1
|
Laprairie RB, Bagher AM, Rourke JL, Zrein A, Cairns EA, Kelly MEM, Sinal CJ, Kulkarni PM, Thakur GA, Denovan-Wright EM. Positive allosteric modulation of the type 1 cannabinoid receptor reduces the signs and symptoms of Huntington's disease in the R6/2 mouse model. Neuropharmacology 2019; 151:1-12. [PMID: 30940536 DOI: 10.1016/j.neuropharm.2019.03.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by motor, cognitive, and behavioural changes. One of the earliest changes to occur in HD is a reduction in cannabinoid 1 receptor (CB1) levels in the striatum, which is strongly correlated with HD pathogenesis. CB1 positive allosteric modulators (PAM) enhance receptor affinity for, and efficacy of activation by, orthosteric ligands, including the endocannabinoids anandamide and 2-arachidonoylglycerol. The goal of this study was to determine whether the recently characterized CB1 allosteric modulators GAT211 (racemic), GAT228 (R-enantiomer), and GAT229 (S-enantiomer), affected the signs and symptoms of HD. GAT211, GAT228, and GAT229 were evaluated in normal and HD cell models, and in a transgenic mouse model of HD (7-week-old male R6/2 mice, 10 mg/kg/d, 21 d, i.p.). GAT229 was a CB1 PAM that improved cell viability in HD cells and improved motor coordination, delayed symptom onset, and normalized gene expression in R6/2 HD mice. GAT228 was an allosteric agonist that did not enhance endocannabinoid signaling or change symptom progression in R6/2 mice. GAT211 displayed intermediate effects between its enantiomers. The compounds used here are not drugs, but probe compounds used to determine the potential utility of CB1 PAMs in HD. Changes in gene expression, and not protein, were quantified in R6/2 HD mice because HD pathogenesis is associated with dysregulation of mRNA levels. The data presented here provide the first proof of principle for the use of CB1 PAMs to treat the signs and symptoms of HD.
Collapse
Affiliation(s)
- Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Canada; Department of Pharmacology, Dalhousie University, Canada
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University,Saudi Arabia; Department of Pharmacology, Dalhousie University, Canada
| | - Jillian L Rourke
- Department of Pharmacology, Dalhousie University, Canada; Department of Chemistry & Biochemistry, Mount Allison University, Canada
| | - Adel Zrein
- Department of Pharmacology, Dalhousie University, Canada
| | | | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Canada
| | | | - Pushkar M Kulkarni
- Center for Drug Discovery, Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, USA
| | - Ganesh A Thakur
- Center for Drug Discovery, Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, USA
| | | |
Collapse
|
2
|
Abstract
Huntington's disease (HD) is characterized by a significant loss of striatal neurons that project to the globus pallidus and substantia nigra, together with loss of cortical projection neurons in varying regions. Mutant huntingtin is suggested to drive the pathogenesis partially by downregulating corticostriatal brain-derived neurotrophic factor (BDNF) levels and signaling. Neurotrophic factors are endogenous peptides that promote the survival and maintenance of neurons. BDNF and other neurotrophic factors have shown neuroprotective benefits in various animal models of neurodegeneration, and are interesting candidates to protect the cell populations that are destined to die in HD. In an attempt to enhance the delivery of neurotrophic factors, several methods have been established to deliver long-term neurotrophic factor gene therapy to human target tissues. This chapter discusses two alternative approaches that have been shown to have potential to deliver neurotrophic factors as a neuroprotective gene therapy for HD. The methods are (1) ex vivo approach where encapsulated cells engineered to express neurotrophic factor are inserted into brain parenchyma or ventricle, and (2) in vivo viral vector therapy, in which viral vector is injected into desired brain area to express gene of interest in the host cells.
Collapse
|
3
|
Tosolini AP, Sleigh JN. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:405. [PMID: 29270111 PMCID: PMC5725447 DOI: 10.3389/fnmol.2017.00405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Glorioso JC, Cohen JB, Carlisle DL, Munoz-Sanjuan I, Friedlander RM. Moving toward a gene therapy for Huntington's disease. Gene Ther 2016; 22:931-3. [PMID: 26633828 DOI: 10.1038/gt.2015.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J C Glorioso
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J B Cohen
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D L Carlisle
- Department of Neurological Surgery, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - I Munoz-Sanjuan
- CHDI Foundation/CHDI Management, Los Angeles, CA, USA. E-mail:
| | - R M Friedlander
- Department of Neurological Surgery, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N, Li M, Pappa A, Martinez-Fong D, Del Razo LM, Quintanilla-Vega B, Franco R. Antioxidant gene therapy against neuronal cell death. Pharmacol Ther 2014; 142:206-30. [PMID: 24333264 PMCID: PMC3959583 DOI: 10.1016/j.pharmthera.2013.12.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy.
Collapse
Affiliation(s)
- Juliana Navarro-Yepes
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Department of Toxicology, CINVESTAV-IPN, Mexico City, Mexico
| | - Laura Zavala-Flores
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Fang Wang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Maciej Skotak
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Namas Chandra
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis, Greece
| | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States.
| |
Collapse
|
7
|
Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol 2012; 46:430-66. [PMID: 22944909 PMCID: PMC3461214 DOI: 10.1007/s12035-012-8316-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/13/2022]
Abstract
Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.
Collapse
Affiliation(s)
- Pawel M Switonski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
8
|
Ramaswamy S, Kordower JH. Gene therapy for Huntington's disease. Neurobiol Dis 2011; 48:243-54. [PMID: 22222669 DOI: 10.1016/j.nbd.2011.12.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease for which there is no cure. Therapies that are efficacious in animal models have to date shown benefit for humans. One potential powerful approach is gene therapy. The ideal method of administration of gene therapy has been hotly debated and viral vectors have provided one method of long-term and wide-spread delivery to the brain. Trophic factors to protect cells from degeneration and RNAi to reduce mutant huntingtin (mHtt) protein expression are 2 main classes of compounds that demonstrate benefit in animal models. This review will examine some commonly used adeno-associated viral (AAV) vectors and discuss some therapies that hold promise for HD.
Collapse
Affiliation(s)
- Shilpa Ramaswamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
9
|
Arregui L, Benítez JA, Razgado LF, Vergara P, Segovia J. Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington's disease delays the onset of the motor phenotype. Cell Mol Neurobiol 2011; 31:1229-43. [PMID: 21681558 DOI: 10.1007/s10571-011-9725-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms. The most characteristic structural feature of this disease is neurodegeneration accompanied by gliosis in the striatum. BDNF has been proposed to protect striatal neurons from degeneration, because it is an important survival factor for these neurons from development to adulthood. Considering the extensive gliosis and the survival effects of BDNF, we constructed an adenovirus to express a BDNF cDNA in astrocyte cells using a promoter of the glial fibrillary acidic protein gene. Cells stably transfected in vitro with a BDNF cDNA driven by this promoter expressed BDNF and responded to external stimuli increasing BDNF production. When the vector was applied into the striata of mice transgenic for HD, long-term expression of the transgene was observed, associated with a delay of onset of the motor phenotype of the R6/2 HD transgenic mice. The present data indicate that the striatal expression of BDNF is a potential adjuvant for the treatment of HD.
Collapse
Affiliation(s)
- Leticia Arregui
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional # 2508, 07360 Mexico, DF, Mexico
| | | | | | | | | |
Collapse
|
10
|
Abstract
Huntingtin, the protein that when mutated causes Huntington disease (HD), has many known interactors and participates in diverse cellular functions. Mutant Htt (mHtt) engages in a variety of aberrant interactions that lead to pathological gain of toxic functions as well as loss of normal functions. The broad symptomatology of HD, including diminished voluntary motor control, cognitive decline, and psychiatric disturbances, reflects the multifaceted neuropathology. Although currently available therapies for HD focus on symptom management, the autosomal dominant cause and the adult onset make this disease an ideal candidate for genetic intervention. A variety of gene therapy approaches have been tested in mouse models of HD, ranging from those aimed at ameliorating downstream pathology or replacing lost neuronal populations to more upstream strategies to reduce mHtt levels. Here the authors review the results of these preclinical trials.
Collapse
Affiliation(s)
- Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
11
|
Demeestere J, Vandenberghe W. Experimental surgical therapies for Huntington's disease. CNS Neurosci Ther 2010; 17:705-13. [PMID: 21199443 DOI: 10.1111/j.1755-5949.2010.00209.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by abnormal movement, cognitive decline, and psychiatric disturbance. HD is caused by a trinucleotide repeat expansion in the HTT gene and a corresponding neurotoxic polyglutamine expansion in the huntingtin protein. There is currently no therapy to modify the progressive course of the disease, and symptomatic treatment options are limited. In this review we describe a diverse set of emerging experimental therapeutic strategies for HD: deep brain stimulation; delivery of neurotrophic factors; cell transplantation; HTT gene silencing using RNA interference or antisense oligonucleotides; and delivery of intrabodies. The common feature of these experimental therapies is that they all require a neurosurgical intervention, either for implantation of an electrode or for brain delivery of molecules, viruses or cells that do not cross the blood-brain barrier upon oral or intravenous administration. We summarize available data on the rationale, safety, efficacy, and intrinsic limitations of each of these approaches, focusing mainly on studies in HD patients and genetic animal models of HD. Although each of these strategies holds significant promise, their efficacy remains to be proven in HD patients.
Collapse
Affiliation(s)
- Jelle Demeestere
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|