1
|
Feng T, Hu X, Fukui Y, Tadokoro K, Bian Z, Morihara R, Yamashita T, Abe K. Neuroprotective effects of Scallop-derived plasmalogen in a mouse model of ischemic stroke. Brain Res 2021; 1766:147516. [PMID: 33991494 DOI: 10.1016/j.brainres.2021.147516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Scallop-derived plasmalogen (sPlas) has both anti-oxidative and anti-inflammation activities, but its efficacy has not been investigated in ischemic stroke models where oxidative stress, inflammation, and neurovascular unit (NVU) damage accelerates pathophysiological progression. Therefore, in the present study, we aimed to assess the neuroprotective effects of sPlas in ischemic stroke by using a transient middle cerebral artery occlusion (tMCAO) mouse model. After the pretreatment of vehicle or sPlas (10 mg/kg/day) for 14 days, adult male mice were subjected to tMCAO for 60 min, then continuously treated with vehicle or sPlas during reperfusion and for an additional 5 days. The administration of sPlas significantly improved motor deficits (corner and rotarod tests, *p < 0.05 vs vehicle), enhanced serum antioxidative activity (OXY-adsorbent and d-ROMs tests, *p < 0.05 vs vehicle), reduced infarction volume (*p < 0.05 vs vehicle), decreased the expression of two oxidative stress markers, 4-HNE (*p < 0.05 vs vehicle) and 8-OHdG (*p < 0.05 vs vehicle), decreased the expression of pro-inflammatory markers Iba-1 (**p < 0.01 vs vehicle), IL-1β (**p < 0.01 vs vehicle), and TNF-α (**p < 0.01 vs vehicle), and alleviated NVU damage (collagen IV, MMP9, and GFAP/collagen IV, *p < 0.05 vs vehicle). Our present findings are the first to demonstrate the neuroprotective effects of sPlas on acute ischemic stroke mice at 5 d after tMCAO via anti-oxidative stress, anti-inflammation, and improvement of NVU damage, suggesting the potential of sPlas in preventing and treating ischemic stroke.
Collapse
Affiliation(s)
- Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
2
|
Yamashita T, Kushida Y, Wakao S, Tadokoro K, Nomura E, Omote Y, Takemoto M, Hishikawa N, Ohta Y, Dezawa M, Abe K. Therapeutic benefit of Muse cells in a mouse model of amyotrophic lateral sclerosis. Sci Rep 2020; 10:17102. [PMID: 33051552 PMCID: PMC7554047 DOI: 10.1038/s41598-020-74216-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron loss. Muse cells are endogenous reparative pluripotent-like stem cells distributed in various tissues. They can selectively home to damaged sites after intravenous injection by sensing sphingosine-1-phosphate produced by damaged cells, then exert pleiotropic effects, including tissue protection and spontaneous differentiation into tissue-constituent cells. In G93A-transgenic ALS mice, intravenous injection of 5.0 × 104 cells revealed successful homing of human-Muse cells to the lumbar spinal cords, mainly at the pia-mater and underneath white matter, and exhibited glia-like morphology and GFAP expression. In contrast, such homing or differentiation were not recognized in human mesenchymal stem cells but were instead distributed mainly in the lung. Relative to the vehicle groups, the Muse group significantly improved scores in the rotarod, hanging-wire and muscle strength of lower limbs, recovered the number of motor neurons, and alleviated denervation and myofiber atrophy in lower limb muscles. These results suggest that Muse cells homed in a lesion site-dependent manner and protected the spinal cord against motor neuron death. Muse cells might also be a promising cell source for the treatment of ALS patients.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koh Tadokoro
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emi Nomura
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshio Omote
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
3
|
Shi X, Ohta Y, Nakano Y, Liu X, Tadokoro K, Feng T, Nomura E, Tsunoda K, Sasaki R, Matsumoto N, Osakada Y, Bian Y, Bian Z, Omote Y, Takemoto M, Hishikawa N, Yamashita T, Abe K. Neuroprotective effect of CuATSM in mice stroke model by ameliorating oxidative stress. Neurosci Res 2020; 166:55-61. [PMID: 32461139 DOI: 10.1016/j.neures.2020.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/09/2022]
Abstract
Cu-diacetyl-bis (N4-methylthiosemicarbazone) (CuATSM) has both anti-oxidative and anti-inflammatory activities, but its therapeutic efficacy for oxidative stress has not been thoroughly investigated in acute ischemic stroke. Here, the present study was designed to assess the efficacies of CuATSM in acute ischemic stroke by comparing with the standard neuroprotective reagent edaravone. Mice were subjected to transient middle cerebral occlusion (tMCAO) for 60 min, and then intravenously administrated with CuATSM (1.5 mg/kg) or edaravone (3 mg/kg) just after the reperfusion, and examined at 1 and 3 d. Compared with the vehicle group, CuATSM treatment decreased infarct volumes and oxidative stress at 3d after tMCAO, which was further enhanced by combined CuATSM + edaravone treatment as compared with single CuATSM group, but not improve neurobehaviors. The present study demonstrated that CuATSM showed strong antioxidative and neuroprotective effects in acute ischemic stroke, which was enhanced by the combination with edaravone.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Keiichiro Tsunoda
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Ryo Sasaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Namiko Matsumoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yosuke Osakada
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
4
|
Ohta Y, Nomura E, Shang J, Feng T, Huang Y, Liu X, Shi X, Nakano Y, Hishikawa N, Sato K, Takemoto M, Yamashita T, Abe K. Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis. J Neurosci Res 2018; 97:607-619. [DOI: 10.1002/jnr.24368] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Emi Nomura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Yong Huang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| |
Collapse
|
5
|
Shi X, Ohta Y, Shang J, Morihara R, Nakano Y, Fukui Y, Liu X, Feng T, Huang Y, Sato K, Takemoto M, Hishikawa N, Yamashita T, Suzuki E, Hasumi K, Abe K. Neuroprotective effects of SMTP-44D in mice stroke model in relation to neurovascular unit and trophic coupling. J Neurosci Res 2018; 96:1887-1899. [PMID: 30242877 DOI: 10.1002/jnr.24326] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Stachybotrys microspora triprenyl phenol (SMTP)-44D has both anti-oxidative and anti-inflammatory activities, but its efficacy has not been proved in relation to the pathological changes of neurovascular unit (NVU) and neurovascular trophic coupling (NVTC) in ischemic stroke. Here, the present study was designed to assess the efficacies of SMTP-44D, moreover, compared with the standard neuroprotective reagent edaravone in ischemic brains. ICR mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min, SMTP-44D (10 mg/kg) or edaravone (3 mg/kg) was intravenously administrated through subclavian vein just after the reperfusion, and these mice were examined at 1, 3, and 7 d after reperfusion. Compared with the vehicle group, SMTP-44D treatment revealed obvious ameliorations in clinical scores and infarct volume, meanwhile, markedly suppressed the accumulations of 4-HNE, 8-OHdG, nitrotyrosine, RAGE, TNF-α, Iba-1, and cleaved caspase-3 after tMCAO. In addition, SMTP-44D significantly prevented the dissociation of NVU and improved the intensity of NAGO/BDNF and the number of BDNF/TrkB and BDNF/NeuN double positive cells. These effects of SMTP-44D in reducing oxidative and inflammatory stresses were similar to or stronger than those of edaravone. The present study demonstrated that SMTP-44D showed strong anti-oxidative, anti-inflammatory, and anti-apoptotic effects, moreover, the drug also significantly improved the NVU damage and NVTC in the ischemic brain.
Collapse
Affiliation(s)
- Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jingwei Shang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xia Liu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yong Huang
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Eriko Suzuki
- Department of Applied Biological Science, Tokyo Noko University, Fuchu, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo Noko University, Fuchu, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Ramírez-Jarquín UN, Tapia R. Neuropathological characterization of spinal motor neuron degeneration processes induced by acute and chronic excitotoxic stimulus in vivo. Neuroscience 2016; 331:78-90. [DOI: 10.1016/j.neuroscience.2016.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022]
|
7
|
Murdock BJ, Bender DE, Segal BM, Feldman EL. The dual roles of immunity in ALS: Injury overrides protection. Neurobiol Dis 2015; 77:1-12. [DOI: 10.1016/j.nbd.2015.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
|
8
|
Omote Y, Deguchi K, Kono S, Liu W, Kurata T, Hishikawa N, Yamashita T, Ikeda Y, Abe K. Synergistic neuroprotective effects of combined treatment with olmesartan plus azelnidipine in stroke-prone spontaneously hypertensive rats. J Neurosci Res 2014; 92:1330-7. [PMID: 24839960 DOI: 10.1002/jnr.23406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/29/2014] [Accepted: 04/02/2014] [Indexed: 11/10/2022]
Abstract
An angiotensin 2 type 1 receptor blocker, olmesartan, and a calcium channel blocker, azelnidipine, possess not only an antihypertensive effect but also an antioxidative effect and other beneficial effects. In the present study, we examined the efficacy of olmesartan and azelnidipine monotherapy (2 mg/kg or 10 mg/kg each) and their combination therapy (1 mg/kg each) on stroke-prone spontaneously hypertensive rats (SHR-SP) in relation to oxidative stress, inflammation, and the neurovascular unit. In comparison with the vehicle group, body weight, regional cerebral blood flow, and motor function were preserved, whereas systolic blood pressure and diastolic blood pressure decreased in the five drug-treatment groups. Spontaneous infarct volume decreased with the low-dose combination of olmesartan plus azelnidipine and with the high-dose olmesartan, with a further decrease in the high-dose azelnidipine group. In addition, these drugs dose-dependently reduced oxidative stresses, proinflammatory molecules, and well-preserved components of the neurovascular unit. The low-dose combination of olmesartan plus azelnidipine showed a better effect than the low-dose olmesartan or azelnidipine monotherapy. The present study shows that the low-dose combination of olmesartan plus azelnidipine demonstrates a greater synergistic benefit than monotherapy with a low-dose of olmesartan or azelnidipine in SHR-SP for preventing spontaneous infarct volume, reducing oxidative stresses and proinflammatory molecules, and imparting neurovascular protection. In addition, a high-dose of olmesartan showed a greater benefit without the lowering of blood pressure, probably because of the antioxidative and anti-inflammatory effects. A high dose of azelnidipine showed the best benefit, probably because of the two effects mentioned above related to the lowering of blood pressure.
Collapse
Affiliation(s)
- Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Shikatacho, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Van Damme P, Robberecht W. Developments in treatments for amyotrophic lateral sclerosis via intracerebroventricular or intrathecal delivery. Expert Opin Investig Drugs 2014; 23:955-63. [PMID: 24816247 DOI: 10.1517/13543784.2014.912275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic lateral scleroses (ALS) are neurodegenerative disorders primarily affecting the motor system. These incurable disorders are relentlessly progressive and typically limit survival to 2 - 5 years after disease onset. An improved knowledge about disease-causing genes, disease proteins and pathways has revealed considerable heterogeneity in ALS. Novel targeted therapies are being developed, but getting these beyond the BBB remains a challenge. AREAS COVERED The authors review the intracerebroventricular and intrathecal delivery of drugs for the treatment of ALS in preclinical and clinical studies. EXPERT OPINION Lack of BBB permeability should not hold back the development of promising treatments for ALS, as the available evidence suggest that direct intrathecal or intracerebroventricular administration of drug is a feasible delivery route in patients with ALS.
Collapse
Affiliation(s)
- Philip Van Damme
- KU Leuven (University of Leuven), Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) , Leuven , Belgium
| | | |
Collapse
|
10
|
Omote Y, Deguchi K, Tian F, Kawai H, Kurata T, Yamashita T, Ohta Y, Abe K. Clinical and pathological improvement in stroke-prone spontaneous hypertensive rats related to the pleiotropic effect of cilostazol. Stroke 2012; 43:1639-46. [PMID: 22492522 DOI: 10.1161/strokeaha.111.643098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral infarction is a major cause of death or decreasing activities of daily living. This study aimed to investigate the efficacy of commonly used antiplatelet drugs on stroke and motor and cognitive functions in relation to oxidative stress markers and insulin-like growth factor 1 receptor (IGF-1R). METHODS Stroke-prone spontaneously hypertensive rats were treated with vehicle, aspirin, clopidogrel, and cilostazol from 8 to 10 weeks of age. Physiological parameters, regional cerebral blood flow, and serum lipids were examined. Motor and cognitive functions were evaluated weekly by the Rotorod and water maze task. Spontaneous infarct volume, oxidative stress markers for lipid, protein, and DNA at the ischemic boundary zone of spontaneous infarction, and the IGF-1R-positive cell ratio in the hippocampus were immunohistochemically examined in brain sections. IGF-1Rβ expression in the hippocampus was assessed by Western blotting. RESULTS The antiplatelet drugs, cilostazol and clopidogrel, reduced the spontaneous infarct volume more than aspirin. Only cilostazol improved motor and cognitive functions with a significant increase (P<0.05) in the memory-related IGF-1R-positive ratio and IGF-1Rβ expression in the hippocampus. Cilostazol reduced the 4 oxidative stress markers in affected neurons in stroke-prone spontaneously hypertensive rats regardless of blood pressure, regional cerebral blood flow, or serum lipid levels. CONCLUSIONS The present results suggest that a possible pleiotropic effect of cilostazol resulted in the reduction of spontaneous infarct volume and preservation of motor and spatial cognitive functions. The increase of IGF-1R-positive cells in the hippocampal CA1 region could partly explain the preservation of spatial cognitive function in stroke-prone spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang X, Zhang X, Wang F. Intracellular transduction and potential of Tat PTD and its analogs: from basic drug delivery mechanism to application. Expert Opin Drug Deliv 2012; 9:457-72. [DOI: 10.1517/17425247.2012.663351] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Morimoto N, Miyazaki K, Kurata T, Ikeda Y, Matsuura T, Kang D, Ide T, Abe K. Effect of mitochondrial transcription factor a overexpression on motor neurons in amyotrophic lateral sclerosis model mice. J Neurosci Res 2012; 90:1200-8. [PMID: 22354563 DOI: 10.1002/jnr.23000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/22/2011] [Accepted: 10/23/2011] [Indexed: 11/09/2022]
Abstract
Increasing evidence indicates that oxidative stress is an important mechanism underlying motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS). Mitochondrial DNA (mtDNA) is highly susceptible to oxidative damage and has little potential for repair, although mitochondrial transcription factor A (TFAM) plays essential roles in maintaining mitochondrial DNA by reducing oxidative stress, promoting mtDNA transcription, and regulating mtDNA copy number. To analyze a possible therapeutic effect of TFAM on ALS pathology, double transgenic mice overexpressing G93A mutant SOD1 (G93ASOD1) and human TFAM (hTFAM) were newly generated in the present study. Rotarod scores were better in G93ASOD1/hTFAM double-Tg mice than G93ASOD1 single-Tg mice at an early symptomatic stage, 15 and 16 weeks of age, with a 10% extension of the onset age in double-Tg mice. The number of surviving MNs was 30% greater in double-Tg mice with end-stage disease, at 19 weeks, with remarkable reductions in the amount of the oxidative stress marker 8-OHdG and the apoptotic marker cleaved caspase 3 and with preserved COX1 expression. Double-immunofluorescence study showed that hTFAM was expressed specifically in MNs and microglia in the spinal cords of double-Tg mice. The present study suggests that overexpression of TFAM has a potential to reduce oxidative stress in MN and delay onset of the disease in ALS model mice. © 2012 Wiley Priodicals, Inc.
Collapse
Affiliation(s)
- Nobutoshi Morimoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Iłżecka J. Serum caspase-9 levels are increased in patients with amyotrophic lateral sclerosis. Neurol Sci 2011; 33:825-9. [PMID: 22048794 PMCID: PMC3397227 DOI: 10.1007/s10072-011-0837-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 10/21/2011] [Indexed: 12/24/2022]
Abstract
It is known that apoptosis may play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). Moreover, caspase-9 is implicated in the apoptosis pathway. The aim of the study was to investigate caspase-9 levels in serum of patients with ALS. The study involved 30 patients with ALS and 30 patients from the control group. The serum caspase-9 levels were measured using the enzyme-linked immunosorbent method. The study showed that caspase-9 levels are significantly increased in serum of the patients with ALS comparing to the control group (p < 0.05). There was a significant correlation of serum caspase-9 levels with severity of clinical state of ALS patients and duration of the disease (p < 0.05). The results indicate that caspase-9 may be implicated in pathomechanism of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Joanna Iłżecka
- Department of Neurological Rehabilitation, Medical University, ul. Chodźki 6, 20-093 Lublin, Poland.
| |
Collapse
|
14
|
Ohta Y, Nagai M, Miyazaki K, Tanaka N, Kawai H, Mimoto T, Morimoto N, Kurata T, Ikeda Y, Matsuura T, Abe K. Neuroprotective and Angiogenic Effects of Bone Marrow Transplantation Combined With Granulocyte Colony-Stimulating Factor in a Mouse Model of Amyotrophic Lateral Sclerosis. CELL MEDICINE 2011; 2:69-83. [PMID: 26998403 DOI: 10.3727/215517910x582779] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone marrow (BM) cells from amyotrophic lateral sclerosis (ALS) patients show significantly reduced expression of several neurotrophic factors. Monotherapy with either wild-type (WT) BM transplantation (BMT) or granulocyte colony-stimulating factor (GCSF) has only a small clinical therapeutic effect in an ALS mouse model, due to the phenomenon of neuroprotection. In this study, we investigated the clinical benefits of combination therapy using BMT with WT BM cells, plus GCSF after disease onset in ALS mice [transgenic mice expressing human Cu/Zn superoxide dismutase (SOD1) bearing a G93A mutation]. Combined treatment with BMT and GCSF delayed disease progression and prolonged the survival of G93A mice, whereas BMT or GCSF treatment alone did not. Histological study of the ventral horns of lumbar cords from G93A mice treated with BMT and GCSF showed a reduction in motor neuron loss coupled with induced neuronal precursor cell proliferation, increased expression of neurotrophic factors (glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, vascular endothelial growth factor and angiogenin), and neovascularization compared with controls (vehicle only). Compared with G93A microglial cells, most BM-derived WT cells differentiated into microglial cells and strongly expressed neurotrophic factors, combined BMT and GCSF treatment led to the replacement of G93A microglial cells with BM-derived WT cells. These results indicate combined treatment with BMT and GCSF has potential neuroprotective and angiogenic effects in ALS mice, induced by the replacement of G93A microglial cells with BM-derived WT cells. Furthermore, this is the first report showing the effects of combined BMT and GCSF treatment on blood vessels in ALS.
Collapse
Affiliation(s)
- Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Makiko Nagai
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Kazunori Miyazaki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Nobuhito Tanaka
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Hiromi Kawai
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Takafumi Mimoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Nobutoshi Morimoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Tomoko Kurata
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Yoshio Ikeda
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Tohru Matsuura
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama , Japan
| |
Collapse
|
15
|
Solomon JA, Tarnopolsky MA, Hamadeh MJ. One universal common endpoint in mouse models of amyotrophic lateral sclerosis. PLoS One 2011; 6:e20582. [PMID: 21687686 PMCID: PMC3110799 DOI: 10.1371/journal.pone.0020582] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 05/05/2011] [Indexed: 12/14/2022] Open
Abstract
There is no consensus among research laboratories around the world on the criteria that define endpoint in studies involving rodent models of amyotrophic lateral sclerosis (ALS). Data from 4 nutrition intervention studies using 162 G93A mice, a model of ALS, were analyzed to determine if differences exist between the following endpoint criteria: CS 4 (functional paralysis of both hindlimbs), CS 4+ (CS 4 in addition to the earliest age of body weight loss, body condition deterioration or righting reflex), and CS 5 (CS 4 plus righting reflex >20 s). The age (d; mean ± SD) at which mice reached endpoint was recorded as the unit of measurement. Mice reached CS 4 at 123.9±10.3 d, CS 4+ at 126.6±9.8 d and CS 5 at 127.6±9.8 d, all significantly different from each other (P<0.001). There was a significant positive correlation between CS 4 and CS 5 (r = 0.95, P<0.001), CS 4 and CS 4+ (r = 0.96, P<0.001), and CS 4+ and CS 5 (r = 0.98, P<0.001), with the Bland-Altman plot showing an acceptable bias between all endpoints. Logrank tests showed that mice reached CS 4 24% and 34% faster than CS 4+ (P = 0.046) and CS 5 (P = 0.006), respectively. Adopting CS 4 as endpoint would spare a mouse an average of 4 days (P<0.001) from further neuromuscular disability and poor quality of life compared to CS 5. Alternatively, CS 5 provides information regarding proprioception and severe motor neuron death, both could be important parameters in establishing the efficacy of specific treatments. Converging ethics and discovery, would adopting CS 4 as endpoint compromise the acquisition of insight about the effects of interventions in animal models of ALS?
Collapse
Affiliation(s)
- Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
16
|
In vivo optical imaging for evaluating the efficacy of edaravone after transient cerebral ischemia in mice. Brain Res 2011; 1397:66-75. [PMID: 21571257 DOI: 10.1016/j.brainres.2011.04.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 01/27/2023]
Abstract
Detection and protection of apoptosis, autophagy and neurovascular unit (NVU) are essentially important in understanding and treatment for ischemic stroke patients. In this study, we have conducted an in vivo optical imaging for detecting apoptosis and activation of matrix metalloproteinases (MMPs), then evaluated the protective effect of 2 package types of free radical scavenger edaravone (A and B) on apoptosis, autophagy and NVU in mice after transient middle cerebral artery occlusion (tMCAO). As compared to vehicle treatment, edaravones A and B showed a significant improvement of clinical scores and infarct size at 48 h after 90 min of tMCAO with great reductions of in vivo fluorescent signal for MMPs and early apoptotic annexin V activations. Ex vivo imaging of MMPSense 680 or annexin V-Cy5.5 showed a fluorescent signal, while which was remarkably different between vehicle and edaravone groups, and colocalized with antibody for MMP-9 or annexin V. Edaravone A and B ameliorated the apoptotic neuronal cell death in immunohistochemistry, and activations of MMP-9 and aquaporin 4 with reducing autophagic activations of microtubule-associated protein 1 light chain 3 (LC3) in Western blot. In this study, edaravone in both packages showed a similar strong neuroprotection after cerebral ischemia, which was confirmed with in vivo and ex vivo optical imagings for MMPs and annexin V as well as reducing cerebral infarct, inhibiting apoptotic/autophagic mechanisms, and protecting a part of neurovascular unit.
Collapse
|
17
|
Sohn EJ, Kim DW, Kim YN, Kim SM, Lim SS, Kang TC, Kwon HY, Kim DS, Cho SW, Han KH, Park J, Eum WS, Hwang HS, Choi SY. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein. Biochem Biophys Res Commun 2011; 406:336-40. [PMID: 21324306 DOI: 10.1016/j.bbrc.2011.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1β, and tumor necrosis factor-α induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.
Collapse
Affiliation(s)
- Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kalyuzhny AE. Combination of TUNEL assay with immunohistochemistry for simultaneous detection of DNA fragmentation and oxidative cell damage. Methods Mol Biol 2011; 682:15-27. [PMID: 21057917 DOI: 10.1007/978-1-60327-409-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oxidative cell damage causes disruption of DNA via formation of 8-hydroxy-2'-deoxyguanosine and can trigger apoptotic cell death. The cells damaged by oxidative stress can either become apoptotic, or recover. Therefore, it is helpful to employ a parallel assay that would confirm whether cells experiencing oxidative damage undergo apoptosis. Our paper describes the technique that combines immunohistochemical detection of 8-hydroxy-2'-deoxyguanosine with the TUNEL assay. This permits simultaneous detection of oxidative damage and apoptosis at a single-cell level. We have developed simple and reliable protocols which can be used with cultured cells and slide-mounted tissue sections. These techniques can be employed in research dealing with high-throughput drug screening, toxicology, and cancer.
Collapse
|
19
|
Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT. Anti-apoptosis and cell survival: a review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:238-59. [PMID: 20969895 DOI: 10.1016/j.bbamcr.2010.10.010] [Citation(s) in RCA: 436] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/08/2023]
Abstract
Type I programmed cell death (PCD) or apoptosis is critical for cellular self-destruction for a variety of processes such as development or the prevention of oncogenic transformation. Alternative forms, including type II (autophagy) and type III (necrotic) represent the other major types of PCD that also serve to trigger cell death. PCD must be tightly controlled since disregulated cell death is involved in the development of a large number of different pathologies. To counter the multitude of processes that are capable of triggering death, cells have devised a large number of cellular processes that serve to prevent inappropriate or premature PCD. These cell survival strategies involve a myriad of coordinated and systematic physiological and genetic changes that serve to ward off death. Here we will discuss the different strategies that are used to prevent cell death and focus on illustrating that although anti-apoptosis and cellular survival serve to counteract PCD, they are nevertheless mechanistically distinct from the processes that regulate cell death.
Collapse
Affiliation(s)
- Liam Portt
- Department of Chemistry and Chemical Engineering, Royal Military College, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Stock K, Nolden L, Edenhofer F, Quandel T, Brüstle O. Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction. Cell Mol Life Sci 2010; 67:2439-49. [PMID: 20352468 PMCID: PMC2889284 DOI: 10.1007/s00018-010-0347-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/16/2010] [Accepted: 03/08/2010] [Indexed: 01/12/2023]
Abstract
In contrast to conventional gene transfer strategies, the direct introduction of recombinant proteins into cells bypasses the risk of insertional mutagenesis and offers an alternative to genetic intervention. Here, we explore whether protein transduction of the gliogenic transcription factor Nkx2.2 can be used to promote oligodendroglial differentiation of mouse embryonic stem cell (ESC)-derived neural stem cells (NSC). To that end, a recombinant cell-permeant form of Nkx2.2 protein was generated. Exposure of ESC-derived NSC to the recombinant protein and initiation of differentiation resulted in a two-fold increase in the number of oligodendrocytes. Furthermore, Nkx2.2-transduced cells exhibited a more mature oligodendroglial phenotype. Comparative viral gene transfer studies showed that the biological effect of Nkx2.2 protein transduction is comparable to that obtained by lentiviral transduction. The results of this proof-of-concept study depict direct intracellular delivery of transcription factors as alternative modality to control lineage differentiation in NSC cultures without genetic modification.
Collapse
Affiliation(s)
- Kristin Stock
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Lars Nolden
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Tamara Quandel
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| |
Collapse
|
21
|
Zhang W, Zhu J, Bai J, Jiang H, Liu F, Liu A, Liu P, Ji G, Guan R, Sun D, Ji W, Yu Y, Jin Y, Meng X, Fu S. Comparison of the inhibitory effects of three transcriptional variants of CDKN2A in human lung cancer cell line A549. J Exp Clin Cancer Res 2010; 29:74. [PMID: 20565749 PMCID: PMC2897778 DOI: 10.1186/1756-9966-29-74] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/17/2010] [Indexed: 11/17/2022] Open
Abstract
Background The tumor suppressor gene CDKN2A generates at least three different transcriptional variants, each of which is thought to encode a tumor suppressor. However, the inhibitory activities of these variants have not yet been compared in the same cells. Protein therapy is known to have several advantages over gene therapy. Thus, investigation of the exogenous protein molecule of the most effective suppressor may yield meaningful information regarding protein-based cancer therapy. Methods The inhibitory effects of p16INK4a, p14ARF and p12 were studied in the human lung cancer cell line A549 which lacks the CDKN2A locus. The eukaryotic expression plasmids of the three transcriptional variants were constructed and stably transfected into the cells. RNA and protein expression by the plasmids was confirmed using RT-PCR and fluorescence immunocytochemistry, respectively. Cell growth inhibition and cell-cycle redistribution after transfection were investigated based on growth curve and flow cytometry analyses. An exogenous His-tag fusion p16INK4a protein was obtained and purified by affinity chromatography. Cell growth inhibition and cell cycle arrest induced by the expression of p16INK4a protein were measured in A549 cells transduced with the exogenous protein. Results While all three variants suppressed cell growth, p16INK4a had the strongest effect. Marked G1-phase accumulation and S-phase inhibition were induced by p16INK4a and p14ARF but not by p12. Exogenous p16INK4a protein was successfully expressed and purified and transduction of the fusion protein into A549 cells inhibited cell growth by G1→S arrest. Conclusions Among the three transcript variants, p16INK4a has a greater inhibitory effect than p14ARF and p12; exogenous p16INK4a protein should be further investigated for use in cancer therapy as a protein agent.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shokolenko IN, Alexeyev MF, LeDoux SP, Wilson GL. The approaches for manipulating mitochondrial proteome. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:451-461. [PMID: 20544885 PMCID: PMC3249350 DOI: 10.1002/em.20570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Over the past decade a large volume of research data has accumulated which has established a fundamental role for mitochondria in normal cellular functioning, as well as in various pathologies. Mitochondria play a pivotal role in metabolism and energy production, and are one of the key players involved in programmed cell death. On the other hand, mitochondrial dysfunction is implicated, directly or indirectly in numerous pathological conditions including inherited mitochondrial disorders, diabetes, cardiovascular and neurodegenerative diseases, and a variety of malignancies. The ability to modulate mitochondrial function by altering the diverse protein component of this organelle may be of great value for developing future therapeutic interventions. This review will discuss approaches used to introduce proteins into mitochondria. One group of methods utilizes strategies aimed at expressing proteins from genes in the nucleus. These include overexpression of nuclear-encoded mitochondrial proteins, allotopic expression, which is the re-coding and relocation of mitochondrial genes to the nucleus for expression and subsequent delivery of their gene products to mitochondria, and xenotopic expression, which is the nuclear expression of genes coding electron transport chain components from distant species, for delivery of their products to mammalian mitochondria. Additionally, antigenomic and progenomic strategies which focus on expression of mitochondrially targeted nuclear proteins involved in the maintenance of mtDNA will be discussed. The second group of methods considered will focus on attempts to use purified proteins for mitochondrial delivery. Special consideration has been given to the complexities involved in targeting exogenous proteins to mitochondria.
Collapse
|
23
|
Ribeiro MM, Xu X, Klein D, Kenyon NS, Ricordi C, Felipe MSS, Pastori RL. Endotoxin deactivation by transient acidification. Cell Transplant 2010; 19:1047-54. [PMID: 20412635 DOI: 10.3727/096368910x500643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recombinant proteins are an important tool for research and therapeutic applications. Therapeutic proteins have been delivered to several cell types and tissues and might be used to improve the outcome of the cell transplantation. Recombinant proteins are propagated in bacteria, which will contaminate them with the lypopolysacharide endotoxin found in the outer bacterial membrane. Endotoxin could interfere with in vitro biological assays and is the major pathological factor, which must be removed or inactivated before in vivo administration. Here we describe a one-step protocol in which the endotoxin activity on recombinant proteins is remarkably reduced by transient exposure to acidic conditions. Maximum endotoxin deactivation occurs at acidic pH below their respective isoelectric point (pI). This method does not require additional protein purification or separation of the protein from the endotoxin fraction. The endotoxin level was measured both in vitro and in vivo. For in vitro assessment we have utilized Limulus Amebocyte Lysate method for in vivo the pyrogenic test. We have tested the above-mentioned method with five different recombinant proteins, including a monoclonal antibody clone 5c8 against CD154 produced by hybridomas. More than 99% of endotoxin was deactivated in all of the proteins; the recovery of the protein after deactivation varied between maximum 72.9% and minimum 46.8%. The anti-CD154 clone 5c8 activity remained unchanged as verified by the measurement of binding capability to activated lymphocytes. Furthermore, the effectiveness of this method was not significantly altered by urea, commonly used in protein purification. This procedure provides a simple and cost-efficient way to reduce the endotoxin activity in antibodies and recombinant proteins.
Collapse
Affiliation(s)
- Melina M Ribeiro
- Diabetes Research Institute, University of Miami Leonard Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Miyazaki K, Nagai M, Morimoto N, Kurata T, Takehisa Y, Ikeda Y, Abe K. Spinal anterior horn has the capacity to self-regenerate in amyotrophic lateral sclerosis model mice. J Neurosci Res 2009; 87:3639-48. [DOI: 10.1002/jnr.22156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Nakachi N, Asoh S, Watanabe N, Mori T, Matsushita T, Takai S, Ohta S. Transduction of anti-cell death protein FNK suppresses graft degeneration after autologous cylindrical osteochondral transplantation. J Histochem Cytochem 2008; 57:197-206. [PMID: 18955736 DOI: 10.1369/jhc.2008.952754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study shows that artificial super antiapoptotic FNK protein fused with a protein transduction domain (PTD-FNK) maintains the quality of osteochondral transplant by preventing chondrocyte death. Cylindrical osteochondral grafts were obtained from enhanced green fluorescent protein (EGFP)-expressing transgenic rats, in which living chondrocytes express green fluorescence, and submerged into medium containing PTD-FNK, followed by transplantation into cartilage defects of wild-type rats by impact insertion simulating autologous transplantation. The tissues were histologically evaluated by hematoxylin-eosin and Safranin-O staining. At 1 week, chondrocyte alignment was normal in the PTD-FNK treatment group, whereas all grafts without PTD-FNK treatment showed mixed cluster cell distribution. At 4 weeks, all grafts with PTD-FNK treatment showed almost normal matrix, whereas two grafts without PTD-FNK treatment showed fibrocartilage. Notably, all grafts with PTD-FNK retained high intensity of Safranin-O staining, but all grafts without PTD-FNK largely lost Safranin-O staining. PTD-FNK significantly suppressed a decrease in the survival rate and the density of EGFP-positive cells at 1 and 2 weeks, and this tendency continued at 4 weeks. The results of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-nick end-labeling staining showed that PTD-FNK inhibited cell death, indicating that PTD-FNK protects chondrocyte death and suppresses graft degeneration.
Collapse
Affiliation(s)
- Noriki Nakachi
- Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki-city, Kanagawa-pref. 211-8533, Japan
| | | | | | | | | | | | | |
Collapse
|