1
|
Staib-Lasarzik I, Gölz C, Bobkiewiecz W, Somnuke P, Sebastiani A, Thal SC, Schäfer MK. Sortilin is dispensable for secondary injury processes following traumatic brain injury in mice. Heliyon 2024; 10:e35198. [PMID: 39170542 PMCID: PMC11336488 DOI: 10.1016/j.heliyon.2024.e35198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Traumatic brain injury (TBI) is characterized by complex secondary injury processes involving the p75 neurotrophin receptor (p75NTR), which has been proposed as a possible therapeutic target. However, the pathogenic role of the p75NTR co-receptor sortilin in TBI has not been investigated. In this study, we examined whether sortilin contributes to acute and early processes of secondary injury using a murine controlled cortical impact (CCI) model of TBI. Initial expression analysis showed a down-regulation of sortilin mRNA levels 1 and 5 day post injury (dpi) and a reduced expression of sortilin protein 1 dpi. Next, a total of 40 SortilinΔExon14 loss-of-function mouse mutants (Sort1-/-) and wild-type (Sort1+/+) littermate mice were subjected to CCI and examined at 1 and 5 dpi. Neither sensorimotor deficits or brain lesion size nor CCI-induced cell death or calcium-dependent excitotoxicity as evaluated by TUNEL staining or Western blot analysis of alpha II spectrin breakdown products were different between Sort1-/- and Sort1+/+ mice. In addition, CCI induced the up-regulation of pro-inflammatory marker mRNA expression (Il6, Tnfa, Aif1, and Gfap) irrespectively of the genotype. Similarly, the mRNA expressions of neurotrophins (Bdnf, Ngf, Nt3), VPS10P domain receptors others than sortilin (Ngfr, Sorl1, Sorcs2), and the sortilin interactor progranulin were not affected by genotype. Our results suggest that sortilin is a modulatory rather than a critical factor in the acute and early brain tissue response after TBI.
Collapse
Affiliation(s)
- Irina Staib-Lasarzik
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wieslawa Bobkiewiecz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Serge C. Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K.E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Jazaeri SZ, Taghizadeh G, Babaei JF, Goudarzi S, Saadatmand P, Joghataei MT, Khanahmadi Z. Aquaporin 4 beyond a water channel; participation in motor, sensory, cognitive and psychological performances, a comprehensive review. Physiol Behav 2023; 271:114353. [PMID: 37714320 DOI: 10.1016/j.physbeh.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
Aquaporin 4 (AQP4) is a protein highly expressed in the central nervous system (CNS) and peripheral nervous system (PNS) as well as various other organs, whose different sites of action indicate its importance in various functions. AQP4 has a variety of essential roles beyond water homeostasis. In this article, we have for the first time summarized different roles of AQP4 in motor and sensory functions, besides cognitive and psychological performances, and most importantly, possible physiological mechanisms by which AQP4 can exert its effects. Furthermore, we demonstrated that AQP4 participates in pathology of different neurological disorders, various effects depending on the disease type. Since neurological diseases involve a spectrum of dysfunctions and due to the difficulty of obtaining a treatment that can simultaneously affect these deficits, it is therefore suggested that future studies consider the role of this protein in different functional impairments related to neurological disorders simultaneously or separately by targeting AQP4 expression and/or polarity modulation.
Collapse
Affiliation(s)
- Seyede Zohreh Jazaeri
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of medical Sciences, Tehran, Iran
| | - Pegah Saadatmand
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Innovation in Medical Education, Faculty of Medicine, Ottawa University, Ottawa, Canada.
| | - Zohreh Khanahmadi
- Department of Occupational Therapy, School of Rehabilitation Services, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Pichardo-Rojas D, Pichardo-Rojas PS, Cornejo-Bravo JM, Serrano-Medina A. Memantine as a neuroprotective agent in ischemic stroke: Preclinical and clinical analysis. Front Neurosci 2023; 17:1096372. [PMID: 36743806 PMCID: PMC9893121 DOI: 10.3389/fnins.2023.1096372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
The primary mechanism for neuron death after an ischemic stroke is excitotoxic injury. Excessive depolarization leads to NMDA-mediated calcium entry to the neuron and, subsequently, cellular death. Therefore, the inhibition of the NMDA channel has been proposed as a neuroprotective measure in ischemic stroke. The high morbimortality associated with stroke warrants new therapies that can improve the functional prognosis of patients. Memantine is a non-competitive NMDA receptor antagonist which has gained attention as a potential drug for ischemic stroke. Here we analyze the available preclinical and clinical evidence concerning the use of memantine following an ischemic stroke. Preclinical evidence shows inhibition of the excitotoxic cascade, as well as improved outcomes in terms of motor and sensory function with the use of memantine. The available clinical trials of high-dose memantine in patients poststroke have found that it can improve patients' NIHSS and Barthel index and help patients with poststroke aphasia and intracranial hemorrhage. These results suggest that memantine has a clinically relevant neuroprotective effect; however, small sample sizes and other study shortcomings limit the impact of these findings. Even so, current studies show promising results that should serve as a basis to promote future research to conclusively determine if memantine does improve the outcomes of patients' post-ischemic stroke. We anticipate that future trials will fill current gaps in knowledge, and these latter results will broaden the therapeutic arsenal for clinicians looking to improve the prognosis of patients poststroke.
Collapse
Affiliation(s)
- Diego Pichardo-Rojas
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Pavel Salvador Pichardo-Rojas
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Aracely Serrano-Medina
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Mexico,*Correspondence: Aracely Serrano-Medina,
| |
Collapse
|
4
|
Qin X, Wang J, Chen S, Liu G, Wu C, Lv Q, He X, Bai X, Huang W, Liao H. Astrocytic p75 NTR expression provoked by ischemic stroke exacerbates the blood-brain barrier disruption. Glia 2022; 70:892-912. [PMID: 35064700 DOI: 10.1002/glia.24146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/16/2022]
Abstract
The disruption of the blood-brain barrier (BBB) plays a critical role in the pathology of ischemic stroke. p75 neurotrophin receptor (p75NTR ) contributes to the disruption of the blood-retinal barrier in retinal ischemia. However, whether p75NTR influences the BBB permeability after acute cerebral ischemia remains unknown. The present study investigated the role and underlying mechanism of p75NTR on BBB integrity in an ischemic stroke mouse model, middle cerebral artery occlusion (MCAO). After 24 h of MCAO, astrocytes and endothelial cells in the infarct-affected brain area up-regulated p75NTR . Genetic p75NTR knockdown (p75NTR+/- ) or pharmacological inhibition of p75NTR using LM11A-31, a selective inhibitor of p75NTR , both attenuated brain damage and BBB leakage in MCAO mice. Astrocyte-specific conditional knockdown of p75NTR mediated with an adeno-associated virus significantly ameliorated BBB disruption and brain tissue damage, as well as the neurological functions after stroke. Further molecular biological examinations indicated that astrocytic p75NTR activated NF-κB and HIF-1α signals, which upregulated the expression of MMP-9 and vascular endothelial growth factor (VEGF), subsequently leading to tight junction degradation after ischemia. As a result, increased leukocyte infiltration and microglia activation exacerbated brain injury after stroke. Overall, our results provide novel insight into the role of astrocytic p75NTR in BBB disruption after acute cerebral ischemia. The p75NTR may therefore be a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoying Qin
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Jianing Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Shujian Chen
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Gang Liu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Chaoran Wu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Qunyu Lv
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Xinran He
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Hong Liao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Geng W, Wang J, Xie L, Song Y, Cao M, Shen J. p75 NTR Interacts with the Zinc Finger Protein Glis2 and Participates in Neuronal Apoptosis Following Intracerebral Hemorrhage. Neurotox Res 2022; 40:461-472. [PMID: 35192146 DOI: 10.1007/s12640-022-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022]
Abstract
Intracerebral hemorrhage (ICH) is a serious condition with a particularly high mortality rate. Gli-similar 2 (Glis2) has been reported to play an important role in the pathogenesis of ICH; however, its underlying mechanisms and biological significance remains unclear. In the present study, a specific interaction between Glis2 and p75NTR, a member of the tumor necrosis factor receptor superfamily, was identified both in vivo and in vitro. These experiments further indicated that p75NTR may interact with Glis2, and that the complex was transported into the nucleus, initially, inducing neuronal death. Furthermore, the mechanism of neuronal death was explored, and may have been mediated via the activation of the mitochondrial-dependent apoptotic pathway, and this was further investigated in the pathogenesis of ICH in rats in vivo. The study may provide evidences for regulating p75NTR-Glis2 complex as a potential reliable treatment for the secondary damage following ICH.
Collapse
Affiliation(s)
- Wenqing Geng
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Neurology, The People's Hospital of Hai'an, Nantong, Jiangsu, 226600, People's Republic of China
| | - Lili Xie
- Department of Neurology, The Third People's Hospital of Yancheng, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, 224300, People's Republic of China
| | - Yan Song
- Department of Neurology, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, 226006, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
6
|
Uzdensky AB. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 2020; 24:687-702. [PMID: 31256300 DOI: 10.1007/s10495-019-01556-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is the leading cause of human disability and mortality in the world. The main problem in stroke therapy is the search of efficient neuroprotector capable to rescue neurons in the potentially salvageable transition zone (penumbra), which is expanding after brain damage. The data on molecular mechanisms of penumbra formation and expression of diverse signaling proteins in the penumbra during first 24 h after ischemic stroke are discussed. Two basic features of cell death regulation in the ischemic penumbra were observed: (1) both apoptotic and anti-apoptotic proteins are simultaneously over-expressed in the penumbra, so that the fate of individual cells is determined by the balance between these opposite tendencies. (2) Similtaneous and concerted up-regulation in the ischemic penumbra of proteins that execute apoptosis (caspases 3, 6, 7; Bcl-10, SMAC/DIABLO, AIF, PSR), signaling proteins that regulate different apoptosis pathways (p38, JNK, DYRK1A, neurotrophin receptor p75); transcription factors that control expression of various apoptosis regulation proteins (E2F1, p53, c-Myc, GADD153); and proteins, which are normally involved in diverse cellular functions, but stimulate apoptosis in specific situations (NMDAR2a, Par4, GAD65/67, caspase 11). Hence, diverse apoptosis initiation and regulation pathways are induced simultaneously in penumbra from very different initial positions. Similarly, various anti-apoptotic proteins (Bcl-x, p21/WAF-1, MDM2, p63, PKBα, ERK1, RAF1, ERK5, MAKAPK2, protein phosphatases 1α and MKP-1, estrogen and EGF receptors, calmodulin, CaMKII, CaMKIV) are upregulated. These data provide an integral view of neurodegeneration and neuroprotection in penumbra. Some discussed proteins may serve as potential targets for anti-stroke therapy.
Collapse
Affiliation(s)
- Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Prospect, Rostov-on-Don, Russia, 344090.
| |
Collapse
|
7
|
Lin YH, Yao MC, Wu HY, Dong J, Ni HY, Kou XL, Chang L, Luo CX, Zhu DY. HDAC2 (Histone deacetylase 2): A critical factor in environmental enrichment-mediated stroke recovery. J Neurochem 2020; 155:679-696. [PMID: 32415988 DOI: 10.1111/jnc.15043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Environmental enrichment (EE) is a generally accepted strategy to promote stroke recovery and its beneficial effect is positively correlated with neuroplasticity. However, the mechanisms underlying it remain elusive. Histone deacetylase 2 (HDAC2), a negative regulator of neuroplasticity, is up-regulated after stroke. Thus, we hypothesized that HDAC2 may participate in EE-mediated stroke recovery. In this study, focal stroke was induced by photothrombosis in male mice exposing to EE or standard housing (SH) conditions. Recombinant virus vectors, including Ad-HDAC2-Flag, AAV-CAG-EGFP-Cre, LV-shHDAC2, or their controls were microinjected into the motor cortex at 3 days before stroke. Grid-walking and cylinder tasks were conducted to assess motor function. Western blot and immunostaining were used to uncover the mechanisms underlying EE-mediated stroke recovery. We found that EE exposure reversed stroke-induced HDAC2 up-regulation, implicating HDAC2 in EE-mediated functional recovery. Importantly, EE-dependent stroke recovery was counteracted by over-expressing HDAC2, and HDAC2 knockdown promoted functional recovery from stroke to the similar extent as EE exposure. Moreover, the knockdown of HDAC2 epigenetically enhanced expressions of neurotrophins and neuroplasticity-related proteins, with similar effects as EE, and consequently, whole brain and corticospinal tract (CST) rewiring. Together, our findings indicate that HDAC2 is critical for EE-dependent functional restoration. Precisely targeting HDAC2 may mimic EE and serve as a novel therapeutic strategy for stroke recovery.
Collapse
Affiliation(s)
- Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Meng-Cheng Yao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jian Dong
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiao-Lin Kou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Turovskaya MV, Gaidin SG, Vedunova MV, Babaev AA, Turovsky EA. BDNF Overexpression Enhances the Preconditioning Effect of Brief Episodes of Hypoxia, Promoting Survival of GABAergic Neurons. Neurosci Bull 2020; 36:733-760. [PMID: 32219700 PMCID: PMC7340710 DOI: 10.1007/s12264-020-00480-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia causes depression of synaptic plasticity, hyperexcitation of neuronal networks, and the death of specific populations of neurons. However, brief episodes of hypoxia can promote the adaptation of cells. Hypoxic preconditioning is well manifested in glutamatergic neurons, while this adaptive mechanism is virtually suppressed in GABAergic neurons. Here, we show that brain-derived neurotrophic factor (BDNF) overexpression in neurons enhances the preconditioning effect of brief episodes of hypoxia. The amplitudes of the NMDAR- and AMPAR-mediated Ca2+ responses of glutamatergic and GABAergic neurons gradually decreased after repetitive brief hypoxia/reoxygenation cycles in cell cultures transduced with the (AAV)-Syn-BDNF-EGFP virus construct. In contrast, the amplitudes of the responses of GABAergic neurons increased in non-transduced cultures after preconditioning. The decrease of the amplitudes in GABAergic neurons indicated the activation of mechanisms of hypoxic preconditioning. Preconditioning suppressed apoptotic or necrotic cell death. This effect was most pronounced in cultures with BDNF overexpression. Knockdown of BDNF abolished the effect of preconditioning and promoted the death of GABAergic neurons. Moreover, the expression of the anti-apoptotic genes Stat3, Socs3, and Bcl-xl substantially increased 24 h after hypoxic episodes in the transduced cultures compared to controls. The expression of genes encoding the pro-inflammatory cytokines IL-10 and IL-6 also increased. In turn, the expression of pro-apoptotic (Bax, Casp-3, and Fas) and pro-inflammatory (IL-1β and TNFα) genes decreased after hypoxic episodes in cultures with BDNF overexpression. Inhibition of vesicular BDNF release abolished its protective action targeting inhibition of the oxygen-glucose deprivation (OGD)-induced [Ca2+]i increase in GABAergic and glutamatergic neurons, thus promoting their death. Bafilomycin A1, Brefeldin A, and tetanus toxin suppressed vesicular release (including BDNF) and shifted the gene expression profile towards excitotoxicity, inflammation, and apoptosis. These inhibitors of vesicular release abolished the protective effects of hypoxic preconditioning in glutamatergic neurons 24 h after hypoxia/reoxygenation cycles. This finding indicates a significant contribution of vesicular BDNF release to the development of the mechanisms of hypoxic preconditioning. Thus, our results demonstrate that BDNF plays a pivotal role in the activation and enhancement of the preconditioning effect of brief episodes of hypoxia and promotes tolerance of the most vulnerable populations of GABAergic neurons to hypoxia/ischemia.
Collapse
Affiliation(s)
- M V Turovskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - S G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - M V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - E A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| |
Collapse
|
9
|
Gaidin SG, Turovskaya MV, Gavrish MS, Babaev AA, Mal'tseva VN, Blinova EV, Turovsky EA. The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity. Int J Neurosci 2019; 130:363-383. [PMID: 31694441 DOI: 10.1080/00207454.2019.1691205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: Cerebral ischemia is accompanied by damage and death of a significant number of neurons due to glutamate excitotoxicity with subsequent a global increase of cytosolic Ca2+ concentration ([Ca2+]i). This study aimed to investigate the neuroprotective action of BDNF overexpression in hippocampal neurons against injury under ischemia-like conditions (oxygen and glucose deprivation) and glutamate-induced excitotoxicity (GluTox).Methods: The overexpression of BDNF was reached by the transduction of cell cultures with the adeno-associated (AAV)-Syn-BDNF-EGFP virus construct. Neuroprotective effects were mediated by Ca2+-dependent BDNF release followed by activation of the neuroprotective signaling cascades and changes of the gene expression. Thus, BDNF overexpression modulates Ca2+ homeostasis in cells, preventing Ca2+ overload and initiation of apoptotic and necrotic processes.Results:Antiapoptotic effect of BDNF overexpression is mediated via activation of phosphoinositide-3-kinase (PI3K) pathway and changing the expression of PI3K, HIF-1, Src and an anti-inflammatory cytokine IL-10. On the contrary, the decrease of expression of proapoptotic proteins such as Jun, Mapk8, caspase-3 and an inflammatory cytokine IL-1β was observed. These changes of expression were accompanied by the decrease of quantity of IL-1β receptors and the level of TNFα in cells in control, as well as 24 h after OGD. Besides, BDNF overexpression changes the expression of GABA(B) receptors. Also, the expression of NMDA and AMPA receptor subunits was altered towards a change in the conductivity of the receptors for Ca2+.Conclusion: Thus, our results demonstrate that neuronal BDNF overexpression reveals complex neuroprotective effects on the neurons and astrocytes under OGD and GluTox via inhibition of Ca2+ responses and regulation of gene expression.
Collapse
Affiliation(s)
- S G Gaidin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M V Turovskaya
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M S Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V N Mal'tseva
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - E V Blinova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,N. P. Ogarev Mordovia State University, Saransk, Russia
| | - E A Turovsky
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
10
|
Predicting Reactive Astrogliosis Propagation by Bayesian Computational Modeling: the Repeater Stations Model. Mol Neurobiol 2019; 57:879-895. [PMID: 31522382 DOI: 10.1007/s12035-019-01749-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Reactive astrogliosis occurs upon focal brain injury and in neurodegenerative diseases. The mechanisms that propagate reactive astrogliosis to distal parts of the brain, in a rapid wave that activates astrocytes and other cell types along the way, are not completely understood. It is proposed that damage-associated molecular patterns (DAMP) released by necrotic cells from the injury core have a major role in the reactive astrogliosis initiation but whether they also participate in reactive astrogliosis propagation remains to be determined. We here developed a Bayesian computational model to define the most probable model for reactive astrogliosis propagation. Starting with experimental data from GFAP-immunostained reactive astrocytes, we defined five types of astrocytes based on morphometrical cues and registered the position of each reactive astrocyte cell type in the hemisphere ipsilateral to the injured site after 3 and 7 days post-ischemia. We developed equations for the changes in DAMP concentration (due to diffusion, binding to receptors or degradation), soluble mediators secretion, and for the evolution reactive astrogliosis. We tested four predefined models based on abovementioned previous hypothesis and modifications to it. Our results showed that DAMP diffusion alone has not justified the reactive astrogliosis propagation as previously assumed. Only two models succeeded in accurately reproducing the experimentally measured data and they highlighted the role of microglia and the glial secretion of soluble mediators to sustain the reactive signal and activating neighboring astrocytes. Thus, our in silico analysis proposes that glial cells behave as repeater stations of the injury signal in order to propagate reactive astrogliosis.
Collapse
|
11
|
Zhou T, Wang H, Shen J, Li W, Cao M, Hong Y, Cao M. The p35/CDK5 signaling is regulated by p75NTR in neuronal apoptosis after intracerebral hemorrhage. J Cell Physiol 2019; 234:15856-15871. [PMID: 30770557 DOI: 10.1002/jcp.28244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The p75 neurotrophin receptor (p75NTR), a member of tumor necrosis factor receptor superfamily, involves in neuronal apoptosis after intracerebral hemorrhage (ICH). It has been previously demonstrated that phosphorylation of p35 is a crucial factor for fighting against the proapoptotic p25/CDK5 signaling in neuronal apoptosis. Then, in ICH models of rats and primary cortical neurons, we found that the expressions of p75NTR, p-histone H1 (the kinase activity of CDK5), p25, Fas-associated phosphatase-1 (FAP-1), and phosphorylated myocyte enhancer factor 2D (p-MEF2D) were enhanced after ICH, whereas the expression of p35-Thr(138) was attenuated. Coimmunoprecipitation analysis indicated several interactions as follows: p35/p25 and CKD5, p75NTR and p35, as well as p75NTR and FAP-1. After p75NTR or FAP-1 depletion with double-stranded RNA interference in PC12 cells, the levels of p25 and p-histone H1 were attenuated, whereas p35-Thr(138) was elevated. Considering p75NTR has no effect of dephosphorylation, our results suggested that p75NTR might promote the dephosphorylation of p35-Thr(138) via interaction with FAP-1, and the p75NTR/p35 complex upregulated p25/CDK5 signaling to facilitate the neuronal apoptosis following ICH. So, in the study, we aimed to provide a theoretical and experimental basis that p75NTR could be regulated to reduce neuronal apoptosis following ICH for potential clinical treatment.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Hongmei Wang
- Department of Neurology, Nantong Rich Hospital, Nantong, Jiangsu Province, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Wanyan Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Yao Hong
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
12
|
Choucry AM, Al-Shorbagy MY, Attia AS, El-Abhar HS. Pharmacological Manipulation of Trk, p75NTR, and NGF Balance Restores Memory Deficit in Global Ischemia/Reperfusion Model in Rats. J Mol Neurosci 2019; 68:78-90. [PMID: 30863991 DOI: 10.1007/s12031-019-01284-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
Long-term memory impairment is reported in more than 50% of cardiac arrest survivors. Monosialoganglioside (GM1) provided neuroprotection in experimental models of stroke but failed to replicate its promise clinically for unknown reasons. GM1 stimulates the release of nerve growth factor (NGF), which is synthesized as a precursor protein (pro-NGF) that either mediates apoptosis through the p75 neurotrophin receptor (p75NTR) or is cleaved by the protease furin (FUR) to yield mature NGF, the latter supporting survival through tropomyosin kinase receptor (Trk). The flavanol epicatechin (EPI) inhibits p75NTR-mediated signaling and apoptosis by pro-NGF. The aim of the current work is to test whether these two drugs affect, or communicate with, each other in the setting of CNS injuries. Using the two-vessel occlusion model of global ischemia/reperfusion (I/R), we tested if pharmacological modulation of Trk, p75NTR, and NGF balance with GM1, EPI, and their combination, can correct the memory deficit that follows this insult. Finally, we tested if FUR insufficiency and/or p75NTR-mediated apoptosis negatively affect the neurotherapeutic effect of GM1. Key proteins for Trk and p75NTR, FUR, and both forms of NGF were assessed. All treatment regiments successfully improved spatial memory retention and acquisition. A week after the insult, most Trk and p75NTR proteins were normal, but pro/mature NGF ratio remained sharply elevated and was associated with the poorest memory performance. Pharmacological correction of this balance was achieved by reinforcing Trk and p75NTR signaling. GM1 increased FUR levels, while concomitant administration of EPI weakened GM1 effect on pro-survival Trk and p75NTR mediators. GM1 neuroprotection is therefore not limited by FUR but could be dependent on p75NTR. Graphical Abstract "."
Collapse
Affiliation(s)
- Ali Mohamed Choucry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt.,Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, Toyama University, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Muhammad Yusuf Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt. .,School of Pharmacy, New Giza University, Giza, Egypt.
| | - Ahmed Sherif Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Hanan Salah El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt
| |
Collapse
|
13
|
Demyanenko SV, Uzdensky AB. The Focal-Focal Preconditioning Effect of Photothrombotic Impact on the Signaling Protein Profile in the Penumbra Surrounding the Ischemic Core Induced by Another Photothrombotic Impact. Mol Neurobiol 2017; 55:229-248. [DOI: 10.1007/s12035-017-0736-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Tejeda GS, Díaz-Guerra M. Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies. Int J Mol Sci 2017; 18:ijms18020268. [PMID: 28134845 PMCID: PMC5343804 DOI: 10.3390/ijms18020268] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
15
|
Elshaer SL, El-Remessy AB. Implication of the neurotrophin receptor p75 NTR in vascular diseases: beyond the eye. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 12:149-158. [PMID: 28979360 DOI: 10.1080/17469899.2017.1269602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The p75 neurotrophin receptor (p75NTR) is a member of TNF-α receptor superfamily that bind all neurotrophins, mainly regulating their pro-apoptotic actions. Ischemia is a common pathology in different cardiovascular diseases affecting multiple organs, however the contribution of p75NTR remains not fully addressed. The aim of this work is to review the current evidence through published literature studying the impact of p75NTR receptor in ischemic vascular diseases. AREAS COVERED In the eye, several ischemic ocular diseases are associated with enhanced p75NTR expression. Ischemic retinopathy including diabetic retinopathy, retinopathy of prematurity and retinal vein occlusion are characterized initially by ischemia followed by excessive neovascularization. Beyond the eye, cerebral ischemia, myocardial infarction and critical limb ischemia are ischemic cardiovascular diseases that are characterized by altered expression of neurotrophins and p75NTR expression. We surveyed both clinical and experimental studies that examined the impact of p75NTR receptor in ischemic diseases of eye, heart, brain and peripheral limbs. EXPERT COMMENTARY p75NTR receptor is a major player in multiple ischemic vascular diseases affecting the eye, brain, heart and peripheral limbs with significant increases in its expression accompanying neuro-vascular injury. This has been addressed in the current review along with the beneficial vascular outcomes of p75NTR inhibition.
Collapse
Affiliation(s)
- Sally L Elshaer
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Research Service, Charlie Norwood VA Medical Center, Augusta, GA
| | - Azza B El-Remessy
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Research Service, Charlie Norwood VA Medical Center, Augusta, GA.,Augusta Biomedical Research Corporation, Augusta, GA, USA
| |
Collapse
|
16
|
Profiling of Signaling Proteins in Penumbra After Focal Photothrombotic Infarct in the Rat Brain Cortex. Mol Neurobiol 2016; 54:6839-6856. [PMID: 27771897 DOI: 10.1007/s12035-016-0191-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
Abstract
In ischemic stroke, cell damage propagates from infarct core to surrounding tissue. To reveal proteins involved in neurodegeneration and neuroprotection, we explored the protein profile in penumbra surrounding the photothrombotic infarct core induced in rat cerebral cortex by local laser irradiation after Bengal Rose administration. Using antibody microarrays, we studied changes in expression of 224 signaling proteins 1, 4, or 24 h after photothrombotic infarct compared with untreated contralateral cortex. Changes in protein expression were greatest at 4 h after photothrombotic impact. These included over-expression of proteins initiating, regulating, or executing various apoptosis stages (caspases, SMAC/DIABLO, Bcl-10, phosphatidylserine receptor (PSR), prostate apoptosis response 4 (Par4), E2F1, p75, p38, JNK, p53, growth arrest and DNA damage inducible protein 153 (GADD153), glutamate decarboxylases (GAD65/67), NMDAR2a, c-myc) and antiapoptotic proteins (Bcl-x, p63, MDM2, p21WAF-1, ERK1/2, ERK5, MAP kinase-activated protein kinase-2 (MAKAPK2), PKCα, PKCβ, PKCμ, RAF1, protein phosphatases 1α and MAP kinase phosphatase-1 (MKP-1), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), estrogen and EGF receptors, calmodulin, CaMKIIα, CaMKIV, amyloid precursor protein (APP), nicastrin). Phospholipase Cγ1, S-100, and S-100β were down-regulated. Bidirectional changes in levels of adhesion and cytoskeleton proteins were related to destruction and/or remodeling of penumbra. Following proteins regulating actin cytoskeleton were over-expressed: cofilin, actopaxin, p120CTN, α-catenin, p35, myosin Va, and pFAK were up-regulated, whereas ezrin, tropomyosin, spectrin (α + β), βIV-tubulin and polyglutamated β-tubulin, and cytokeratins 7 and 19 were down-regulated. Down-regulation of syntaxin, AP2β/γ, and adaptin β1/2 indicated impairment of vesicular transport and synaptic processes. Down-regulation of cyclin-dependent kinase 6 (Cdk6), cell division cycle 7-related protein kinase (Cdc7 kinase), telomeric repeat-binding factor 1 (Trf1), and topoisomerase-1 showed proliferation suppression. Cytoprotection proteins AOP-1 and chaperons Hsp70 and Hsp90 were down-regulated. These data provide the integral view on penumbra response to photothrombotic infarct. Some of these proteins may be potential targets for antistroke therapy.
Collapse
|
17
|
p75 neurotrophin receptor and its novel interaction partner, NIX, are involved in neuronal apoptosis after intracerebral hemorrhage. Cell Tissue Res 2016; 368:13-27. [DOI: 10.1007/s00441-016-2510-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/14/2016] [Indexed: 02/05/2023]
|
18
|
Chakravarthy R, Mnich K, Gorman AM. Nerve growth factor (NGF)-mediated regulation of p75(NTR) expression contributes to chemotherapeutic resistance in triple negative breast cancer cells. Biochem Biophys Res Commun 2016; 478:1541-7. [PMID: 27577679 DOI: 10.1016/j.bbrc.2016.08.149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023]
Abstract
Triple negative breast cancer [TNBC] cells are reported to secrete the neurotrophin nerve growth factor [NGF] and express its receptors, p75 neurotrophin receptor [p75(NTR)] and TrkA, leading to NGF-activated pro-survival autocrine signaling. This provides a rationale for NGF as a potential therapeutic target for TNBC. Here we show that exposure of TNBC cells to NGF leads to increased levels of p75(NTR), which was diminished by NGF-neutralizing antibody or NGF inhibitors [Ro 08-2750 and Y1086]. NGF-mediated increase in p75(NTR) levels were partly due to increased transcription and partly due to inhibition of proteolytic processing of p75(NTR). In contrast, proNGF caused a decrease in p75(NTR) levels. Functionally, NGF-induced increase in p75(NTR) caused a decrease in the sensitivity of TNBC cells to apoptosis induction. In contrast, knock-down of p75(NTR) using shRNA or small molecule inhibition of NGF-p75(NTR) interaction [using Ro 08-2750] sensitized TNBC cells to drug-induced apoptosis. In patient samples, the expression of NGF and NGFR [the p75(NTR) gene] mRNA are positively correlated in several subtypes of breast cancer, including basal-like breast cancer. Together these data suggest a positive feedback loop through which NGF-mediated upregulation of p75(NTR) can contribute to the chemo-resistance of TNBC cells.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The axon plays a central role in both the injury and repair phases after stroke. This review highlights emerging principles in the study of axonal injury in stroke and the role of the axon in neural repair after stroke. RECENT FINDINGS Ischemic stroke produces a rapid and significant loss of axons in the acute phase. This early loss of axons results from a primary ischemic injury that triggers a wave of calcium signaling, activating proteolytic mechanisms and downstream signaling cascades. A second progressive phase of axonal injury occurs during the subacute period and damages axons that survive the initial ischemic insult but go on to experience a delayed axonal degeneration driven in part by changes in axoglial contact and axonal energy metabolism. Recovery from stroke is dependent on axonal sprouting and reconnection that occurs during a third degenerative/regenerative phase. Despite this central role played by the axon, comparatively little is understood about the molecular pathways that contribute to early and subacute axonal degeneration after stroke. Recent advances in axonal neurobiology and signaling suggest new targets that hold promise as potential molecular therapeutics including axonal calcium signaling, axoglial energy metabolism and cell adhesion as well as retrograde axonal mitogen-activated protein kinase pathways. These novel pathways must be modeled appropriately as the type and severity of axonal injury vary by stroke subtype. SUMMARY Stroke-induced injury to axons occurs in three distinct phases each with a unique molecular underpinning. A wealth of new data about the molecular organization and molecular signaling within axons is available but not yet robustly applied to the study of axonal injury after stroke. Identifying the spatiotemporal patterning of molecular pathways within the axon that contribute to injury and repair may offer new therapeutic strategies for the treatment of stroke.
Collapse
|
20
|
Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev Drug Discov 2013; 12:507-25. [PMID: 23977697 DOI: 10.1038/nrd4024] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotrophins and their receptors modulate multiple signalling pathways to regulate neuronal survival and to maintain axonal and dendritic networks and synaptic plasticity. Neurotrophins have potential for the treatment of neurological diseases. However, their therapeutic application has been limited owing to their poor plasma stability, restricted nervous system penetration and, importantly, the pleiotropic actions that derive from their concomitant binding to multiple receptors. One strategy to overcome these limitations is to target individual neurotrophin receptors — such as tropomyosin receptor kinase A (TRKA), TRKB, TRKC, the p75 neurotrophin receptor or sortilin — with small-molecule ligands. Such small molecules might also modulate various aspects of these signalling pathways in ways that are distinct from the programmes triggered by native neurotrophins. By departing from conventional neurotrophin signalling, these ligands might provide novel therapeutic options for a broad range of neurological indications.
Collapse
|
21
|
Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: implication for neuroprotective therapies. Cell Death Dis 2013; 4:e595. [PMID: 23598407 PMCID: PMC3641339 DOI: 10.1038/cddis.2013.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neuroprotective therapies based on brain-derived neurotrophic factor (BDNF) administration have been proposed for Huntington's disease (HD) treatment. However, our group has recently reported reduced levels of TrkB in HD mouse models and HD human brain suggesting that besides a decrease on BDNF levels a reduction of TrkB expression could also contribute to diminished neurotrophic support in HD. BDNF can also bind to p75 neurotrophin receptor (p75NTR) modulating TrkB signaling. Therefore, in this study we have analyzed the levels of p75NTR in several HD models, as well as in HD human brain. Our data demonstrates a p75NTR/TrkB imbalance in the striatum of two different HD mouse models, HdhQ111/111 homozygous knockin mice and R6/1 mice that was also manifested in the putamen of HD patients. The imbalance between TrkB and p75NTR levels in a HD cellular model did not affect BDNF-mediated TrkB activation of prosurvival pathways but induced activation of apoptotic cascades as demonstrated by increased JNK phosphorylation. Moreover, BDNF failed to protect mutant huntingtin striatal cells transfected with p75NTR against NMDA-mediated excitotoxicity, which was associated with decreased Akt phosphorylation. Interestingly, lack of Akt activation following BDNF and NMDA treatment correlated with increased PP1 levels. Accordingly, pharmacological inhibition of PP1 by okadaic acid (OA) prevented mutant huntingtin striatal cell death induced by NMDA and BDNF. Altogether, our findings demonstrate that the p75NTR/TrkB imbalance induced by mutant huntingtin in striatal cells associated with the aberrant activity of PP1 disturbs BDNF neuroprotection likely contributing to increasing striatal vulnerability in HD. On the basis of this data we hypothesize that normalization of p75NTR and/or TrkB expression or their signaling will improve BDNF neuroprotective therapies in HD.
Collapse
|
22
|
Grade S, Weng YC, Snapyan M, Kriz J, Malva JO, Saghatelyan A. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum. PLoS One 2013; 8:e55039. [PMID: 23383048 PMCID: PMC3558494 DOI: 10.1371/journal.pone.0055039] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Stroke induces the recruitment of neuronal precursors from the subventricular zone (SVZ) into the ischemic striatum. In injured areas, de-routed neuroblasts use blood vessels as a physical scaffold to their migration, in a process that resembles the constitutive migration seen in the rostral migratory stream (RMS). The molecular mechanism underlying injury-induced vasculature-mediated migration of neuroblasts in the post-stroke striatum remains, however, elusive. Using adult mice we now demonstrate that endothelial cells in the ischemic striatum produce brain-derived neurotrophic factor (BDNF), a neurotrophin that promotes the vasculature-mediated migration of neuronal precursors in the RMS, and that recruited neuroblasts maintain expression of p75NTR, a low-affinity receptor for BDNF. Reactive astrocytes, which are widespread throughout the damaged area, ensheath blood vessels and express TrkB, a high-affinity receptor for BDNF. Despite the absence of BDNF mRNA, we observed strong BDNF immunolabeling in astrocytes, suggesting that these glial cells trap extracellular BDNF. Importantly, this pattern of expression is reminiscent of the adult RMS, where TrkB-expressing astrocytes bind and sequester vasculature-derived BDNF, leading to the entry of migrating cells into the stationary phase. Real-time imaging of cell migration in acute brain slices revealed a direct role for BDNF in promoting the migration of neuroblasts to ischemic areas. We also demonstrated that cells migrating in the ischemic striatum display higher exploratory behavior and longer stationary periods than cells migrating in the RMS. Our findings suggest that the mechanisms involved in the injury-induced vasculature-mediated migration of neuroblasts recapitulate, at least partially, those observed during constitutive migration in the RMS.
Collapse
Affiliation(s)
- Sofia Grade
- Cellular Neurobiology Unit, Insitut en Santé Mentale de Québec, Quebec City, Canada
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Yuan C. Weng
- Centre de Recherche du CHUL (CHUQ), Université Laval, Quebec City, Canada
| | - Marina Snapyan
- Cellular Neurobiology Unit, Insitut en Santé Mentale de Québec, Quebec City, Canada
| | - Jasna Kriz
- Centre de Recherche du CHUL (CHUQ), Université Laval, Quebec City, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Canada
| | - João O. Malva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Research on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine (polo 3), University of Coimbra, Coimbra, Portugal
| | - Armen Saghatelyan
- Cellular Neurobiology Unit, Insitut en Santé Mentale de Québec, Quebec City, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Canada
| |
Collapse
|
23
|
Chen A, Xiong LJ, Tong Y, Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep 2012; 1:167-176. [PMID: 24648914 DOI: 10.3892/br.2012.48] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-ischemia (H/I) brain injury results in various degrees of damage to the body, and the immature brain is particularly fragile to oxygen deprivation. Hypothermia and erythropoietin (EPO) have long been known to be neuroprotective in ischemic brain injury. Brain-derived neurotrophic factor (BDNF) has recently been recognized as a potent modulator capable of regulating a wide repertoire of neuronal functions. This review was based on studies concerning the involvement of BDNF in the protection of H/I brain injury following a search in PubMed between 1995 and December, 2011. We initially examined the background of BDNF, and then focused on its neuroprotective mechanisms against ischemic brain injury, including its involvement in promoting neural regeneration/cognition/memory rehabilitation, angiogenesis within ischemic penumbra and the inhibition of the inflammatory process, neurotoxicity, epilepsy and apoptosis. We also provided a literature overview of experimental studies, discussing the safety and the potential clinical application of BDNF as a neuroprotective agent in the ischemic brain injury.
Collapse
Affiliation(s)
- Ai Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li-Jing Xiong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Tong
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Chengdu, Sichuan 610041, P.R. China ; ; Laboratory of Early Developmental and Injuries, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
24
|
Nykjaer A, Willnow TE. Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 2012; 35:261-70. [DOI: 10.1016/j.tins.2012.01.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/08/2012] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
|
25
|
Impairment of select forms of spatial memory and neurotrophin-dependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci 2011; 31:6392-7. [PMID: 21525279 DOI: 10.1523/jneurosci.6249-10.2011] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aquaporin-4 (AQP4) is the major water channel in the CNS and is primarily expressed in astrocytes. Little is known about the potential for AQP4 to influence synaptic plasticity, although many studies have shown that it regulates the response of the CNS to injury. Therefore, we evaluated long-term potentiation (LTP) and long-term depression (LTD) in AQP4 knock-out (KO) and wild-type mice. KO mice exhibited a selective defect in LTP and LTD without a change in basal transmission or short-term plasticity. Interestingly, the impairment in LTP in KO mice was specific for the type of LTP that depends on the neurotrophin BDNF, which is induced by stimulation at theta rhythm [theta-burst stimulation (TBS)-LTP], but there was no impairment in a form of LTP that is BDNF independent, induced by high-frequency stimulation. LTD was also impaired in KO mice, which was rescued by a scavenger of BDNF or blockade of Trk receptors. TrkB receptors, which mediate effects of BDNF on TBS-LTP, were not altered in KO mice, but p75NTR, the receptor that binds all neurotrophins and has been implicated in some types of LTD, was decreased. The KO mice also exhibited a cognitive defect, which suggests a new role for AQP4 and astrocytes in normal cognitive function. This defect was evident using a test for location-specific object memory but not Morris water maze or contextual fear conditioning. The results suggest that AQP4 channels in astrocytes play an unanticipated role in neurotrophin-dependent plasticity and influence behavior.
Collapse
|
26
|
Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ. S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-κB signaling. J Neurochem 2011; 117:321-32. [DOI: 10.1111/j.1471-4159.2011.07207.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Aviles-Reyes RX, Angelo MF, Villarreal A, Rios H, Lazarowski A, Ramos AJ. Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem 2010; 112:854-69. [DOI: 10.1111/j.1471-4159.2009.06535.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|