1
|
Chang WL, Tegang K, Samuels BA, Saxe M, Wichmann J, David DJ, David IM, Augustin A, Fischer H, Golling S, Lamerz J, Roth D, Graf M, Zoffmann S, Santarelli L, Jagasia R, Hen R. Pharmacological Enhancement of Adult Hippocampal Neurogenesis Improves Behavioral Pattern Separation in Young and Aged Male Mice. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100419. [PMID: 39830600 PMCID: PMC11741898 DOI: 10.1016/j.bpsgos.2024.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
Background Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, posttraumatic stress disorder, dementia, and age-related cognitive decline. Although BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis, its significance as a pharmacological target has not been tested. Methods In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in young and aged mice for effects on BPS and anxiety-related behaviors. Results Chronic treatment with RO6871135 (7.5 mg/kg) increased adult hippocampal neurogenesis and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of adult hippocampal neurogenesis by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMKIIa, CaMKIIb, MAP2K6, and GSK-3β. An analog compound also demonstrated high affinity for CDK8, CaMKIIa, and GSK-3β. Conclusions These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS and point to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.
Collapse
Affiliation(s)
- Wei-li Chang
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| | | | | | | | - Juergen Wichmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Denis J. David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations, UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - Indira Mendez David
- Université Paris-Saclay, UVSQ, Centre de recherche en Epidémiologie et Santé des Populations, UMR 1018, CESP-Inserm, Team Moods, Faculté de Pharmacie, Bâtiment Henri MOISSAN, Orsay, France
| | - Angélique Augustin
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Holger Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sabrina Golling
- Roche Pharma Research and Early Development, Pharmaceutical Science, Translational PKPD and Clinical Pharmacology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens Lamerz
- Roche Pharma Research and Early Development, Predictive Modelling & Data Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Doris Roth
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Martin Graf
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sannah Zoffmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Small molecule research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - René Hen
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
2
|
Chang WL, Tegang K, Samuels BA, Saxe M, Wichmann J, David DJ, David IM, Augustin A, Fischer H, Golling S, Lamerz J, Roth D, Graf M, Zoffmann S, Santarelli L, Jagasia R, Hen R. Pharmacological Enhancement of Adult Hippocampal Neurogenesis Improves Behavioral Pattern Separation in Young and Aged Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578406. [PMID: 38352378 PMCID: PMC10862832 DOI: 10.1101/2024.02.01.578406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
BACKGROUND Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, PTSD, dementia, and age-related cognitive decline. While BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis (AHN), its significance as a pharmacological target has not been tested. METHODS In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis. One compound with a favorable profile, RO6871135, was then tested in BPS in mice. RESULTS Chronic treatment with RO6871135, 7.5 mg/kg increased AHN and improved BPS in a fear discrimination task in both young and aged mice. RO6871135 treatment also lowered innate anxiety-like behavior, which was more apparent in mice exposed to chronic corticosterone. Ablation of AHN by hippocampal irradiation supported a neurogenesis-dependent mechanism for RO6871135-induced improvements in BPS. To identify possible mechanisms of action, in vitro and in vivo kinase inhibition and chemical proteomics assays were performed. These tests indicated that RO6871135 inhibited CDK8, CDK11, CaMK2a, CaMK2b, MAP2K6, and GSK3b. An analog compound also demonstrated high affinity for CDK8, CaMK2a, and GSK3b. CONCLUSIONS These studies demonstrate a method for empirical identification and preclinical testing of novel neurogenic compounds that can improve BPS, and points to possible novel mechanisms that can be interrogated for the development of new therapies to improve specific endophenotypes such as impaired BPS.
Collapse
|
3
|
In vitro effects of H2O2 on neural stem cell differentiation. In Vitro Cell Dev Biol Anim 2022; 58:810-816. [DOI: 10.1007/s11626-022-00723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
|
4
|
Xiao Y, Sun Y, Ma X, Wang C, Zhang L, Wang J, Wang G, Li Z, Tian W, Zhao Z, Jing Q, Zhou J, Jing Z. MicroRNA-22 Inhibits the Apoptosis of Vascular Smooth Muscle Cell by Targeting p38MAPKα in Vascular Remodeling of Aortic Dissection. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1051-1062. [PMID: 33294292 PMCID: PMC7691156 DOI: 10.1016/j.omtn.2020.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 02/03/2023]
Abstract
MicroRNA 22 (miR-22) was found in diverse cardiovascular diseases to have a role in regulating multiple cellular processes. However, the regulatory role of miR-22 in aortic dissection (AD) was still unclear. The miR-22 expression in human aorta was explored. A series of mimic, inhibitor, or small interfering RNA (siRNA) plasmids were delivered into vascular smooth muscle cells (VSMCs) to explore the effects of miR-22 and p38 mitogen-activated protein kinase α (p38MAPKα) in controlling VSMC apoptosis in vitro. In addition, a mouse AD model was established, and histopathologic analyses were performed to evaluate the regulatory effects of miR-22. Reduced miR-22 and increased apoptosis of VSMCs was seen in human AD aorta. Downregulation of miR-22 increased the apoptosis of VSMCs in vitro. Bioinformatics analyses revealed that p38MAPKα was a target of miR-22. Inhibiting p38MAPKα expression could reverse the apoptosis of VSMCs induced by miR-22 downregulation. Knockdown of miR-22 in the AD mouse model significantly promoted the development of AD. Our data underscore the importance of vascular remodeling and VSMC function in AD. miR-22 may represent a new therapeutic approach for AD by regulating the apoptosis of VSMCs through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Yudong Sun
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China.,Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Ma
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Chen Wang
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Lei Zhang
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Jiannan Wang
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Guokun Wang
- Institution of Cardiac Surgery, Department of Cardiovascular Surgery, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zhenjiang Li
- Department of Vascular Surgery, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Wen Tian
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zhiqing Zhao
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Qing Jing
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Navy Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Lee JH, Paull TT. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol 2020; 32:101511. [PMID: 32244177 PMCID: PMC7115119 DOI: 10.1016/j.redox.2020.101511] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023] Open
Abstract
The Ataxia-telangiectasia mutated (ATM) kinase responds to DNA double-strand breaks and other forms of cellular stress, including reactive oxygen species (ROS). Recent work in the field has uncovered links between mitochondrial ROS and ATM activation, suggesting that ATM acts as a sensor for mitochondrial derived ROS and regulates ROS accumulation in cells through this pathway. In addition, characterization of cells from Ataxia-telangiectasia patients as well as ATM-deficient mice and cell models suggest a role for ATM in modulating mitochondrial gene expression and function. Here we review ROS responses related to ATM function, recent evidence for ATM roles in mitochondrial maintenance and turnover, and the relationship between ATM and regulation of protein homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Moreno-Cugnon L, Arrizabalaga O, Llarena I, Matheu A. Elevated p38MAPK activity promotes neural stem cell aging. Aging (Albany NY) 2020; 12:6030-6036. [PMID: 32243258 PMCID: PMC7185101 DOI: 10.18632/aging.102994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
Age-progressive neural stem cell (NSC) dysfunction leads to impaired neurogenesis, cognitive decline and the onset of age-related neurodegenerative pathologies. p38MAPK signalling pathway limits stem cell activity during aging in several tissues. Its role in NSCs remains controversial. In this work, we show that p38MAPK activity increases in NSCs with age in the subventricular zone (SVZ) and its pharmacological inhibition is sufficient to rejuvenate their activity in vitro. These data reveal a cell-autonomous role for p38MAPK increase in decreasing NSC homeostasis with age. This information shed light in the role of p38MAPK in NSC aging.
Collapse
Affiliation(s)
- Leire Moreno-Cugnon
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
| | - Olatz Arrizabalaga
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
| | - Irantzu Llarena
- Optical Spectroscopy Platform, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Ander Matheu
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain.,CIBERfes, Madrid, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Chottekalapanda RU, Kalik S, Gresack J, Ayala A, Gao M, Wang W, Meller S, Aly A, Schaefer A, Greengard P. AP-1 controls the p11-dependent antidepressant response. Mol Psychiatry 2020; 25:1364-1381. [PMID: 32439846 PMCID: PMC7303013 DOI: 10.1038/s41380-020-0767-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 01/10/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed drugs for mood disorders. While the mechanism of SSRI action is still unknown, SSRIs are thought to exert therapeutic effects by elevating extracellular serotonin levels in the brain, and remodel the structural and functional alterations dysregulated during depression. To determine their precise mode of action, we tested whether such neuroadaptive processes are modulated by regulation of specific gene expression programs. Here we identify a transcriptional program regulated by activator protein-1 (AP-1) complex, formed by c-Fos and c-Jun that is selectively activated prior to the onset of the chronic SSRI response. The AP-1 transcriptional program modulates the expression of key neuronal remodeling genes, including S100a10 (p11), linking neuronal plasticity to the antidepressant response. We find that AP-1 function is required for the antidepressant effect in vivo. Furthermore, we demonstrate how neurochemical pathways of BDNF and FGF2, through the MAPK, PI3K, and JNK cascades, regulate AP-1 function to mediate the beneficial effects of the antidepressant response. Here we put forth a sequential molecular network to track the antidepressant response and provide a new avenue that could be used to accelerate or potentiate antidepressant responses by triggering neuroplasticity.
Collapse
Affiliation(s)
- Revathy U. Chottekalapanda
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Salina Kalik
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Jodi Gresack
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Alyssa Ayala
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Melanie Gao
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Wei Wang
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Sarah Meller
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Ammar Aly
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Anne Schaefer
- 0000 0001 0670 2351grid.59734.3cFriedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
8
|
Kim JN, Kim BJ. Depolarization of pacemaker potentials by caffeic acid phenethyl ester in interstitial cells of Cajal from the murine small intestine. Can J Physiol Pharmacol 2019; 98:201-210. [PMID: 31689119 DOI: 10.1139/cjpp-2019-0452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells in the gastrointestinal (GI) tract and generate pacemaker potentials. In this study, we investigated the effects of caffeic acid phenethyl ester (CAPE) on the pacemaker potentials of ICCs from the mouse small or large intestine. Using the whole-cell patch-clamp configuration, we found that CAPE depolarized the pacemaker potentials of cultured ICCs from the murine small intestine in a dose-dependent manner. The estrogen receptor (ER) β antagonist PHTPP completely inhibited CAPE-induced depolarization, but the ERα antagonist BHPI did not. Intracellular GDP-β-S and pretreatment with Ca2+-free solution or thapsigargin also blocked CAPE-induced depolarization. To investigate the mechanisms of CAPE-mediated depolarization of ICCs, we used the nonselective cation channel (NSCC) inhibitor flufenamic acid, the Cl- channel blocker, mitogen-activated protein kinase (MAPK) inhibitors PD98059, SB203580, or SP600125, and PI3 kinase inhibitor LY294002. All inhibitors blocked the CAPE-induced pacemaker potential depolarization of ICCs. These results suggest that CAPE induces pacemaker potential depolarization through ERβ in a G protein, NSCC, Cl- channel, MAPK- and PI3 kinase dependent manner via intracellular and extracellular Ca2+ regulation in the murine small intestine. CAPE may therefore modulate GI motility by acting on ICCs in the murine small intestine.
Collapse
Affiliation(s)
- Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
9
|
Kase Y, Otsu K, Shimazaki T, Okano H. Involvement of p38 in Age-Related Decline in Adult Neurogenesis via Modulation of Wnt Signaling. Stem Cell Reports 2019; 12:1313-1328. [PMID: 31080114 PMCID: PMC6565990 DOI: 10.1016/j.stemcr.2019.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Neurogenesis in specific brain regions in adult mammals decreases with age. Progressive reduction in the proliferation of neural stem and progenitor cells (NS/PCs) is a primary cause of this age-associated decline. However, the mechanism responsible for this reduction is poorly understood. We identify p38 MAPK as a key factor in the proliferation of neural progenitor cells (NPCs) in adult neurogenic niches. p38 expression in adult NS/PCs is downregulated during aging. Deletion of p38α in NS/PCs specifically reduces the proliferation of NPCs but not stem cells. Conversely, forced expression of p38α in NS/PCs in the aged mouse subventricular zone (SVZ) restores NPC proliferation and neurogenesis, and prevents age-dependent SVZ atrophy. We also found that p38 is necessary for suppressing the expression of Wnt antagonists DKK1 and SFRP3, which inhibit the proliferation of NPCs. Age-related reduction in p38 thus leads to decreased adult neurogenesis via downregulation of Wnt signaling.
Collapse
Affiliation(s)
- Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, London SE5 9NU, UK
| | - Takuya Shimazaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
10
|
Shigiyama F, Hamanoue M, Kobayashi M, Takamatsu K. Cell-permeable p38 MAP kinase protects adult hippocampal neurons from cell death. Neurosci Lett 2019; 699:115-121. [PMID: 30735722 DOI: 10.1016/j.neulet.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/18/2019] [Accepted: 02/02/2019] [Indexed: 10/27/2022]
Abstract
p38 mitogen-activated protein (MAP) kinase (p38) is a member of the MAP kinase family. Previous reports using p38 chemical inhibitors have suggested that its activation contributes to hippocampal neuronal cell death rather than cell survival. In this study, we used both a cell-permeable p38 protein containing the HIV protein transduction domain (PTD) and cultured adult hippocampal neurons, which were differentiated from cultured adult hippocampal neural stem/progenitor cells (NPCs), to evaluate the direct function of p38 on adult hippocampal neurons. Our immunocytochemical experiments demonstrated that wild-type cell-permeable p38 protein prevents cell death of adult hippocampal neurons induced by a low glucose condition. Our findings indicate that cell-permeable p38 protein may be useful in preventing the degeneration of higher brain function occurring through hippocampal neuronal cell death, and furthermore, that the maintenance of intracellular p38 levels could be another therapeutic target for neurodegenerative diseases such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Fumiko Shigiyama
- Department of Physiology, Toho University Graduate School of Medicine, 143-8540, Tokyo, Japan
| | - Makoto Hamanoue
- Department of Physiology, Toho University Graduate School of Medicine, 143-8540, Tokyo, Japan; Department of Physiology, Toho University School of Medicine, 143-8540, Tokyo, Japan.
| | - Masaaki Kobayashi
- Department of Physiology, Toho University Graduate School of Medicine, 143-8540, Tokyo, Japan; Department of Physiology, Toho University School of Medicine, 143-8540, Tokyo, Japan
| | - Ken Takamatsu
- Department of Physiology, Toho University Graduate School of Medicine, 143-8540, Tokyo, Japan; Department of Physiology, Toho University School of Medicine, 143-8540, Tokyo, Japan
| |
Collapse
|
11
|
Notch1 promotes mouse spinal neural stem and progenitor cells proliferation via p-p38-pax6 induced cyclin D1 activation. Exp Cell Res 2018; 373:80-90. [DOI: 10.1016/j.yexcr.2018.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/09/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023]
|
12
|
Tan DQ, Suda T. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function. Antioxid Redox Signal 2018; 29:149-168. [PMID: 28708000 DOI: 10.1089/ars.2017.7273] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. CRITICAL ISSUES Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. FUTURE DIRECTIONS Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Darren Q Tan
- Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore
| |
Collapse
|
13
|
Hu W, Lu H, Wang S, Yin W, Liu X, Dong L, Chiu R, Shen L, Lu WJ, Lan F. Suppression of Nestin reveals a critical role for p38-EGFR pathway in neural progenitor cell proliferation. Oncotarget 2018; 7:87052-87063. [PMID: 27894083 PMCID: PMC5349970 DOI: 10.18632/oncotarget.13498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
The expression of intermediate filament Nestin is necessary for the neural progenitor cells (NPCs) to maintain stemness, but the underlying cellular and molecular mechanism remains unclear. In this study, we demonstrated that Nestin is required for the self-renew of NPCs through activating MAPK and EGFR pathways. Knockdown of Nestin by shRNA inhibited cell cycle progression and proliferation in mouse NPCs. Moreover, suppression of Nestin reduced expression of the epidermal growth factor receptor (EGFR) in NPCs and inhibited the mitogenic effects of EGF on these cells. Treatment of NPCs with p38-MAPK inhibitor PD169316 reversed cell cycle arrest caused by the knockdown of Nestin. Our findings indicate that Nestin promotes NPC proliferation via p38-MAPK and EGFR pathways, and reveals the necessity of these pathways in NPCs self-renewal.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenhan Yin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xujie Liu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China.,Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China.,Deparment of Radiological Medicine, Chongqing Medical University, Chongqing, China
| | - Lin Dong
- Department of Cell Biology Peking University Health Science Center, Beijing, China
| | - Richard Chiu
- Deparment of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Li Shen
- Department of Cell Biology Peking University Health Science Center, Beijing, China
| | - Wen-Jing Lu
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China.,Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China.,Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Hu Q, Khanna P, Ee Wong BS, Lin Heng ZS, Subhramanyam CS, Thanga LZ, Sing Tan SW, Baeg GH. Oxidative stress promotes exit from the stem cell state and spontaneous neuronal differentiation. Oncotarget 2017; 9:4223-4238. [PMID: 29423117 PMCID: PMC5790534 DOI: 10.18632/oncotarget.23786] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) play important roles in fundamental cellular processes such as proliferation and survival. Here we investigated the effect of oxidative stress on stem cell maintenance and neuronal differentiation in a human embryonic stem cell (hESC) model, Ntera2 (NT2). CM-H2DCFDA and DHE assays confirmed that the oxidizing agent paraquat could induce a high level of ROS in NT2 cells. Quantitative PCR, Western blotting and immunocytochemistry showed that paraquat-induced oxidative stress suppressed the expression of stemness markers, including NANOG, OCT4 and TDGF1, whereas it enhanced the spontaneous expression of neuronal differentiation markers such as PAX6, NEUROD1, HOXA1, NCAM, GFRA1 and TUJ1. The treated cells even exhibited a strikingly different morphology from control cells, extending out long neurite-like processes. The neurogenic effect of ROS on stem cell behaviour was confirmed by the observations that the expression of neuronal markers in the paraquat-treated cells was suppressed by an antioxidant while further enhanced by knocking down Nrf2, a key transcription factor associated with antioxidant signaling. Lastly, paraquat dose-dependently activated the neurogenic MAPK-ERK1/2, which can be reversed by the MEK1/2 inhibitor SL327. Our study suggests that excessive intracellular ROS can trigger the exit from stem cell state and promote the neuronal differentiation of hESCs, and that MAPK-ERK1/2 signaling may play a proactive role in the ROS-induced neuronal differentiation of hESCs.
Collapse
Affiliation(s)
- Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Belinda Shu Ee Wong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Zealyn Shi Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | | | - Lal Zo Thanga
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Sharon Wui Sing Tan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD 10, Singapore
| |
Collapse
|
15
|
Zega K, Jovanovic VM, Vitic Z, Niedzielska M, Knaapi L, Jukic MM, Partanen J, Friedel RH, Lang R, Brodski C. Dusp16 Deficiency Causes Congenital Obstructive Hydrocephalus and Brain Overgrowth by Expansion of the Neural Progenitor Pool. Front Mol Neurosci 2017; 10:372. [PMID: 29170629 PMCID: PMC5684737 DOI: 10.3389/fnmol.2017.00372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Hydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (Dusp16), which is known to negatively regulate mitogen-activated protein kinases (MAPKs) and which has never previously been implicated in brain development and disorders. Mouse mutants lacking a functional Dusp16 gene (Dusp16−/−) developed fully-penetrant congenital obstructive hydrocephalus together with brain overgrowth. The midbrain aqueduct in Dusp16−/− mutants was obstructed during mid-gestation by an expansion of neural progenitors, and during later gestational stages by neurons resulting in a blockage of cerebrospinal fluid (CSF) outflow. In contrast, the roof plate and ependymal cells developed normally. We identified a delayed cell cycle exit of neural progenitors in Dusp16−/− mutants as a cause of progenitor overproliferation during mid-gestation. At later gestational stages, this expanded neural progenitor pool generated an increased number of neurons associated with enlarged brain volume. Taken together, we found that Dusp16 plays a critical role in neurogenesis by balancing neural progenitor cell proliferation and neural differentiation. Moreover our results suggest that a lack of functional Dusp16 could play a central role in the molecular mechanisms linking brain overgrowth and hydrocephalus.
Collapse
Affiliation(s)
- Ksenija Zega
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Vukasin M Jovanovic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Zagorka Vitic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Magdalena Niedzielska
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Knaapi
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Marin M Jukic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Roland H Friedel
- Departments of Neuroscience and Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
16
|
Tumor Necrosis Factor Alpha Induces Neural Stem Cell Apoptosis Through Activating p38 MAPK Pathway. Neurochem Res 2016; 41:3052-3062. [PMID: 27528245 DOI: 10.1007/s11064-016-2024-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/20/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) is an essential cytokine that mediates cell death and has been shown to play a potential role in inducing neural stem cell (NSC) apoptosis. We have previously shown that TNF-α antagonist etanercept can suppress the transplanted NSC apoptosis induced by TNF-α in spinal cord injury (SCI) sites; however, the precise molecular mechanism remains unclear. This study aimed to investigate the signaling pathways responsible for TNF-α-induced apoptosis in NSCs. TNF-α treatment impairs cell viability and increases apoptosis of NSCs in concentration- and time-dependent manners. This is embodied in an increase in Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Additionally, TNF-α remarkably increased the expression of phosphatidylinositol p38 Mitogen-activated protein kinase (p38 MAPK) in NSCs. p38 MAPK regulates apoptosis, acting as an apoptotic signal due to TNF-α exposure. TNF-α-induced apoptosis was significantly alleviated by the p38 MAPK pathway inhibitor SB203580, as well as targeted inhibition of p38 gene in NSCs, or TNF-α antagonist etanercept. These results suggest that TNF-α induces NSCs apoptosis by activating the p38 MAPK signaling pathway and etanercept acts as an effective TNF-α antagonist to prevent p38 MAPK-dependent apoptosis induced by TNF-α in NSCs. Our research represents a potential gene targeting that can prevent unnecessary grafted cell death after transplantation into the SCI models.
Collapse
|
17
|
Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep 2016; 6:24279. [PMID: 27067799 PMCID: PMC4828673 DOI: 10.1038/srep24279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration.
Collapse
|
18
|
Yoshioka K, Namiki K, Sudo T, Kasuya Y. p38α controls self-renewal and fate decision of neurosphere-forming cells in adult hippocampus. FEBS Open Bio 2015; 5:437-44. [PMID: 26101740 PMCID: PMC4472823 DOI: 10.1016/j.fob.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 12/18/2022] Open
Abstract
Neural stem cells (NSC) from the adult hippocampus easily lose their activity in vitro. Inhibition of p38α enables successful long-term culture of adult hippocampus NSC. Inhibition of p38α can maintain a high neurogenic capacity for NSC. Neurogenic competence-related microRNAs are upregulated in NSC by p38α inhibition. In vitro expanded NSC by p38α inhibition are beneficial against brain damage.
Neural stem cells (NSC) from the adult hippocampus easily lose their activity in vitro. Efficient in vitro expansion of adult hippocampus-derived NSC is important for generation of tools for research and cell therapy. Here, we show that a single copy disruption or pharmacological inhibition of p38α enables successful long-term neurosphere culture of adult mouse hippocampal cells. Expanded neurospheres with high proliferative activity differentiated into the three neuronal lineages under differentiating conditions. Thus, inhibition of p38α can maintain adult hippocampal NSC activity in vitro.
Collapse
Affiliation(s)
- Kento Yoshioka
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kana Namiki
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tatsuhiko Sudo
- RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Corresponding author at: Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. Tel.: +81 43 226 2193; fax: +81 43 226 2196.
| |
Collapse
|
19
|
Maphis N, Xu G, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, Lamb BT, Bhaskar K. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 2015; 138:1738-55. [PMID: 25833819 DOI: 10.1093/brain/awv081] [Citation(s) in RCA: 398] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/27/2015] [Indexed: 12/14/2022] Open
Abstract
Pathological aggregation of tau is a hallmark of Alzheimer's disease and related tauopathies. We have previously shown that the deficiency of the microglial fractalkine receptor (CX3CR1) led to the acceleration of tau pathology and memory impairment in an hTau mouse model of tauopathy. Here, we show that microglia drive tau pathology in a cell-autonomous manner. First, tau hyperphosphorylation and aggregation occur as early as 2 months of age in hTauCx3cr1(-/-) mice. Second, CD45(+) microglial activation correlates with the spatial memory deficit and spread of tau pathology in the anatomically connected regions of the hippocampus. Third, adoptive transfer of purified microglia derived from hTauCx3cr1(-/-) mice induces tau hyperphosphorylation within the brains of non-transgenic recipient mice. Finally, inclusion of interleukin 1 receptor antagonist (Kineret®) in the adoptive transfer inoculum significantly reduces microglia-induced tau pathology. Together, our results suggest that reactive microglia are sufficient to drive tau pathology and correlate with the spread of pathological tau in the brain.
Collapse
Affiliation(s)
- Nicole Maphis
- 1 Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque NM 87131, USA
| | - Guixiang Xu
- 2 Department of Neurosciences, NC30, 9500 Euclid Avenue, Cleveland Clinic, Cleveland OH 44195, USA
| | - Olga N Kokiko-Cochran
- 2 Department of Neurosciences, NC30, 9500 Euclid Avenue, Cleveland Clinic, Cleveland OH 44195, USA
| | - Shanya Jiang
- 1 Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque NM 87131, USA
| | - Astrid Cardona
- 3 Department of Biology, University of Texas San Antonio, West Campus/Tobin lab MBT 1.216, San Antonio TX 78249, USA
| | | | - Bruce T Lamb
- 2 Department of Neurosciences, NC30, 9500 Euclid Avenue, Cleveland Clinic, Cleveland OH 44195, USA
| | - Kiran Bhaskar
- 1 Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque NM 87131, USA
| |
Collapse
|
20
|
Hamanoue M, Ikeda Y, Ogata T, Takamatsu K. Predominant expression of N-acetylglucosaminyltransferase V (GnT-V) in neural stem/progenitor cells. Stem Cell Res 2015; 14:68-78. [DOI: 10.1016/j.scr.2014.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/27/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022] Open
|
21
|
Singh V, Nand A, Sarita S. Universal screening platform using three-dimensional small molecule microarray based on surface plasmon resonance imaging. RSC Adv 2015. [DOI: 10.1039/c5ra15637h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we report a potent methodology for drug screening on a three-dimensional (3D) surface using a carbene based photo-cross-linking reaction.
Collapse
Affiliation(s)
- Vikramjeet Singh
- Center for Drug Delivery System
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Amita Nand
- National Center for Nanoscience and Technology
- Beijing 100190
- People’s Republic of China
- University of Chinese Academy
- of Sciences
| | | |
Collapse
|
22
|
Keilhoff G, Lucas B, Pinkernelle J, Steiner M, Fansa H. Effects of cerebrolysin on motor-neuron-like NSC-34 cells. Exp Cell Res 2014; 327:234-55. [PMID: 24997385 DOI: 10.1016/j.yexcr.2014.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/12/2014] [Accepted: 06/26/2014] [Indexed: 01/01/2023]
Abstract
Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL)--a proteolytic peptide fraction--were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL on motor neuron survival and neurite sprouting was tested by immunohistochemistry. CL had a temporary anti-proliferative but initially neuroprotective effect on OGD-stressed NSC-34 cells. High-dosed or repeatedly applied CL was deleterious for cell survival. CL amplified neurite reconstruction to limited extent, affected calpain-1 protein expression and influenced calpain-mediated spectrin cleavage as a function of Src expression. In organotypic spinal cord slice cultures, CL was not able to support motor neuron survival/neurite sprouting. Moreover, it hampered astroglia and microglia activities. The data suggest that CL may have only isolated positive effects on injured spinal motor neurons. High-dosed or accumulated CL seemed to have adverse effects in treatment of spinal cord injury. Further experiments are required to optimize the conditions for a safe clinical administration of CL in spinal cord injuries.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Benjamin Lucas
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Michael Steiner
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Hisham Fansa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Teutoburger Str. 50, D-33604 Bielefeld, Germany
| |
Collapse
|
23
|
Morimoto H, Iwata K, Ogonuki N, Inoue K, Atsuo O, Kanatsu-Shinohara M, Morimoto T, Yabe-Nishimura C, Shinohara T. ROS Are Required for Mouse Spermatogonial Stem Cell Self-Renewal. Cell Stem Cell 2013; 12:774-86. [DOI: 10.1016/j.stem.2013.04.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/21/2013] [Accepted: 03/29/2013] [Indexed: 12/24/2022]
|
24
|
Chen J, Guo Y, Cheng W, Chen R, Liu T, Chen Z, Tan S. High glucose induces apoptosis and suppresses proliferation of adult rat neural stem cells following in vitro ischemia. BMC Neurosci 2013; 14:24. [PMID: 23452440 PMCID: PMC3599336 DOI: 10.1186/1471-2202-14-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/27/2013] [Indexed: 01/13/2023] Open
Abstract
Background Post-stroke hyperglycemia appears to be associated with poor outcome from stroke, greater mortality, and reduced functional recovery. Focal cerebral ischemia data support that neural stem cells (NSCs) play an important role in post-ischemic repair. Here we sought to evaluate the negative effects of hyperglycemia on the cellular biology of NSCs following anoxia, and to test whether high glucose affects NSC recovery from ischemic injury. Results In this study, we used immortalized adult neural stem cells lines and we induced in vitro ischemia by 6 h oxygen and glucose deprivation (OGD) in an anaerobic incubator. Reperfusion was performed by returning cells to normoxic conditions and the cells were then incubated in experimental medium with various concentrations of glucose (17.5, 27.75, 41.75, and 83.75 mM) for 24 h. We found that high glucose (≥27.75 mM) exposure induced apoptosis of NSCs in a dose-dependent manner after exposure to OGD, using an Annexin V/PI apoptosis detection kit. The cell viability and proliferative activity of NSCs following OGD in vitro, evaluated with both a Cell Counting kit-8 (CCK-8) assay and a 5-ethynyl-2’-deoxyuridine (EdU) incorporation assay, were inhibited by high glucose exposure. Cell cycle analysis showed that high glucose exposure increased the percentage of cells in G0/G1-phase, and reduced the percentage of cells in S-phase. Furthermore, high glucose exposure was found to significantly induce the activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) and suppress extracellular signal-regulated kinase 1/2 (ERK1/2) activity. Conclusions Our results demonstrate that high glucose induces apoptosis and inhibits proliferation of NSCs following OGD in vitro, which may be associated with the activation of JNK/p38 MAPK pathways and the delay of G1-S transition in the cells.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Brain Function Repair and Regeneration of Guangdong, Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Aimo L, Mackenzie GG, Keenan AH, Oteiza PI. Gestational zinc deficiency affects the regulation of transcription factors AP-1, NF-κB and NFAT in fetal brain. J Nutr Biochem 2010; 21:1069-75. [PMID: 20092996 DOI: 10.1016/j.jnutbio.2009.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 09/03/2009] [Accepted: 09/14/2009] [Indexed: 01/25/2023]
Abstract
Transcription factors AP-1, nuclear factor κB (NF-κB) and NFAT are central to brain development by regulating the expression of genes that modulate cell proliferation, differentiation, apoptosis and synaptic plasticity. This work investigated the consequences of feeding zinc-deficient and marginal zinc diets to rat dams during gestation on the modulation of AP-1, NF-κB and NFAT in fetal brain. Sprague-Dawley rats were fed from gestation day (GD) 0 a control diet ad libitum (25 μg zinc/g diet, C), a zinc-deficient diet ad libitum (0.5 μg zinc/g diet, ZD), the control diet in the amounts eaten by the ZD rats (restrict fed, RF) or a diet containing a marginal zinc concentration ad libitum (10 μg zinc/g diet, MZD) until GD 19. AP-1-DNA binding was higher (50-190%) in nuclear fraction isolated from ZD, RF and MZD fetal brains compared to controls. In MZD fetal brain, high levels of activation of the upstream mitogen-activated protein kinases JNK and p38 and low levels of ERK phosphorylation were observed. Total levels of NF-κB and NFAT activation were higher or similar in the ZD and MZD groups than in controls, respectively. However, NF-κB- and NFAT-DNA binding in nuclear fractions was markedly lower in ZD and MZD fetal brain than in controls (50-80%). The latter could be related to zinc deficiency-associated alterations of the cytoskeleton, which is required for NF-κB and NFAT nuclear transport. In summary, suboptimal zinc nutrition during gestation could cause long-term effects on brain function, partially through a deregulation of transcription factors AP-1, NF-κB and NFAT.
Collapse
Affiliation(s)
- Lucila Aimo
- Department of Nutrition, University of California Davis, CA 95616, USA
| | | | | | | |
Collapse
|
26
|
Kim J, Wong PKY. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells 2010; 27:1987-98. [PMID: 19544430 DOI: 10.1002/stem.125] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ataxia-telangiectasia (A-T) is a genetic disorder caused by a mutation of the Atm gene, which controls DNA repair, cell cycling, and redox homeostasis. Even though oxidative stress has been implicated in the neurological anomalies in A-T, the effects of ATM loss on neural stem cell (NSC) survival has remained elusive. In this study, we investigated the effects of oxidative stress on NSC proliferation in an animal model for A-T neurodegeneration. We found that cultured subventricular zone neurosphere cells from Atm(-/-) mice show impaired proliferation, as well as intrinsic elevation of reactive oxygen species (ROS) levels, compared with those from Atm(+/+) mice. We also show that increasing the levels of ROS by H(2)O(2) treatment significantly reduces Atm(+/+) neurosphere formation and proliferation. In Atm(-/-) neurosphere cells, the Akt and Erk1/2 pathways are disrupted, together with enhanced activity of the p38 mitogen-activated protein kinase (MAPK). Treatment of these cells with the antioxidant N-acetyl-L-cysteine (NAC) or with a p38 MAPK inhibitor restores normal proliferation and reduced expression of p21(cip1) and p27(kip1) in the Atm(-/-) NSCs. These observations indicate that ATM plays a crucial role in NSC proliferation, by activating Akt and Erk1/2 pathways and by suppressing ROS-p38 MAPK signaling. Together, our results suggest that p38 MAPK signaling acts as a negative regulator of NSC proliferation in response to oxidative stress. These findings suggest a potential mechanism for neuronal cell loss as a result of oxidative stress in NSCs in progressive neurodegenerative diseases such as A-T.
Collapse
Affiliation(s)
- Jeesun Kim
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | | |
Collapse
|
27
|
Balu DT, Hodes GE, Hill TE, Ho N, Rahman Z, Bender CN, Ring RH, Dwyer JM, Rosenzweig-Lipson S, Hughes ZA, Schechter LE, Lucki I. Flow cytometric analysis of BrdU incorporation as a high-throughput method for measuring adult neurogenesis in the mouse. J Pharmacol Toxicol Methods 2008; 59:100-7. [PMID: 19121403 DOI: 10.1016/j.vascn.2008.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/04/2008] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The generation of new neurons occurs throughout adulthood in discrete brain regions, and may be regulated by neuropsychiatric diseases and therapeutic drug treatments. Most current methods that study this process measure the labeling of newborn cells by 5-bromo-2-deoxyuridine (BrdU) using immunohistochemical methods followed by the microscopic counting of BrdU positive cells. This method is time consuming and labor intensive, typically taking several weeks to analyze. METHODS Therefore, we characterized a method to measure BrdU incorporation in the adult mouse hippocampus in vivo by using flow cytometry, which normally allows analysis of data within a single day. RESULTS The present study compared multiple BrdU dosing and loading protocols to determine a dosing strategy that produced the best signal to noise ratio. BrdU incorporation was also compared across different brain regions. The method was sensitive to a number of experimental disease manipulations. Induction of type-1 diabetes and depletion of norepinephrine reduced hippocampal cell proliferation. In contrast, chronic administration of electroconvulsive shock, a somatic treatment for depression, as well as chronic treatment with the antidepressant fluoxetine elevated hippocampal cell proliferation. This increase in cell proliferation with fluoxetine was detected as early as 14 days into treatment. Moreover, comparing measures of cell proliferation obtained by immunohistochemical and flow cytometric methods within the same animals were convergent and significantly correlated to each other. Flow cytometry was also sufficiently sensitive to quantify the survival of newly born cells. DISCUSSION These experiments validate the utility of flow cytometry in analyzing hippocampal cell proliferation and survival in a reliable and high-throughput fashion. The speedy analysis afforded by flow cytometry lends itself to be utilized in novel drug discovery and physiology.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lectin panning method: the prospective isolation of mouse neural progenitor cells by the attachment of cell surface N-glycans to Phaseolus vulgaris erythroagglutinating lectin-coated dishes. Neuroscience 2008; 157:762-71. [PMID: 18952155 DOI: 10.1016/j.neuroscience.2008.09.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/24/2008] [Accepted: 09/29/2008] [Indexed: 02/05/2023]
Abstract
Retrospective isolation of neural progenitor cells (NPCs) may cause deterioration of the phenotype during the long-term cultivation. Therefore, prospective isolation is essential for understanding the exact characteristics of intact NPCs in the brain. However, few suitable specific cell surface antigens on NPCs that could be used for their prospective isolation are available. The present study demonstrated that within 60 min after initial plating, embryonic day 12 (E12) brain cells firmly attach to several types of lectin-coated culture wells, including Phaseolus vulgaris erythroagglutinating lectin (E-PHA), concanavalin A (Con A) and wheat germ agglutinin (WGA). Approximately 80% of the cells isolated from E-PHA-coated wells expressed the nestin antigen, which is a specific intracellular marker for NPCs and the ratio of 5-bromo-2'-deoxyuridine (BrdU)-positive/nestin-positive cells to the cells attached on the E-PHA-coated wells was significantly higher than that of the cells attached on the wells coated with other adhesive substrates. The cells that were isolated from the E-PHA-coated wells continued to attach to the well for 1 week, while those isolated from Con A- and WGA-coated wells lost their attachment after 6 days and 1 day, respectively. Furthermore, the cells isolated from the E-PHA-coated wells grew quite satisfactorily and formed numerous attached neurospheres. Their growth rate was almost equal to that observed in suspension cultures. These results indicate that the lectin panning method enables the prospective, quick and easy isolation of mouse NPCs without requiring a fluorescence-activated cell sorter (FACS) system.
Collapse
|