de Lyon, Saint-Etienne F-42023, France.
| | | | | | | | | | | |
Collapse
|
12
|
Liu S, Jia X, Li C, Han X, Yan W, Xing Y. CXCR7 silencing attenuates cell adaptive response to stromal cell derived factor 1α after hypoxia. PLoS One 2013; 8:e55290. [PMID: 23383139 PMCID: PMC3561379 DOI: 10.1371/journal.pone.0055290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/20/2012] [Indexed: 11/26/2022] Open
Abstract
Previous studies have shown that chemotactic factor stromal-cell derived factor 1α (SDF1α) promotes cell recovery from hypoxic injury via its main receptor C-X-C chemokine receptor type (CXCR) 4. However, the role of its new receptor CXCR7 on cell repair against hypoxia and cell response to SDF1α remains largely unknown. In this study, neurons induced from hippocampal progenitor cells were pre-conditioned in hypoxia for 4 h and subsequently monitored to investigate the function of SDF1α on cell repair after hypoxia. Neurons were assessed for their cell morphology, actin filament polymerization and migration capability. SDF1α protein levels increased significantly 1 h after hypoxia compared to control (P<0.01), and it reached a peak at 24 h after hypoxia. Moreover, addition of SDF1α promoted neurite outgrowth and actin filament polymerization both in normoxic and hypoxic cells compared to untreated cells. Cell migration showed a time-dependent increase with SDF1α stimulation in both groups, and hypoxic cells illustrated a significant augment at 0.5 h, 1 h and 12 h after SDF1α application compared to normoxic cells (P<0.01). CXCR7 expression also increased with time dependence after hypoxia and demonstrated a two-fold upregulation compared to control at 24 h after hypoxia. With CXCR7 silencing, axon elongation and actin filament polymerization induced by SDF1α were inhibited sharply both in normoxic and hypoxic cells. CXCR7 silencing also leads to reduced hypoxic cell migration at 0.5 h, 1 h, 12 h, 24 h and 36 h after SDF1α application (P<0.01), but it failed to reduce normoxic cell migration induced by SDF1α at 0.5 h, 1 h and 12 h (P>0.05). 24 h SDF1α stimulation led to higher ERK1/2 phosphorylation compared to control, and ERK1/2 phosphorylation increased more in hypoxic cells than that in normoxic cells. This study suggested that CXCR7 plays an important role on cell repair processing induced by SDF1α, and CXCR7 silencing attenuates cell adaptive response to acute SDF1α stimulation (≤12 h) after hypoxia.
Collapse
Affiliation(s)
- Sufang Liu
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaofeng Jia
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Changsheng Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Anesthesiology, Henan Anti-cancer Hospital, Zhengzhou, Henan Province, China
| | - Xuefei Han
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenhai Yan
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ying Xing
- Department of Physiology, School of Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
13
|
Kim JH, Choi KH, Jang YJ, Kim HN, Bae SS, Choi BT, Shin HK. Electroacupuncture preconditioning reduces cerebral ischemic injury via BDNF and SDF-1α in mice. Altern Ther Health Med 2013; 13:22. [PMID: 23356671 PMCID: PMC3562247 DOI: 10.1186/1472-6882-13-22] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/25/2013] [Indexed: 11/17/2022]
Abstract
Background This study was designed to determine if electroacupuncture (EA) preconditioning improves tissue outcome and functional outcome following experimentally induced cerebral ischemia in mice. In addition, we investigated whether the expression of brain-derived neurotrophic factor (BDNF) and stromal cell derived factor-1α (SDF-1α) and infarct volume were related with improvement in neurological and motor function by interventions in this study. Methods After treatment with EA at the acupoints ‘Baihui (GV20)’ and ‘Dazhui (GV14)’ for 20 min, BDNF was assessed in the cortical tissues based on Western blot and the SDF-1α and vascular endothelial growth factor (VEGF) levels in the plasma determined by ELISA. To assess the protective effects of EA against ischemic injury, the mice received once a day 20 min EA preconditioning for three days prior to the ischemic event. Focal cerebral ischemia was then induced by photothrombotic cortical ischemia. Infarct volumes, neurobehavioral deficit and motor deficit were evaluated 24 h after focal cerebral ischemia. Results The expression of BDNF protein increased significantly from 6 h, reaching a plateau at 12 h after the end of EA treatment in the cerebral cortex. Furthermore, SDF-1α, not VEGF, increased singnificantly from 12 h to 48 h after EA stimulation in the plasma. Moreover, EA preconditioning reduced the infarct volume by 43.5% when compared to control mice at 24 h after photothrombotic cortical ischemia. Consistent with a smaller infarct size, EA preconditioning showed prominent improvement of neurological function and motor function such as vestibule-motor function, sensori-motor function and asymmetric forelimb use. The expression of BDNF colocalized within neurons and SDF-1α colocalized within the cerebral vascular endothelium was observed throughout the ischemic cortex by EA. Conclusions Pretreatment with EA increased the production of BDNF and SDF-1α, which elicited protective effects against focal cerebral ischemia. These results suggest a novel mechanism of EA pretreatment-induced tolerance against cerebral ischemic injury.
Collapse
|
14
|
Schneider C, Krischke G, Rascher W, Gassmann M, Trollmann R. Systemic hypoxia differentially affects neurogenesis during early mouse brain maturation. Brain Dev 2012; 34:261-73. [PMID: 21824737 DOI: 10.1016/j.braindev.2011.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebral tissue oxygen level modifies crucial processes of neurogenesis, glial and neuronal development during physiological and hypoxic conditions. Whether hypoxia-sensitive factors such as doublecortin (DCX) and hypoxia-inducible transcription factor (HIF)-regulated CXCR4 and SDF-1 modify and activate adaptation to hypoxia in developing brain is not well understood. Present study investigated maturational regulation of oxygen-sensitive developmental genes and proteins in developing mouse brain in relation to the degree of hypoxia. METHODS Physiological expression of HIF-1, CXCR4, SDF-1 and DCX were analyzed in the brain of C57/BL6 mice (P0-P60). In addition, mice (P0, P7) were exposed to normoxia, acute (8% O(2), 6 h) or chronic hypoxia (10% O(2), 7 d) followed by reoxygenation. Gene expression was analyzed by quantitative PCR, proteins were quantified by Western blot analysis and immunohistochemistry. RESULTS Cerebral HIF-1α protein, CXCR4 and DCX mRNA levels showed maturational stage-related peak levels at P0/P1, whereas SDF-1 mRNA levels were highest at P17. CXCR4 and SDF-1 mRNA levels were not altered in response to hypoxia. Whereas DCX mRNA levels significantly increased during acute hypoxia, down-regulation of DCX transcripts was found in response to chronic hypoxia compared to controls, and these changes were related to specifically vulnerable brain regions. CONCLUSIONS Maturational stage-related dynamic changes of HIF-1α, CXCR4, SDF-1 and DCX may reflect involvement of hypoxia-regulated systems in important developmental regulatory processes of the developing brain. Extending the knowledge of differential effects of hypoxia on neurogenesis and dynamic regulatory networks present data provide a basis for future research on gestational age-specific neuroprotective options.
Collapse
Affiliation(s)
- Christina Schneider
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
15
|
De Filippis L, Delia D. Hypoxia in the regulation of neural stem cells. Cell Mol Life Sci 2011; 68:2831-44. [PMID: 21584807 PMCID: PMC11115125 DOI: 10.1007/s00018-011-0723-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/08/2011] [Accepted: 05/03/2011] [Indexed: 12/26/2022]
Abstract
In aerobic organisms, oxygen is a critical factor in tissue and organ morphogenesis from embryonic development throughout post-natal life, as it regulates various intracellular pathways involved in cellular metabolism, proliferation, survival and fate. In the mammalian central nervous system, oxygen plays a critical role in regulating the growth and differentiation state of neural stem cells (NSCs), multipotent neuronal precursor cells that reside in a particular microenvironment called the neural stem cell niche and that, under certain physiological and pathological conditions, differentiate into fully functional mature neurons, even in adults. In both experimental and clinical settings, oxygen is one of the main factors influencing NSCs. In particular, the physiological condition of mild hypoxia (2.5-5.0% O(2)) typical of neural tissues promotes NSC self-renewal; it also favors the success of engraftment when in vitro-expanded NSCs are transplanted into brain of experimental animals. In this review, we analyze how O(2) and specifically hypoxia impact on NSC self-renewal, differentiation, maturation, and homing in various in vitro and in vivo settings, including cerebral ischemia, so as to define the O(2) conditions for successful cell replacement therapy in the treatment of brain injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lidia De Filippis
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | |
Collapse
|
16
|
Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche. Blood 2011; 118:1534-43. [DOI: 10.1182/blood-2011-01-332890] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Hypoxia is emerging as an important characteristic of the hematopoietic stem cell (HSC) niche, but the molecular mechanisms contributing to quiescence, self-renewal, and survival remain elusive. Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis and hematopoiesis. Its expression is commonly regulated by hypoxia-inducible factors (HIF) that are functionally induced in low-oxygen conditions and that activate transcription by binding to hypoxia-response elements (HRE). Vegfa is indispensable for HSC survival, mediated by a cell-intrinsic, autocrine mechanism. We hypothesized that a hypoxic HSC microenvironment is required for maintenance or up-regulation of Vegfa expression in HSCs and therefore crucial for HSC survival. We have tested this hypothesis in the mouse model Vegfaδ/δ, where the HRE in the Vegfa promoter is mutated, preventing HIF binding. Vegfa expression was reduced in highly purified HSCs from Vegfaδ/δ mice, showing that HSCs reside in hypoxic areas. Loss of hypoxia-regulated Vegfa expression increases the numbers of phenotypically defined hematopoietic stem and progenitor cells. However, HSC function was clearly impaired when assessed in competitive transplantation assays. Our data provide further evidence that HSCs reside in a hypoxic microenvironment and demonstrate a novel way in which the hypoxic niche affects HSC fate, via the hypoxia-VEGFA axis.
Collapse
|
17
|
GSK-3β: a signaling pathway node modulating neural stem cell and endothelial cell interactions. Angiogenesis 2011; 14:173-85. [PMID: 21253820 DOI: 10.1007/s10456-011-9201-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 01/06/2011] [Indexed: 12/14/2022]
Abstract
The neurogenic areas of the brain are highly organized structures in which there is dynamic reciprocal modulation of neural stem cells (NSC) and microvascular endothelial cells (BEC) resulting in control of neural stem cell and vascular proliferation, survival and differentiation throughout the life of the individual. Select molecules such as GSK-3β, functioning as signaling nodes, and their downstream signaling components including HIF-1α, HIF-2α and β-catenin participate in regulating and orchestrating the diverse responses involved in this complex process. In this report we demonstrate GSK-3β's role as a signaling node in two mouse strains (C57BL/6, which have been found to respond to and recover from a hypoxic insult from P3 to P11 poorly and CD-1, which have been found to respond to and recover from a hypoxic insult from P3 to P11 well both in vivo and in vitro) which mimic the wide range of responsiveness to hypoxic insult observed in the very low birth weight premature infant population. Differences in levels of neural stem cell and microvascular endothelial cell GSK-3β activation, β-catenin serine phosphorylation, HIF-1α and 2α, BDNF, SDF-1 and VEGF, β-III-tubulin and cleaved notch-1 expression in C57BL/6 and CD-1 subventricular zone tissues, and cultured NSC and BEC were noted. Specifically, CD1 pups, SVZ tissues and isolated NSC and BEC exhibit less GSK-3β and β-catenin serine phoslphorylation and greater HIF-1α and 2α, BDNF, SDF-1 and VEGF, β-III-tubulin and cleaved notch-1 expression compared to C57BL/6. Correlating with these changes were differences of several neural stem cell and microvascular endothelial cell behaviors including proliferation, apoptosis, migration and differentiation with CD1 NSC exhibiting greater proliferation and migration and decreased apoptosis and differentiation and CD1 BEC exhibiting greater angiogenesis. Further, upon treatment with nanomolar concentrations of a GSK-3β inhibitor (SB412682), C57 NSC and BEC behaviors could be brought to CD1 levels, consistent with the concept of GSK-3β functioning as a multifunctional signaling pathway node, modulating several behaviors in these cells. Lastly, the therapeutic potential of targeting GSK-3β is discussed.
Collapse
|
18
|
Li Q, Liu J, Michaud M, Schwartz ML, Madri JA. Strain differences in behavioral and cellular responses to perinatal hypoxia and relationships to neural stem cell survival and self-renewal: Modeling the neurovascular niche. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2133-46. [PMID: 19815710 DOI: 10.2353/ajpath.2009.090354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Premature infants have chronic hypoxia, resulting in cognitive and motor neurodevelopmental handicaps caused by suboptimal neural stem cell (NSC) repair/recovery in neurogenic zones (including the subventricular and the subgranular zones). Understanding the variable central nervous system repair response is crucial to identifying "at risk" infants and to increasing survival and clinical improvement of affected infants. Using mouse strains found to span the range of responsiveness to chronic hypoxia, we correlated differential NSC survival and self-renewal with differences in behavior. We found that C57BL/6 (C57) pups displayed increased hyperactivity after hypoxic insult; CD-1 NSCs exhibited increased hypoxia-induced factor 1alpha (HIF-1alpha) mRNA and protein, increased HIF-1alpha, and decreased prolyl hydroxylase domain 2 in nuclear fractions, which denotes increased transcription/translation and decreased degradation of HIF-1alpha. C57 NSCs exhibited blunted stromal-derived factor 1-induced migratory responsiveness, decreased matrix metalloproteinase-9 activity, and increased neuronal differentiation. Adult C57 mice exposed to hypoxia from P3 to P11 exhibited learning impairment and increased anxiety. These findings support the concept that behavioral differences between C57 and CD-1 mice are a consequence of differential responsiveness to hypoxic insult, leading to differences in HIF-1alpha signaling and resulting in lower NSC proliferative/migratory and higher apoptosis rates in C57 mice. Information gained from these studies will aid in design and effective use of preventive therapies in the very low birth weight infant population.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023, USA
| | | | | | | | | |
Collapse
|
19
|
Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 2009; 132:2478-86. [PMID: 19567702 PMCID: PMC2732268 DOI: 10.1093/brain/awp177] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/21/2009] [Accepted: 05/24/2009] [Indexed: 11/12/2022] Open
Abstract
Brain glial cells, five times more prevalent than neurons, have recently received attention for their potential involvement in epileptic seizures. Microglia and astrocytes, associated with inflammatory innate immune responses, are responsible for surveillance of brain damage that frequently results in seizures. Thus, an intriguing suggestion has been put forward that seizures may be facilitated and perhaps triggered by brain immune responses. Indeed, recent evidence strongly implicates innate immune responses in lowering seizure threshold in experimental models of epilepsy, yet, there is no proof that they can play an independent role in initiating seizures in vivo. Here, we show that cortical innate immune responses alone produce profound increases of brain excitability resulting in focal seizures. We found that cortical application of lipopolysaccharide, binding to toll-like receptor 4 (TLR4), triples evoked field potential amplitudes and produces focal epileptiform discharges. These effects are prevented by pre-application of interleukin-1 receptor antagonist. Our results demonstrate how the innate immune response may participate in acute seizures, increasing neuronal excitability through interleukin-1 release in response to TLR4 detection of the danger signals associated with infections of the central nervous system and with brain injury. These results suggest an important role of innate immunity in epileptogenesis and focus on glial inhibition, through pharmacological blockade of TLR4 and the pro-inflammatory mediators released by activated glia, in the study and treatment of seizure disorders in humans.
Collapse
Affiliation(s)
- Krista M. Rodgers
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Mark R. Hutchinson
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
- 2 Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Alexis Northcutt
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Steven F. Maier
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Linda R. Watkins
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| | - Daniel S. Barth
- 1 Department of Psychology and Neuroscience, University of Colorado, UCB 345 Boulder, CO 80309, USA
| |
Collapse
|
20
|
Buhimschi CS, Baumbusch MA, Dulay AT, Oliver EA, Lee S, Zhao G, Bhandari V, Ehrenkranz RA, Weiner CP, Madri JA, Buhimschi IA. Characterization of RAGE, HMGB1, and S100beta in inflammation-induced preterm birth and fetal tissue injury. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:958-75. [PMID: 19679874 DOI: 10.2353/ajpath.2009.090156] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immune activation represents an adaptive reaction triggered by both noxious exogenous (microbes) and endogenous [high mobility group box-1 protein (HMGB1), S100 calcium binding proteins] inducers of inflammation. Cell stress or necrosis lead the release of HMGB1 and S100 proteins in the extracellular compartment where they act as damage-associated molecular pattern molecules (or alarmins) by engaging the receptor for advanced glycation end-products (RAGE). Although the biology of RAGE is dictated by the accumulation of damage-associated molecular pattern molecules at sites of tissue injury, the role of RAGE in mediating antenatal fetal injury remains unknown. First, we studied the relationships at birth between the intensity of human fetal inflammation and sRAGE (an endogenous RAGE antagonist), HMGB1, and S100beta protein. We found significantly lower sRAGE in human fetuses that mounted robust inflammatory responses. HMGB1 levels correlated significantly with levels of interleukin-6 and S100beta in fetal circulation. We then evaluated the levels and areas of tissue expression of RAGE, HMGB1, and S100beta in specific organs of mouse fetuses on E16. Using an animal model of endotoxin-induced fetal damage and preterm birth, we determined that inflammation induces a significant change in expression of RAGE and HMGB1, but not S100beta, at sites of tissue damage. Our findings indicate that RAGE and HMGB1 may be important mediators of cellular injury in fetuses delivered in the setting of inflammation-induced preterm birth.
Collapse
Affiliation(s)
- Catalin S Buhimschi
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
VEGF-A and Semaphorin3A: modulators of vascular sympathetic innervation. Dev Biol 2009; 334:119-32. [PMID: 19631637 DOI: 10.1016/j.ydbio.2009.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 01/02/2023]
Abstract
Sympathetic nerve activity regulates blood pressure by altering peripheral vascular resistance. Variations in vascular sympathetic innervation suggest that vascular-derived cues promote selective innervation of particular vessels during development. As axons extend towards peripheral targets, they migrate along arterial networks following gradients of guidance cues. Collective ratios of these gradients may determine whether axons grow towards and innervate vessels or continue past non-innervated vessels towards peripheral targets. Utilizing directed neurite outgrowth in a three-dimensional (3D) co-culture, we observed increased axon growth from superior cervical ganglion explants (SCG) towards innervated compared to non-innervated vessels, mediated in part by vascular endothelial growth factor (VEGF-A) and Semaphorin3A (Sema3A) which both signal via neuropilin-1 (Nrp1). Exogenous VEGF-A, delivered by high-expressing VEGF-A-LacZ vessels or by rhVEGF-A/alginate spheres, increased sympathetic neurite outgrowth while exogenous rhSema3A/Fc decreased neurite outgrowth. VEGF-A expression is similar between the innervated and non-innervated vessels examined. Sema3A expression is higher in non-innervated vessels. Spatial gradients of Sema3A and VEGF-A may promote differential Nrp1 binding. Vessels expressing high levels of Sema3A favor Nrp1-PlexinA1 signaling, producing chemorepulsive cues limiting sympathetic neurite outgrowth and vascular innervation; while low Sema3A expressing vessels favor Nrp1-VEGFR2 signaling providing chemoattractive cues for sympathetic neurite outgrowth and vascular innervation.
Collapse
|
22
|
Scafidi J, Fagel DM, Ment LR, Vaccarino FM. Modeling premature brain injury and recovery. Int J Dev Neurosci 2009; 27:863-71. [PMID: 19482072 DOI: 10.1016/j.ijdevneu.2009.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022] Open
Abstract
Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain.
Collapse
Affiliation(s)
- Joey Scafidi
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The last decade has seen a paradigm change in that tumor stroma contributes to malignant tumor progression in a manner comparable to genetic and epigenetic changes within cancer cells. This review summarizes recent novel insights into how inflammatory conditions stimulate the formation and expansion of blood and lymphatic vessels within tumors and, thus, allow tumors to grow, to gain invasive capabilities, and to finally seed metastasis in distant organs. RECENT FINDINGS Different cancer types have a highly defined microenvironment, which is composed of cancer-associated fibroblasts, blood vessel and lymphatic endothelial cells, pericytes, and a heterogeneous infiltrate of cells of the immune system. In addition to the local stimulation of tumor angiogenesis and tumor lymphangiogenesis, cytokines released by the primary tumor and by the immune cell infiltrate also instruct bone marrow-derived cells to colonize distant organs and to prepare these sites for future metastasis. SUMMARY Inflammatory reactions coinciding with carcinogenesis can be visualized by the presence of specific bone marrow-derived, inflammatory cells in patients' peripheral blood. Recent findings suggest that such inflammatory fingerprints may better define the inflammatory nature of the primary malignancy and, thus, allow the design of therapeutic strategies targeting the protumorigenic immune cell stroma compartment.
Collapse
|