1
|
Pasqualotto BA, Tegeman C, Frame AK, McPhedrain R, Halangoda K, Sheldon CA, Rintoul GL. Galactose-replacement unmasks the biochemical consequences of the G11778A mitochondrial DNA mutation of LHON in patient-derived fibroblasts. Exp Cell Res 2024; 439:114075. [PMID: 38710404 DOI: 10.1016/j.yexcr.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of glucose with galactose in the culture media reveals a deficit in the proliferation of G11778A fibroblasts, imparts a reduction in ATP biosynthesis, and a reduction in capacity to accommodate exogenous oxidative stress. While steady-state ROS levels were unaffected by the LHON mutation, cell survival was diminished in response to exogenous H2O2.
Collapse
Affiliation(s)
- Bryce A Pasqualotto
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Carina Tegeman
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ariel K Frame
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ryan McPhedrain
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Kolitha Halangoda
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Claire A Sheldon
- Dept. of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gordon L Rintoul
- Department of Biological Sciences and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
2
|
Fernández de la Torre M, Fiuza-Luces C, Laine-Menéndez S, Delmiro A, Arenas J, Martín MÁ, Lucia A, Morán M. Pathophysiology of Cerebellar Degeneration in Mitochondrial Disorders: Insights from the Harlequin Mouse. Int J Mol Sci 2023; 24:10973. [PMID: 37446148 DOI: 10.3390/ijms241310973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
By means of a proteomic approach, we assessed the pathways involved in cerebellar neurodegeneration in a mouse model (Harlequin, Hq) of mitochondrial disorder. A differential proteomic profile study (iTRAQ) was performed in cerebellum homogenates of male Hq and wild-type (WT) mice 8 weeks after the onset of clear symptoms of ataxia in the Hq mice (aged 5.2 ± 0.2 and 5.3 ± 0.1 months for WT and Hq, respectively), followed by a biochemical validation of the most relevant changes. Additional groups of 2-, 3- and 6-month-old WT and Hq mice were analyzed to assess the disease progression on the proteins altered in the proteomic study. The proteomic analysis showed that beyond the expected deregulation of oxidative phosphorylation, the cerebellum of Hq mice showed a marked astroglial activation together with alterations in Ca2+ homeostasis and neurotransmission, with an up- and downregulation of GABAergic and glutamatergic neurotransmission, respectively, and the downregulation of cerebellar "long-term depression", a synaptic plasticity phenomenon that is a major player in the error-driven learning that occurs in the cerebellar cortex. Our study provides novel insights into the mechanisms associated with cerebellar degeneration in the Hq mouse model, including a complex deregulation of neuroinflammation, oxidative phosphorylation and glutamate, GABA and amino acids' metabolism.
Collapse
Affiliation(s)
- Miguel Fernández de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Aitor Delmiro
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
- Servicio de Bioquímica Clínica, Hospital Universitario "12 de Octubre", 28041 Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
| | - Miguel Ángel Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
- Servicio de Genética, Hospital Universitario "12 de Octubre", 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sports Sciences, European University of Madrid, 28670 Madrid, Spain
- Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), 28029 Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
| |
Collapse
|
3
|
Bocca C, Le Paih V, Chao de la Barca JM, Kouassy Nzoughet J, Amati-Bonneau P, Blanchet O, Védie B, Géromin D, Simard G, Procaccio V, Bonneau D, Lenaers G, Orssaud C, Reynier P. A plasma metabolomic signature of Leber hereditary optic neuropathy showing taurine and nicotinamide deficiencies. Hum Mol Genet 2021; 30:21-29. [PMID: 33437983 PMCID: PMC8033144 DOI: 10.1093/hmg/ddab013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is the most common disorder due to mitochondrial DNA mutations and complex I deficiency. It is characterized by an acute vision loss, generally in young adults, with a higher penetrance in males. How complex I dysfunction induces the peculiar LHON clinical presentation remains an unanswered question. To gain an insight into this question, we carried out a non-targeted metabolomic investigation using the plasma of 18 LHON patients, during the chronic phase of the disease, comparing them to 18 healthy controls. A total of 500 metabolites were screened of which 156 were accurately detected. A supervised Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) highlighted a robust model for disease prediction with a Q2 (cum) of 55.5%, with a reliable performance during the permutation test (cross-validation analysis of variance, P-value = 5.02284e-05) and a good prediction of a test set (P = 0.05). This model highlighted 10 metabolites with variable importance in the projection (VIP) > 0.8. Univariate analyses revealed nine discriminating metabolites, six of which were the same as those found in the Orthogonal Projections to Latent Structures Discriminant Analysis model. In total, the 13 discriminating metabolites identified underlining dietary metabolites (nicotinamide, taurine, choline, 1-methylhistidine and hippurate), mitochondrial energetic substrates (acetoacetate, glutamate and fumarate) and purine metabolism (inosine). The decreased concentration of taurine and nicotinamide (vitamin B3) suggest interesting therapeutic targets, given their neuroprotective roles that have already been demonstrated for retinal ganglion cells. Our results show a reliable predictive metabolomic signature in the plasma of LHON patients and highlighted taurine and nicotinamide deficiencies.
Collapse
Affiliation(s)
- Cinzia Bocca
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Victor Le Paih
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Juan Manuel Chao de la Barca
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | | | - Patrizia Amati-Bonneau
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Odile Blanchet
- Centre de Ressources Biologiques, BB-0033-00038, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Benoit Védie
- Plateformes Centre de Ressources Biologiques et Tumorothèque, BB-0033-00063, Hôpital Européen Georges Pompidou, Paris, France.,Hôpital Européen Georges Pompidou, Département de Biochimie, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, Paris, France
| | - Daniela Géromin
- Plateformes Centre de Ressources Biologiques et Tumorothèque, BB-0033-00063, Hôpital Européen Georges Pompidou, Paris, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Vincent Procaccio
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Dominique Bonneau
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France
| | - Christophe Orssaud
- Unité Fonctionnelle d'Ophtalmologie, CRMR Ophtara, Hôpital Européen Georges Pompidou (HEGP), GH Paris Centre, Assistance Publique - Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Service d'Ophtalmologie, Ophtara Hôpital Necker-Enfants Malades, GH Paris Centre, AP-HP, 149, rue de Sèvres, 75015 Paris, France
| | - Pascal Reynier
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d'Angers, 49933 Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| |
Collapse
|
4
|
Zhou L, Chan JCY, Chupin S, Gueguen N, Desquiret-Dumas V, Koh SK, Li J, Gao Y, Deng L, Verma C, Beuerman RW, Chan ECY, Milea D, Reynier P. Increased Protein S-Glutathionylation in Leber's Hereditary Optic Neuropathy (LHON). Int J Mol Sci 2020; 21:ijms21083027. [PMID: 32344771 PMCID: PMC7215361 DOI: 10.3390/ijms21083027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON, MIM#535000) is the most common form of inherited optic neuropathies and mitochondrial DNA-related diseases. The pathogenicity of mutations in genes encoding components of mitochondrial Complex I is well established, but the underlying pathomechanisms of the disease are still unclear. Hypothesizing that oxidative stress related to Complex I deficiency may increase protein S-glutathionylation, we investigated the proteome-wide S-glutathionylation profiles in LHON (n = 11) and control (n = 7) fibroblasts, using the GluICAT platform that we recently developed. Glutathionylation was also studied in healthy fibroblasts (n = 6) after experimental Complex I inhibition. The significantly increased reactive oxygen species (ROS) production in the LHON group by Complex I was shown experimentally. Among the 540 proteins which were globally identified as glutathionylated, 79 showed a significantly increased glutathionylation (p < 0.05) in LHON and 94 in Complex I-inhibited fibroblasts. Approximately 42% (33/79) of the altered proteins were shared by the two groups, suggesting that Complex I deficiency was the main cause of increased glutathionylation. Among the 79 affected proteins in LHON fibroblasts, 23% (18/79) were involved in energetic metabolism, 31% (24/79) exhibited catalytic activity, 73% (58/79) showed various non-mitochondrial localizations, and 38% (30/79) affected the cell protein quality control. Integrated proteo-metabolomic analysis using our previous metabolomic study of LHON fibroblasts also revealed similar alterations of protein metabolism and, in particular, of aminoacyl-tRNA synthetases. S-glutathionylation is mainly known to be responsible for protein loss of function, and molecular dynamics simulations and 3D structure predictions confirmed such deleterious impacts on adenine nucleotide translocator 2 (ANT2), by weakening its affinity to ATP/ADP. Our study reveals a broad impact throughout the cell of Complex I-related LHON pathogenesis, involving a generalized protein stress response, and provides a therapeutic rationale for targeting S-glutathionylation by antioxidative strategies.
Collapse
Affiliation(s)
- Lei Zhou
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
- Correspondence: (L.Z.); (D.M.); (P.R.)
| | - James Chun Yip Chan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (J.C.Y.C.); (E.C.Y.C.)
| | - Stephanie Chupin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France; (S.C.); (N.G.); (V.D.-D.)
| | - Naïg Gueguen
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France; (S.C.); (N.G.); (V.D.-D.)
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d’Angers, 49933 Angers, France
| | - Valérie Desquiret-Dumas
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France; (S.C.); (N.G.); (V.D.-D.)
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d’Angers, 49933 Angers, France
| | - Siew Kwan Koh
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
| | - Jianguo Li
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
- Atomistic Simulations and Design in Biology, Bioinformatics Institute, 30 Biopolis Street, #07–01 Matrix, Singapore 138671, Singapore;
| | - Yan Gao
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
| | - Lu Deng
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore 117546, Singapore;
| | - Chandra Verma
- Atomistic Simulations and Design in Biology, Bioinformatics Institute, 30 Biopolis Street, #07–01 Matrix, Singapore 138671, Singapore;
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singpaore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Roger W Beuerman
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (J.C.Y.C.); (E.C.Y.C.)
- Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore
| | - Dan Milea
- Ocular Proteomics, Singapore Eye Research Institute, Singapore 169856, Singapore; (S.K.K.); (J.L.); (Y.G.); (R.W.B.)
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Département d’Ophtalmologie, Centre Hospitalier Universitaire, 49933 Angers, France
- Neuro-Ophthalmology Department, Singapore National Eye Centre, Singapore 168751, Singpaore
- Correspondence: (L.Z.); (D.M.); (P.R.)
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France; (S.C.); (N.G.); (V.D.-D.)
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, Université d’Angers, 49933 Angers, France
- Correspondence: (L.Z.); (D.M.); (P.R.)
| |
Collapse
|
5
|
Mekala NK, Kurdys J, Depuydt MM, Vazquez EJ, Rosca MG. Apoptosis inducing factor deficiency causes retinal photoreceptor degeneration. The protective role of the redox compound methylene blue. Redox Biol 2018; 20:107-117. [PMID: 30300862 PMCID: PMC6175772 DOI: 10.1016/j.redox.2018.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023] Open
Abstract
Dysfunction in mitochondrial oxidative phosphorylation (OXPHOS) underlies a wide spectrum of human ailments known as mitochondrial diseases. Deficiencies in complex I of the electron transport chain (ETC) contribute to 30–40% of all cases of mitochondrial diseases, and leads to eye disease including optic nerve atrophy and retinal degeneration. The mechanisms responsible for organ damage in mitochondrial defects may include energy deficit, oxidative stress, and an increase in the NADH/NAD+ redox ratio due to decreased NAD+ regeneration. Currently, there is no effective treatment to alleviate human disease induced by complex I defect. Photoreceptor cells have the highest energy demand and dependence on OXPHOS for survival, and the lowest reserve capacity indicating that they are sensitive to OXPHOS defects. We investigated the effect of mitochondrial OXPHOS deficiency on retinal photoreceptors in a model of mitochondrial complex I defect (apoptosis inducing factor, AIF-deficient mice, Harlequin mice), and tested the protective effect of a mitochondrial redox compound (methylene blue, MB) on mitochondrial and photoreceptor integrity. MB prevented the reduction in the retinal thickness and protein markers for photoreceptor outer segments, Muller and ganglion cells, and altered mitochondrial integrity and function induced by AIF deficiency. In rotenone-induced complex I deficient 661 W cells (an immortalized mouse photoreceptor cell line) MB decreased the NADH/NAD+ ratio and oxidative stress without correcting the energy deficit, and improved cell survival. MB deactivated the mitochondrial stress response pathways, the unfolding protein response and mitophagy. In conclusion, preserving mitochondrial structure and function alleviates retinal photoreceptor degeneration in mitochondrial complex I defect. Mitochondrial complex I causes damage of the retinal photoreceptor cells and their outer segments. Methylene blue decreases the NADH/ NAD+ ratio and oxidative stress induced by complex I defect. Methylene blue deactivates the mitochondrial stress response pathways. Methylene blue maintains mitochondrial integrity and function. Methylene blue improves photoreceptor cell survival and outer segment integrity.
Collapse
Affiliation(s)
- Naveen K Mekala
- Department of Foundational Sciences at Central Michigan University College of Medicine, Mount Pleasant, MI, United States
| | - Jacob Kurdys
- Department of Foundational Sciences at Central Michigan University College of Medicine, Mount Pleasant, MI, United States
| | - Mikayla M Depuydt
- Department of Foundational Sciences at Central Michigan University College of Medicine, Mount Pleasant, MI, United States
| | - Edwin J Vazquez
- Department of Foundational Sciences at Central Michigan University College of Medicine, Mount Pleasant, MI, United States
| | - Mariana G Rosca
- Department of Foundational Sciences at Central Michigan University College of Medicine, Mount Pleasant, MI, United States.
| |
Collapse
|
6
|
Abstract
The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1-2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.
Collapse
|
7
|
Abstract
As our understanding of the genetic basis for inherited retinal disease has expanded, gene therapy has advanced into clinical development. When the gene mutations associated with inherited retinal dystrophies were identified, it became possible to create animal models in which individual gene were altered to match the human mutations. The retina of these animals were then characterized to assess whether the mutated genes produced retinal phenotypes characteristic of disease-affected patients. Following the identification of a subpopulation of patients with the affected gene and the development of techniques for the viral gene transduction of retinal cells, it has become possible to deliver a copy of the normal gene into the retinal sites of the mutated genes. When this was performed in animal models of monogenic diseases, at an early stage of retinal degeneration when the affected cells remained viable, successful gene augmentation corrected the structural and functional lesions characteristic of the specific diseases in the areas of the retina that were successfully transduced. These studies provided the essential proof-of-concept needed to advance monogenic gene therapies into clinic development; these therapies include treatments for: Leber's congenital amaurosis type 2, caused by mutations to RPE65, retinoid isomerohydrolase; choroideremia, caused by mutations to REP1, Rab escort protein 1; autosomal recessive Stargardt disease, caused by mutations to ABCA4, the photoreceptor-specific ATP-binding transporter; Usher 1B disease caused by mutations to MYO7A, myosin heavy chain 7; X-linked juvenile retinoschisis caused by mutations to RS1, retinoschisin; autosomal recessive retinitis pigmentosa caused by mutations to MERTK, the proto-oncogene tyrosine-protein kinase MER; Leber's hereditary optic neuropathy caused by mutations to ND4, mitochondrial nicotinamide adenine dinucleotide ubiquinone oxidoreductase (complex I) subunit 4 and achromatopsia, caused by mutations to CNGA3, cyclic nucleotide-gated channel alpha 3 and CNGB3, cyclic nucleotide-gated channel beta 3. This review includes a tabulated summary of treatments for these monogenic retinal dystrophies that have entered into clinical development, as well as a brief summary of the preclinical data that supported their advancement into clinical development.
Collapse
|
8
|
Catanzaro D, Gaude E, Orso G, Giordano C, Guzzo G, Rasola A, Ragazzi E, Caparrotta L, Frezza C, Montopoli M. Inhibition of glucose-6-phosphate dehydrogenase sensitizes cisplatin-resistant cells to death. Oncotarget 2016; 6:30102-14. [PMID: 26337086 PMCID: PMC4745784 DOI: 10.18632/oncotarget.4945] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
The mechanisms of cisplatin resistance, one of the major limitations of current chemotherapy, has only partially been described. We previously demonstrated that cisplatin-resistant ovarian cancer cells (C13), are characterized by reduced mitochondrial activity and higher glucose-dependency when compared to the cisplatin-sensitive counterpart (2008). In this work we further characterized the role of metabolic transformation in cisplatin resistance. By using transmitochondrial hybrids we show that metabolic reprogramming of cisplatin-resistant cell is not caused by inherent mtDNA mutations. We also found that C13 cells not only present an increased glucose-uptake and consumption, but also exhibit increased expression and enzymatic activity of the Pentose Phosphate pathway (PPP) enzyme Glucose-6-Phosphate Dehydrogenase (G6PDH). Moreover, we show that cisplatin-resistant cells are more sensitive to G6PDH inhibition. Even if the metabolomic fingerprint of ovarian cancer cells remains to be further elucidated, these findings indicate that PPP offers innovative potential targets to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Daniela Catanzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Edoardo Gaude
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
| | - Giulia Guzzo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Laura Caparrotta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Fayzulin RZ, Perez M, Kozhukhar N, Spadafora D, Wilson GL, Alexeyev MF. A method for mutagenesis of mouse mtDNA and a resource of mouse mtDNA mutations for modeling human pathological conditions. Nucleic Acids Res 2015; 43:e62. [PMID: 25820427 PMCID: PMC4482060 DOI: 10.1093/nar/gkv140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/10/2015] [Indexed: 12/23/2022] Open
Abstract
Mutations in human mitochondrial DNA (mtDNA) can cause mitochondrial disease and have been associated with neurodegenerative disorders, cancer, diabetes and aging. Yet our progress toward delineating the precise contributions of mtDNA mutations to these conditions is impeded by the limited availability of faithful transmitochondrial animal models. Here, we report a method for the isolation of mutations in mouse mtDNA and its implementation for the generation of a collection of over 150 cell lines suitable for the production of transmitochondrial mice. This method is based on the limited mutagenesis of mtDNA by proofreading-deficient DNA-polymerase γ followed by segregation of the resulting highly heteroplasmic mtDNA population by means of intracellular cloning. Among generated cell lines, we identify nine which carry mutations affecting the same amino acid or nucleotide positions as in human disease, including a mutation in the ND4 gene responsible for 70% of Leber Hereditary Optic Neuropathies (LHON). Similar to their human counterparts, cybrids carrying the homoplasmic mouse LHON mutation demonstrated reduced respiration, reduced ATP content and elevated production of mitochondrial reactive oxygen species (ROS). The generated resource of mouse mtDNA mutants will be useful both in modeling human mitochondrial disease and in understanding the mechanisms of ROS production mediated by mutations in mtDNA.
Collapse
Affiliation(s)
- Rafik Z Fayzulin
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Michael Perez
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Natalia Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Domenico Spadafora
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Glenn L Wilson
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
10
|
Martínez-Romero Í, Herrero-Martín MD, Llobet L, Emperador S, Martín-Navarro A, Narberhaus B, Ascaso FJ, López-Gallardo E, Montoya J, Ruiz-Pesini E. New MT-ND1 pathologic mutation for Leber hereditary optic neuropathy. Clin Exp Ophthalmol 2014; 42:856-64. [PMID: 24800637 DOI: 10.1111/ceo.12355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/21/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mutations causing Leber hereditary optic neuropathy are usually homoplasmic, show incomplete penetrance, and many of the affected positions are not well conserved through evolution. A large percentage of patients harbouring these mutations have no family history of disease. Moreover, the transfer of the mutation in the cybrid model is frequently not accompanied by the transfer of the cellular, biochemical and molecular phenotype. All these features make difficult their classification as the etiologic factors for this disease. We report a patient who exhibits typical clinical features of Leber hereditary optic neuropathy but lacks all three of the most common mitochondrial DNA mutations. METHODS The diagnosis was made based on clinical studies. The mitochondrial DNA was completely sequenced, and the candidate mutation was analysed in more than 18 000 individuals around the world, its conservation index was estimated in more than 3100 species from protists to mammals, its position was modelled in the crystal structure of a bacteria ortholog subunit, and its functional consequences were studied in a cybrid model. RESULTS Genetic analysis revealed an m.3472T>C transition in the MT-ND1 gene that changes a phenylalanine to leucine at position 56. Bioinformatics, molecular-genetic analysis and functional studies suggest that this transition is the etiological factor for the disorder. CONCLUSIONS This mutation expands the spectrum of deleterious changes in mitochondrial DNA-encoded complex I polypeptides associated with this pathology and highlights the difficulties in assigning pathogenicity to new homoplasmic mutations that show incomplete penetrance in sporadic Leber hereditary optic neuropathy patients.
Collapse
Affiliation(s)
- Íñigo Martínez-Romero
- Departamento de Bioquímica, Biología Molecular y Celular and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
An animal model of Leber hereditary optic neuropathy (LHON) was produced by introducing the human optic atrophy mtDNA ND6 P25L mutation into the mouse. Mice with this mutation exhibited reduction in retinal function by elecroretinogram (ERG), age-related decline in central smaller caliber optic nerve fibers with sparing of larger peripheral fibers, neuronal accumulation of abnormal mitochondria, axonal swelling, and demyelination. Mitochondrial analysis revealed partial complex I and respiration defects and increased reactive oxygen species (ROS) production, whereas synaptosome analysis revealed decreased complex I activity and increased ROS but no diminution of ATP production. Thus, LHON pathophysiology may result from oxidative stress.
Collapse
|
12
|
Morán M, Moreno-Lastres D, Marín-Buera L, Arenas J, Martín MA, Ugalde C. Mitochondrial respiratory chain dysfunction: implications in neurodegeneration. Free Radic Biol Med 2012; 53:595-609. [PMID: 22595027 DOI: 10.1016/j.freeradbiomed.2012.05.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 02/08/2023]
Abstract
For decades mitochondria have been considered static round-shaped organelles in charge of energy production. In contrast, they are highly dynamic cellular components that undergo continuous cycles of fusion and fission influenced, for instance, by oxidative stress, cellular energy requirements, or the cell cycle state. New important functions beyond energy production have been attributed to mitochondria, such as the regulation of cell survival, because of their role in the modulation of apoptosis, autophagy, and aging. Primary mitochondrial diseases due to mutations in genes involved in these new mitochondrial functions and the implication of mitochondrial dysfunction in multifactorial human pathologies such as cancer, Alzheimer and Parkinson diseases, or diabetes has been demonstrated. Therefore, mitochondria are set at a central point of the equilibrium between health and disease, and a better understanding of mitochondrial functions will open new fields for exploring the roles of these mitochondrial pathways in human pathologies. This review dissects the relationships between activity and assembly defects of the mitochondrial respiratory chain, oxidative damage, and alterations in mitochondrial dynamics, with special focus on their implications for neurodegeneration.
Collapse
Affiliation(s)
- María Morán
- Laboratorio de Enfermedades Raras: Mitocondriales y Neuromusculares, Instituto de Investigación Hospital Universitario 12 de Octubre (i+12), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Kirches E. LHON: Mitochondrial Mutations and More. Curr Genomics 2011; 12:44-54. [PMID: 21886454 PMCID: PMC3129042 DOI: 10.2174/138920211794520150] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/14/2010] [Accepted: 12/28/2010] [Indexed: 11/22/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON) is a mitochondrial disorder leading to severe visual impairment or even blindness by death of retinal ganglion cells (RGCs). The primary cause of the disease is usually a mutation of the mitochondrial genome (mtDNA) causing a single amino acid exchange in one of the mtDNA-encoded subunits of NADH:ubiquinone oxidoreductase, the first complex of the electron transport chain. It was thus obvious to accuse neuronal energy depletion as the most probable mediator of neuronal death. The group of Valerio Carelli and other authors have nicely shown that energy depletion shapes the cell fate in a LHON cybrid cell model. However, the cybrids used were osteosarcoma cells, which do not fully model neuronal energy metabolism. Although complex I mutations may cause oxidative stress, a potential pathogenetic role of the latter was less taken into focus. The hypothesis of bioenergetic failure does not provide a simple explanation for the relatively late disease onset and for the incomplete penetrance, which differs remarkably between genders. It is assumed that other genetic and environmental factors are needed in addition to the ‘primary LHON mutations’ to elicit RGC death. Relevant nuclear modifier genes have not been identified so far. The review discusses the unresolved problems of a pathogenetic hypothesis based on ATP decline and/or ROS-induced apoptosis in RGCs.
Collapse
Affiliation(s)
- E Kirches
- Department of Neuropathology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
14
|
Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies. Prog Retin Eye Res 2011; 30:81-114. [PMID: 21112411 PMCID: PMC3081075 DOI: 10.1016/j.preteyeres.2010.11.002] [Citation(s) in RCA: 440] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leber hereditary optic neuropathy (LHON) and autosomal-dominant optic atrophy (DOA) are the two most common inherited optic neuropathies in the general population. Both disorders share striking pathological similarities, marked by the selective loss of retinal ganglion cells (RGCs) and the early involvement of the papillomacular bundle. Three mitochondrial DNA (mtDNA) point mutations; m.3460G>A, m.11778G>A, and m.14484T>C account for over 90% of LHON cases, and in DOA, the majority of affected families harbour mutations in the OPA1 gene, which codes for a mitochondrial inner membrane protein. Optic nerve degeneration in LHON and DOA is therefore due to disturbed mitochondrial function and a predominantly complex I respiratory chain defect has been identified using both in vitro and in vivo biochemical assays. However, the trigger for RGC loss is much more complex than a simple bioenergetic crisis and other important disease mechanisms have emerged relating to mitochondrial network dynamics, mtDNA maintenance, axonal transport, and the involvement of the cytoskeleton in maintaining a differential mitochondrial gradient at sites such as the lamina cribosa. The downstream consequences of these mitochondrial disturbances are likely to be influenced by the local cellular milieu. The vulnerability of RGCs in LHON and DOA could derive not only from tissue-specific, genetically-determined biological factors, but also from an increased susceptibility to exogenous influences such as light exposure, smoking, and pharmacological agents with putative mitochondrial toxic effects. Our concept of inherited mitochondrial optic neuropathies has evolved over the past decade, with the observation that patients with LHON and DOA can manifest a much broader phenotypic spectrum than pure optic nerve involvement. Interestingly, these phenotypes are sometimes clinically indistinguishable from other neurodegenerative disorders such as Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and multiple sclerosis, where mitochondrial dysfunction is also thought to be an important pathophysiological player. A number of vertebrate and invertebrate disease models has recently been established to circumvent the lack of human tissues, and these have already provided considerable insight by allowing direct RGC experimentation. The ultimate goal is to translate these research advances into clinical practice and new treatment strategies are currently being investigated to improve the visual prognosis for patients with mitochondrial optic neuropathies.
Collapse
MESH Headings
- Animals
- DNA, Mitochondrial/genetics
- Disease Models, Animal
- Humans
- Optic Atrophy, Autosomal Dominant/pathology
- Optic Atrophy, Autosomal Dominant/physiopathology
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Hereditary, Leber/pathology
- Optic Atrophy, Hereditary, Leber/physiopathology
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Nerve/pathology
- Phenotype
- Point Mutation
- Retinal Ganglion Cells/pathology
Collapse
Affiliation(s)
- Patrick Yu-Wai-Man
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, UK.
| | | | | |
Collapse
|
15
|
|
16
|
Blood pressure treatment in acute ischemic stroke: a review of studies and recommendations. Curr Opin Neurol 2010; 23:46-52. [PMID: 20038827 DOI: 10.1097/wco.0b013e3283355694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Elevated blood pressure (BP) is frequent in patients with acute ischemic stroke. Pathophysiological data support its usefulness to maintain adequate perfusion of the ischemic penumba. This review article aims to summarize the available evidence from clinical studies that examined the prognostic role of BP during the acute phase of ischemic stroke and intervention studies that assessed the efficacy of active BP alteration. RECENT FINDINGS We found 34 observational studies (33,470 patients), with results being inconsistent among the studies; most studies reported a negative association between increased levels of BP and clinical outcome, whereas a few studies showed clinical improvement with higher BP levels, clinical deterioration with decreased BP, or no association at all. Similarly, the conclusions drawn by the 18 intervention studies included in this review (1637 patients) were also heterogeneous. Very recent clinical data suggest a possible beneficial effect of early treatment with some antihypertensives on late clinical outcome. SUMMARY Observational and interventional studies of management of acute poststroke hypertension yield conflicting results. We discuss different explanations that may account for this and discuss the current guidelines and pathophysiological considerations for the management of acute poststroke hypertension.
Collapse
|
17
|
Abstract
Mitochondria are physically or functionally altered in many neurodegenerative diseases. This is the case for very rare neurodegenerative disorders as well as extremely common age-related ones such as Alzheimer's disease and Parkinson's disease. In some disorders very specific patterns of altered mitochondrial function or systemic mitochondrial dysfunction are demonstrable. Some disorders arise from mitochondrial DNA mutation, some from nuclear gene mutation, and for some the etiology is not definitively known. This review classifies neurodegenerative diseases using mitochondrial dysfunction as a unifying feature, and in doing so defines a group of disorders called the neurodegenerative mitochondriopathies. It discusses what mitochondrial abnormalities have been identified in various neurodegenerative diseases, what is currently known about the mitochondria-neurodegeneration nexus, and speculates on the significance of mitochondrial function in some disorders not classically thought of as mitochondriopathies.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|