1
|
Rey-Funes M, Fernández JC, Peláez R, Soliño M, Contartese DS, Ciranna NS, Nakamura R, Sarotto A, Dorfman VB, Zapico JM, Ramos A, de Pascual-Teresa B, López-Costa JJ, Larrayoz IM, Martínez A, Loidl CF. A hypothermia mimetic molecule (zr17-2) reduces ganglion cell death, gliosis, and electroretinogram distortion in male rats subjected to perinatal asphyxia. Front Pharmacol 2023; 14:1252184. [PMID: 37767403 PMCID: PMC10520548 DOI: 10.3389/fphar.2023.1252184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction: Perinatal asphyxia (PA) represents a major problem in perinatology and may cause visual losses, including blindness. We, and others, have shown that hypothermia prevents retinal symptoms associated to PA. In the present work, we evaluate whether a hypothermia mimetic small molecule, zr17-2, has similar effects in the context of PA. Methods: Four experimental groups were studied in male rats: Naturally born rats as controls (CTL), naturally born rats injected s.c. with 50 µL of 330 nmols/L zr17-2 (ZR), animals that were exposed to PA for 20 min at 37°C (PA), and rats that were exposed to PA and injected with zr17-2 (PA-ZR). Forty-five days after treatment, animals were subjected to electroretinography. In addition, morphological techniques (TUNEL, H&E, multiple immunofluorescence) were applied to the retinas. Results: A reduction in the amplitude of the a- and b-wave and oscillatory potentials (OP) of the electroretinogram (ERG) was detected in PA animals. Treatment with zr17-2 resulted in a significant amelioration of these parameters (p < 0.01). In PA animals, a large number of apoptotic cells was found in the GCL. This number was significantly reduced by treatment with the small molecule (p < 0.0001). In a similar way, the thickness of the inner retina and the intensity of GFAP immunoreactivity (gliosis) increased in PA retinas (p < 0.0001). These parameters were corrected by the administration of zr17-2 (p < 0.0001). Furthermore, injection of the small molecule in the absence of PA did not modify the ERG nor the morphological parameters studied, suggesting a lack of toxicity. Discussion: In conclusion, our results indicate that a single s.c. injection of zr17-2 in asphyctic neonates may provide a novel and efficacious method to prevent the visual sequelae of PA.
Collapse
Affiliation(s)
- Manuel Rey-Funes
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Fernández
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Manuel Soliño
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S. Contartese
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás S. Ciranna
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ronan Nakamura
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Sarotto
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B. Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - José M. Zapico
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Ana Ramos
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Juan José López-Costa
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignacio M. Larrayoz
- Department of Nursing, Biomarkers, Artificial Intelligence, and Signaling (BIAS), University of La Rioja, Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - César Fabián Loidl
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Rey-Funes M, Contartese DS, Peláez R, García-Sanmartín J, Narro-Íñiguez J, Soliño M, Fernández JC, Sarotto A, Ciranna NS, López-Costa JJ, Dorfman VB, Larrayoz IM, Loidl CF, Martínez A. Hypothermic Shock Applied After Perinatal Asphyxia Prevents Retinal Damage in Rats. Front Pharmacol 2021; 12:651599. [PMID: 33897437 PMCID: PMC8060653 DOI: 10.3389/fphar.2021.651599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
Perinatal asphyxia (PA) can cause retinopathy and different degrees of visual loss, including total blindness. In a rat model of PA, we have previously shown a protective effect of hypothermia on the retina when applied simultaneously with the hypoxic insult. In the present work, we evaluated the possible protective effect of hypothermia on the retina of PA rats when applied immediately after delivery. Four experimental groups were studied: Rats born naturally as controls (CTL), animals that were exposed to PA for 20 min at 37°C (PA), animals exposed to PA for 20 min at 15°C (HYP), and animals that were exposed to PA for 20 min at 37°C and, immediately after birth, kept for 15 min at 8°C (HYP-PA). To evaluate the integrity of the visual pathway, animals were subjected to electroretinography at 45 days of age. Molecular (real time PCR) and histological (immunohistochemistry, immunofluorescence, TUNEL assay) techniques were applied to the eyes of all experimental groups collected at 6, 12, 24, and 48 h, and 6 days after birth. PA resulted in a significant reduction in the amplitude of the a- and b-wave and oscillatory potentials (OP) of the electroretinogram. All animals treated with hypothermia had a significant correction of the a-wave and OP, but the b-wave was fully corrected in the HYP group but only partially in the HYP-PA group. The number of TUNEL-positive cells increased sharply in the ganglion cell layer of the PA animals and this increase was significantly prevented by both hypothermia treatments. Expression of the cold-shock proteins, cold-inducible RNA binding protein (CIRP) and RNA binding motif protein 3 (RBM3), was undetectable in retinas of the CTL and PA groups, but they were highly expressed in ganglion neurons and cells of the inner nuclear layer of the HYP and HYP-PA groups. In conclusion, our results suggest that a post-partum hypothermic shock could represent a useful and affordable method to prevent asphyxia-related vision disabling sequelae.
Collapse
Affiliation(s)
- Manuel Rey-Funes
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S Contartese
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Josune García-Sanmartín
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Judit Narro-Íñiguez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Manuel Soliño
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Fernández
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Sarotto
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás S Ciranna
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan José López-Costa
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - C Fabián Loidl
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof, E. De Robertis" (IBCN), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja, Logroño, Spain
| |
Collapse
|
3
|
Research Progress of the Application of Hypothermia in the Eye. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3897168. [PMID: 33381263 PMCID: PMC7758138 DOI: 10.1155/2020/3897168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Hypothermia is widely used in the medical field to protect organs or tissues from damage. Different research fields have different explanations of the protection mechanism of hypothermia. Hypothermia is also widely used in the field of ophthalmology, for example, in the eye bank, the preservation of corneal tissue and the preservation of the eyeball. Low temperature can also be applied to some ophthalmic diseases, such as allergic conjunctivitis, retinal ischemia, and retinal hypoxia. It is used to relieve eye symptoms or reduce tissue damage. Hypothermic techniques have important applications in ophthalmic surgery, such as corneal refractive surgery, vitrectomy surgery, and ciliary body cryotherapy for end-stage glaucoma. Hypothermia can reduce the inflammation of the cornea and protect the retinal tissue. The eyeball is a complex organ, including collagen tissue of the eyeball wall and retinal nerve tissue and retinal blood vessels. The mechanism of low temperature protecting eye tissue is complicated. It is important to understand the mechanism of hypothermia and its applications in ophthalmology. This review introduces the mechanism of hypothermia and its application in the eye banks, eye diseases (allergic conjunctivitis, retinal ischemia, and hypoxia), and eye surgeries (corneal transplant surgery, corneal refractive surgery, and vitrectomy).
Collapse
|
4
|
Drobyshevsky A, Quinlan KA. Spinal cord injury in hypertonic newborns after antenatal hypoxia-ischemia in a rabbit model of cerebral palsy. Exp Neurol 2017; 293:13-26. [PMID: 28347765 DOI: 10.1016/j.expneurol.2017.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 12/25/2022]
Abstract
While antenatal hypoxia-ischemia (H-I) is a well-established cause of brain injury, the effects of H-I on the spinal cord remain undefined. This study examined whether hypertonia in rabbits was accompanied by changes in spinal architecture. Rabbit dams underwent global fetal H-I at embryonic day 25 for 40min. High resolution diffusion tensor imaging was performed on fixed neonatal CNS. Fractional anisotropy (FA) and regional volumetric measurements were compared between kits with and without hypertonia after H-I and sham controls using Tract Based Spatial Statistics. Hypertonic kits showed evidence of damage from hypoxia not only in the brain, but in spinal cord as well. Hypertonic kits showed reduced FA and thickness in corticospinal tracts, external capsule, fimbria, and in white and gray matter of both cervical and lumbar spinal cord. Dorsal white matter of the spinal cord was the exception, where there was thickening and increased FA in hypertonic kits. Direct damage to the spinal cord was demonstrated in a subset of dams imaged during H-I with a 3T magnetic resonance scanner, where apparent diffusion coefficient in fetal spinal cords acutely decreased during hypoxia. Hypertonic kits showed subsequent decreases in lumbar motoneuron counts and extensive TUNEL- and Fluoro-Jade C-positive labeling was present in the spinal cord 48h after H-I, demonstrating spinal neurodegeneration. We speculate that global H-I causes significant loss of both spinal white and gray matter in hypertonic newborns due to direct H-I injury to the spinal cord as well as due to upstream brain injury and consequent loss of descending projections.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatric, NorthShore University HealthSystem Research Institute, Evanston, IL, United States.
| | - Katharina A Quinlan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Barkhuizen M, van den Hove DLA, Vles JSH, Steinbusch HWM, Kramer BW, Gavilanes AWD. 25 years of research on global asphyxia in the immature rat brain. Neurosci Biobehav Rev 2017; 75:166-182. [PMID: 28161509 DOI: 10.1016/j.neubiorev.2017.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.
Collapse
Affiliation(s)
- M Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - D L A van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - J S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Child Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H W M Steinbusch
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - B W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Ecuador.
| |
Collapse
|
6
|
Barkhuizen M, Van de Berg WDJ, De Vente J, Blanco CE, Gavilanes AWD, Steinbusch HWM. Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia. Neurotox Res 2017; 31:400-409. [PMID: 28110393 PMCID: PMC5360831 DOI: 10.1007/s12640-017-9700-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022]
Abstract
Encephalopathy due to perinatal asphyxia (PA) is a major cause of neonatal morbidity and mortality in the period around birth. Preterm infants are especially at risk for cognitive, attention and motor impairments. Therapy for this subgroup is limited to supportive care, and new targets are thus urgently needed. Post-asphyxic excitotoxicity is partially mediated by excessive nitric oxide (NO) release. The aims of this study were to determine the timing and distribution of nitric oxide (NO) production after global PA in brain areas involved in motor regulation and coordination. This study focused on the rat striatum and cerebellum, as these areas also affect cognition or attention, in addition to their central role in motor control. NO/peroxynitrite levels were determined empirically with a fluorescent marker on postnatal days P5, P8 and P12. The distributions of neuronal NO synthase (nNOS), cyclic guanosine monophosphate (cGMP), astroglia and caspase-3 were determined with immunohistochemistry. Apoptosis was additionally assessed by measuring caspase-3-like activity from P2-P15. On P5 and P8, increased intensity of NO-associated fluorescence and cGMP immunoreactivity after PA was apparent in the striatum, but not in the cerebellum. No changes in nNOS immunoreactivity or astrocytes were observed. Modest changes in caspase-3-activity were observed between groups, but the overall time course of apoptosis over the first 11 days of life was similar between PA and controls. Altogether, these data suggest that PA increases NO/peroxynitrite levels during the first week after birth within the striatum, but not within the cerebellum, without marked astrogliosis. Therapeutic benefits of interventions that reduce endogenous NO production would likely be greater during this time frame.
Collapse
Affiliation(s)
- M Barkhuizen
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands.,DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - W D J Van de Berg
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, Netherlands
| | - J De Vente
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - C E Blanco
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department Pediatrics, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands.,Institute of Biomedicine, Faculty of Medicine, Catholic University of Guayaquil, Guayaquil, Ecuador
| | - H W M Steinbusch
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands. .,EURON - European Graduate School of Neuroscience, Maastricht, The Netherlands. .,Department of Translational Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 5800, 6212 AZ, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Rey-Funes M, Larrayoz IM, Fernández JC, Contartese DS, Rolón F, Inserra PIF, Martínez-Murillo R, López-Costa JJ, Dorfman VB, Martínez A, Loidl CF. Methylene blue prevents retinal damage in an experimental model of ischemic proliferative retinopathy. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1011-9. [PMID: 26984891 DOI: 10.1152/ajpregu.00266.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/11/2016] [Indexed: 11/22/2022]
Abstract
Perinatal asphyxia induces retinal lesions, generating ischemic proliferative retinopathy, which may result in blindness. Previously, we showed that the nitrergic system was involved in the physiopathology of perinatal asphyxia. Here we analyze the application of methylene blue, a well-known soluble guanylate cyclase inhibitor, as a therapeutic strategy to prevent retinopathy. Male rats (n = 28 per group) were treated in different ways: 1) control group comprised born-to-term animals; 2) methylene blue group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery; 3) perinatal asphyxia (PA) group comprised rats exposed to perinatal asphyxia (20 min at 37°C); and 4) methylene blue-PA group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery, and then the pups were subjected to PA as above. For molecular studies, mRNA was obtained at different times after asphyxia, and tissue was collected at 30 days for morphological and biochemical analysis. Perinatal asphyxia produced significant gliosis, angiogenesis, and thickening of the inner retina. Methylene blue treatment reduced these parameters. Perinatal asphyxia resulted in a significant elevation of the nitrergic system as shown by NO synthase (NOS) activity assays, Western blotting, and (immuno)histochemistry for the neuronal isoform of NOS and NADPH-diaphorase activity. All these parameters were also normalized by the treatment. In addition, methylene blue induced the upregulation of the anti-angiogenic peptide, pigment epithelium-derived factor. Application of methylene blue reduced morphological and biochemical parameters of retinopathy. This finding suggests the use of methylene blue as a new treatment to prevent or decrease retinal damage in the context of ischemic proliferative retinopathy.
Collapse
Affiliation(s)
- Manuel Rey-Funes
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Angiogenesis Study Group, Center for Biomedical Research of La Rioja, Logroño, Spain;
| | - Juan C Fernández
- Primera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela S Contartese
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Federico Rolón
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Pablo I F Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Buenos Aires, Argentina
| | - Ricardo Martínez-Murillo
- Neurovascular Research Group, Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior Investigaciones Científicas, Madrid, Spain; and
| | - Juan J López-Costa
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Study Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - César F Loidl
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Laboratorio de Neurociencia, Facultad de Ciencias Médicas, Universidad Católica de Cuyo, San Juan, Argentina
| |
Collapse
|
8
|
Rey-Funes M, Ibarra ME, Dorfman VB, Serrano J, Fernández AP, Martínez-Murillo R, Martínez A, Coirini H, Rodrigo J, Loidl CF. Hypothermia prevents nitric oxide system changes in retina induced by severe perinatal asphyxia. J Neurosci Res 2011; 89:729-43. [DOI: 10.1002/jnr.22556] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 11/06/2022]
|
9
|
Rey-Funes M, Ibarra ME, Dorfman VB, López EM, López-Costa JJ, Coirini H, Loidl CF. Hypothermia prevents the development of ischemic proliferative retinopathy induced by severe perinatal asphyxia. Exp Eye Res 2010; 90:113-20. [DOI: 10.1016/j.exer.2009.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/16/2009] [Accepted: 09/21/2009] [Indexed: 02/01/2023]
|