1
|
Shokri M, Gogliettino AR, Hottowy P, Sher A, Litke AM, Chichilnisky EJ, Pequito S, Muratore D. Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach. J Neural Eng 2024; 21:016022. [PMID: 38271715 PMCID: PMC10853761 DOI: 10.1088/1741-2552/ad228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Objective. Bi-directional electronic neural interfaces, capable of both electrical recording and stimulation, communicate with the nervous system to permit precise calibration of electrical inputs by capturing the evoked neural responses. However, one significant challenge is that stimulation artifacts often mask the actual neural signals. To address this issue, we introduce a novel approach that employs dynamical control systems to detect and decipher electrically evoked neural activity despite the presence of electrical artifacts.Approach. Our proposed method leverages the unique spatiotemporal patterns of neural activity and electrical artifacts to distinguish and identify individual neural spikes. We designed distinctive dynamical models for both the stimulation artifact and each neuron observed during spontaneous neural activity. We can estimate which neurons were active by analyzing the recorded voltage responses across multiple electrodes post-stimulation. This technique also allows us to exclude signals from electrodes heavily affected by stimulation artifacts, such as the stimulating electrode itself, yet still accurately differentiate between evoked spikes and electrical artifacts.Main results. We applied our method to high-density multi-electrode recordings from the primate retina in anex vivosetup, using a grid of 512 electrodes. Through repeated electrical stimulations at varying amplitudes, we were able to construct activation curves for each neuron. The curves obtained with our method closely resembled those derived from manual spike sorting. Additionally, the stimulation thresholds we estimated strongly agreed with those determined through manual analysis, demonstrating high reliability (R2=0.951for human 1 andR2=0.944for human 2).Significance. Our method can effectively separate evoked neural spikes from stimulation artifacts by exploiting the distinct spatiotemporal propagation patterns captured by a dense, large-scale multi-electrode array. This technique holds promise for future applications in real-time closed-loop stimulation systems and for managing multi-channel stimulation strategies.
Collapse
Affiliation(s)
- Mohammad Shokri
- Delft Center for Systems and Control, Delft University of Technology, Delft 2628 CN, The Netherlands
| | - Alex R Gogliettino
- Neurosciences PhD Program, Stanford University, Stanford, CA 94305, United States of America
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, United States of America
| | - Paweł Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, United States of America
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, United States of America
| | - E J Chichilnisky
- Departments of Neurosurgery and Ophthalmology, Stanford University, Stanford, CA 94305, United States of America
| | - Sérgio Pequito
- Division of Systems and Control, Department of Information Technology, Uppsala University, 751 05 Uppsala, Sweden
| | - Dante Muratore
- Microelectronics Department, Delft University of Technology, Delft 2628 CN, The Netherlands
| |
Collapse
|
2
|
Tao Y, Hu B, Ma Z, Li H, Du E, Wang G, Xing B, Ma J, Song Z. Intravitreous delivery of melatonin affects the retinal neuron survival and visual signal transmission: in vivo and ex vivo study. Drug Deliv 2021; 27:1386-1396. [PMID: 33016801 PMCID: PMC7580852 DOI: 10.1080/10717544.2020.1818882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intravitreal delivery can maximize the intensity of therapeutic agents and extend their residence time within ocular tissue. Melatonin is a lipophilic molecule that crosses freely biological barriers and cell membranes. This study intends to investigate the effects of intravitreally delivered melatonin on mouse retina. The visual function of administered mice is assessed by electrophysiological and behavior examinations three weeks after intravitreal delivery. Moreover, multi-electrode array (MEA) was used to assess the electrical activities of retinal ganglion cells (RGCs). We found that intravitreal delivery of high dosage melatonin (400-500 µg/kg) destroyed the retinal architecture and impaired the visual function of mice. Conversely, the melatonin administration at low dose (100-300 µg/kg) did not have any significant effects on the photoreceptor survival or visual function. As shown in the MEA recording, the photoreceptors activity of the central region was more severely disturbed by the high dose melatonin. A pronounced augment of the spontaneous firing frequency was recorded in these mice received high dosage melatonin, indicating that intravitreal delivery of high dosage melatonin would affect the electrical activity of RGCs. Immunostaining assay showed that the vitality of cone photoreceptor was impaired by high dose melatonin. These findings suggest that intravitreal melatonin is not always beneficial for ocular tissues, especially when it is administered at high dosage. These data add new perspectives to current knowledge about melatonin delivery at the ocular level. Further therapeutic strategies should take into consideration of these risks that caused by delivery approach.
Collapse
Affiliation(s)
- Ye Tao
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| | - Bang Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhao Ma
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wu Han, PR China
| | - Haijun Li
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| | - Enming Du
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| | - Gang Wang
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| | - Biao Xing
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wu Han, PR China
| | - Jie Ma
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wu Han, PR China
| | - Zongming Song
- Department of Ophthalmology, People's hospital of Zhengzhou University, Zhengzhou, PR China.,Department of physiology and neuroscience, Basic college of medicine, Zhengzhou University Zhengzhou, PR China
| |
Collapse
|
3
|
Liu F, Liu X, Zhou Y, Yu Y, Wang K, Zhou Z, Gao H, So KF, Vardi N, Xu Y. Wolfberry-derived zeaxanthin dipalmitate delays retinal degeneration in a mouse model of retinitis pigmentosa through modulating STAT3, CCL2 and MAPK pathways. J Neurochem 2021; 158:1131-1150. [PMID: 34265077 DOI: 10.1111/jnc.15472] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited photoreceptor degeneration diseases that causes blindness without effective treatment. The pathogenesis of retinal degeneration involves mainly oxidative stress and inflammatory responses. Zeaxanthin dipalmitate (ZD), a wolfberry-derived carotenoid, has anti-inflammatory and anti-oxidative stress effects. Here we investigated whether these properties of ZD can delay the retinal degeneration in rd10 mice, a model of RP, and explored its underlying mechanism. One shot of ZD or control vehicle was intravitreally injected into rd10 mice on postnatal day 16 (P16). Retinal function and structure of rd10 mice were assessed at P25, when rods degenerate substantially, using a visual behavior test, multi-electrode-array recordings and immunostaining. Retinal pathogenic gene expression and regulation of signaling pathways by ZD were explored using transcriptome sequencing and western blotting. Our results showed that ZD treatment improved the visual behavior of rd10 mice and delayed the degeneration of retinal photoreceptors. It also improved the light responses of photoreceptors, bipolar cells and retinal ganglion cells. The expression of genes that are involved in inflammation, apoptosis and oxidative stress were up-regulated in rd10 mice, and were reduced by ZD. ZD further reduced the activation of two key factors, signal transducer and activator of transcription 3 and chemokine (C-C motif) ligand 2, down-regulated the expression of the inflammatory factor GFAP, and inhibited extracellular signal regulated protein kinases and P38, but not the JNK pathways. In conclusion, ZD delays the degeneration of the rd10 retina both morphologically and functionally. Its anti-inflammatory function is mediated primarily through the signal transducer and activator of transcription 3, chemokine (C-C motif) ligand 2 and MAPK pathways. Thus, ZD may serve as a potential clinical candidate to treat RP.
Collapse
Affiliation(s)
- Feng Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaobin Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yamin Zhou
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yankun Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Ke Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhengqun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| |
Collapse
|
4
|
Hurst J, Fietz A, Tsai T, Joachim SC, Schnichels S. Organ Cultures for Retinal Diseases. Front Neurosci 2020; 14:583392. [PMID: 33324149 PMCID: PMC7724035 DOI: 10.3389/fnins.2020.583392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The successful development of novel therapies is closely linked with understanding the underlying pathomechanisms of a disease. To do so, model systems that reflect human diseases and allow for the evaluation of new therapeutic approaches are needed. Yet, preclinical animal studies often have limited success in predicting human physiology, pathology, and therapeutic responses. Moreover, animal testing is facing increasing ethical and bureaucratic hurdles, while human cell cultures are limited in their ability to represent in vivo situations due to the lack of the tissue microenvironment, which may alter cellular responses. To overcome these struggles, organ cultures, especially those of complex organs such as the retina, can be used to study physiological reactions to substances or stressors. Human and animal organ cultures are now well established and recognized. This mini-review discusses how retinal organ cultures can be used to preserve tissue architecture more realistically and therefore better represent disease-related changes. It also shows how molecular biological, biochemical, and histological techniques can be combined to investigate how anatomical localization may alter cellular responses. Examples for the use of retinal organ cultures, including models to study age-related macular degeneration (AMD), retinitis pigmentosa (RP), central artery occlusion (CRAO), and glaucoma are presented, and their advantages and disadvantages are discussed. We conclude that organ cultures significantly improve our understanding of complex retinal diseases and may advance treatment testing without the need for animal testing.
Collapse
Affiliation(s)
- José Hurst
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Agnes Fietz
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven Schnichels
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Xu L, Yu H, Sun H, Yu X, Tao Y. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: in vivo and ex vivo evaluations. Drug Deliv 2020; 26:1222-1234. [PMID: 31747793 PMCID: PMC6882443 DOI: 10.1080/10717544.2019.1682718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin (AST) is a naturally occurring carotenoid with potent anti-oxidative and anti-inflammatory potency against chronic diseases. In this study, we suspended AST in different nonionic emulsifiers to produce nanodispersions. The basic physicochemical properties of the produced AST nanodispersions were verified to select the optimized nonionic emulsifier. Among the tested emulsifiers, Polysorbate 20 produced the AST nanoemulsions with smaller particle diameters, narrower size distributions, and higher AST contents among these emulsifiers. The N-methyl-N-nitrosourea (MNU) administered mouse is a chemically induced retinal degeneration (RD) model with rapid progress rate. AST suspended in Polysorbate 20 was demonstrated to ameliorate the dramatic consequences of MNU on retina architectures and function in several different tests encompassing from electrophysiology to histology and molecular tests. Furthermore, the multi-electrodes array (MEA) was used to detect the firing activities of retinal ganglion cells within the inner retinal circuits. We found that AST nanodispersions could restrain the spontaneous firing response, enhance the light induced firing response, and preserve the basic configurations of visual signal pathway in degenerative retinas. The MEA assay provided an appropriate example to evaluate the potency of pharmacological compounds on retinal plasticity. In summary, emulsifier type affects the basic physicochemical characteristic of AST nanodispersions. Polysorbate 20 acts as an optimized nonionic emulsifier for the efficient delivery of AST nanodispersions to retina. AST nanodispersions can alleviate the photoreceptor loss and rectify the abnormities in visual signal transmission.
Collapse
Affiliation(s)
- Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongbin Sun
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiang Yu
- Department of Otorhinolaryngology, Jinling Hospital, Clinical Hospital of Medical College, Nanjing University, Nanjing, China
| | - Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Li C, Tian Y, Yao A, Zha X, Zhang J, Tao Y. Intravitreal Delivery of Melatonin Is Protective Against the Photoreceptor Loss in Mice: A Potential Therapeutic Strategy for Degenerative Retinopathy. Front Pharmacol 2020; 10:1633. [PMID: 32116667 PMCID: PMC7028754 DOI: 10.3389/fphar.2019.01633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is a circadian hormone with potent cytoprotective effects. Retinitis pigmentosa (RP) comprises a heterogeneous group of inherent retinopathies that characterized by the photoreceptor death in bilateral eyes. The N-methyl-N-nitrosourea (MNU) administered mouse is a type of chemically induced RP model with rapid progressive rate. We intend to study the melatonin mediated effects on the MNU administered mice. Melatonin was delivered into the vitreous body of the MNU administered mice. Subsequently, the melatonin treated mice were subjected to histological analysis, optokinetic behavior tests, spectral-domain optical coherence tomography (SD-OCT), and electroretinogram (ERG) examination. Multi-electrodes array (MEA) was used to analyze the status of visual signal transmission within retinal circuits. Biochemical analysis was performed to quantify the expression levels of antioxidative enzymes, oxidative stress markers, and apoptotic factors in the retinas. The intravitreal injection of melatonin ameliorated effectively the MNU induced photoreceptor degeneration. Melatonin therapy mitigated the spontaneous firing response, and preserved the basic configurations of visual signal pathway in MNU administered mice. MEA is effective to evaluate the pharmacological effects on retina. Of note, the cone photoreceptors in degenerative retinas were rescued efficiently by melatonin therapy. Melatonin afforded these protective effects by modulating the apoptotic cascades and alleviating the oxidative stress. These findings suggest that melatonin could act as an alternative treatment for degenerative retinopathy. Melatonin might be used in combination with other therapeutic approaches to alleviate the photoreceptor loss and preserve the visual function of RP patients.
Collapse
Affiliation(s)
- Chong Li
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Yi Tian
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Anhui Yao
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Xiaobing Zha
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Ye Tao
- Department of Ophthalmology, Henan Provincial People’s Hospital, Zhengzhou University, People’s Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Alarautalahti V, Ragauskas S, Hakkarainen JJ, Uusitalo-Järvinen H, Uusitalo H, Hyttinen J, Kalesnykas G, Nymark S. Viability of Mouse Retinal Explant Cultures Assessed by Preservation of Functionality and Morphology. Invest Ophthalmol Vis Sci 2019; 60:1914-1927. [PMID: 31042799 DOI: 10.1167/iovs.18-25156] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal explant cultures provide simplified systems where the functions of the retina and the effects of ocular therapies can be studied in an isolated environment. The purpose of this study was to provide insight into long-term preservation of retinal tissue in culture conditions, enable a deeper understanding of the interdependence of retinal morphology and function, and ensure the reliability of the explant technique for prolonged experiments. Methods Retinal explants from adult mice were cultured as organotypic culture at the air-medium interface for 14 days in vitro (DIV). Retinal functionality was assessed by multielectrode array technique and morphology by immunohistochemical methods at several time points during culture. Results Retinal explants retained viability for 14 DIV, although with diminishing neuronal activity, progressing neuronal loss, and increasing reactive gliosis. We recorded spontaneous retinal ganglion cell (RGC) activity up to 14 DIV with temporally changing distribution of RGC firing rates. Light responsiveness was measurable from RGCs for 7 DIV and from photoreceptors for 2 DIV. Apoptotic cells were detected beginning at 3 DIV with their density peaking at 7 DIV. The number of RGCs gradually decreased by 70% during 14 DIV. The change was accompanied by the loss of RGC functionality, resulting in 84% loss of electrically active RGCs. Conclusions Retinal explants provide a valuable tool for studies of retinal functions and development of ocular therapies. However, critical for long-term use, retinal functionality was lost before structural loss, emphasizing a need for both functional and morphologic readouts to determine the overall state of the cultured retina.
Collapse
Affiliation(s)
- Virpi Alarautalahti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | | | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tays Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
8
|
Hurst J, Vitkute M, Hofmann K, Müller S, Löscher M, Bartz-Schmidt KU, Spitzer MS, Schnichels S, Januschowski K. Comparison of Different Cell Culture Media in the Model of the Isolated and Superfused Bovine Retina: Investigating the Limits of More Physiological Perfusion Solutions. Curr Eye Res 2017; 43:232-243. [PMID: 29111831 DOI: 10.1080/02713683.2017.1387668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The isolated superfused retina is a standardized tool in ophthalmological research. However, stable electroretinogram (ERG) responses can only be obtained for around eight hours; therefore, limiting its use. The aim of this study was to evaluate the short-term potential of different cell culture media and to promote long-term testing based on the results obtained. MATERIALS AND METHODS For the experimental procedure bovine retinae were prepared and perfused with the standard Sickel solution and an ERG was performed. After recording stable a- or b-waves, different media (Dulbecco's Modified Eagle's Medium (DMEM), MACS, and Neurobasal) were superfused for 45 minutes. ERG recovery was monitored overall for 75 minutes. Analysis of the mRNA expression of Thy-1, GFAP, Bax/Bcl-2-ratio, Rhodopsin, and Opsin via qRT-PCR was performed directly after ERG recording on the same retina. RESULTS None of the tested media had a negative effect on a-wave amplitudes, although b-wave amplitudes decreased (DMEM) or increased (MACS and Neurobasal) compared to the standard solution (Sickel) after 45 minutes of exposure. However, after 75 minutes of wash-out, no difference to the standard solution alone could be observed. Exposure to different media either had no effect or decreased the Opsin and Rhodopsin mRNA levels. Thy-1 expression was strongly diminished in DMEM and MACS (by 2-3-fold), whereas incubation in Neurobasal medium led to a slight increase compared to incubation with the standard solution. Furthermore, the Bax/Bcl-2 ratio indicated an anti-apoptotic effect (Bax/Bcl-2 = 0.16; p < 0.05) for Neurobasal. CONCLUSION Neurobasal medium displayed the best electrophysiological properties in the short-term and may be applicable for stable long-term escalation testing.
Collapse
Affiliation(s)
- José Hurst
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Milda Vitkute
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Kathleen Hofmann
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Sebastian Müller
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Marina Löscher
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | | | - Martin S Spitzer
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany.,b Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Schnichels
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany
| | - Kai Januschowski
- a Centre for Ophthalmology, University Eye Hospital Tübingen , Tübingen , Germany.,c Eye Hospital , Sulzbach , Saar , Germany
| |
Collapse
|
9
|
Raz-Prag D, Beit-Yaakov G, Hanein Y. Electrical stimulation of different retinal components and the effect of asymmetric pulses. J Neurosci Methods 2017; 291:20-27. [DOI: 10.1016/j.jneumeth.2017.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023]
|
10
|
Ichinohe S, Ishii T, Takahashi H, Kaneda M. Physiological contribution of P2X receptors in postreceptoral signal processing in the mouse retina. Neurosci Res 2016; 115:5-12. [PMID: 27720754 DOI: 10.1016/j.neures.2016.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
ATP activates P2X receptors and acts as a neurotransmitter in the nervous system. We have previously reported that P2X receptors modulate the firing rate of retinal ganglion cells. Since many subtypes of P2X receptors are distributed in the mouse retina, it is likely that the modulatory effects of P2X receptor-mediated signaling can occur at multiple synaptic levels in the retina. In this study, we investigated whether P2X receptors expressed between the photoreceptor layer and the inner nuclear layer in the mouse retina were physiologically functional, by electroretinography (ERG). In the combined rod-cone ERG and the scotopic ERG, intravitreal injection of PPADS, an antagonist of P2X receptors, had no effects on the amplitude of the a-wave, but decreased the amplitude of the b-wave. In the photopic ERG, intravitreal injection of PPADS significantly decreased the amplitude of both the a-wave and the b-wave. In ex vivo recordings, a decrease in the b-wave amplitude was observed at 20μM PPADS, confirming that the inhibition of the b-wave by intravitreal injection of PPADS is due to the inhibition of P2X receptors. Our findings suggest that P2X receptor-mediated signaling has a physiological effect in both the rod and the cone pathways in postreceptoral processing.
Collapse
Affiliation(s)
- Sho Ichinohe
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Hiroshi Takahashi
- Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
11
|
Fujii M, Sunagawa GA, Kondo M, Takahashi M, Mandai M. Evaluation of micro Electroretinograms Recorded with Multiple Electrode Array to Assess Focal Retinal Function. Sci Rep 2016; 6:30719. [PMID: 27480484 PMCID: PMC4969741 DOI: 10.1038/srep30719] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 07/06/2016] [Indexed: 12/23/2022] Open
Abstract
Full-field electroretinograms (ERGs) are used to objectively assess the mass function of the retina, whereas focal ERGs are used to evaluate the focal retinal function. The purpose of this study was to determine the usefulness of a multiple electrode array (MEA) system for recording ex vivo micro ERGs (mERGs) together with multiunit spike responses of the retinal ganglion cells (RGCs) to assess focal retinal function in isolated mouse retinas. The a- and b-waves of the full-field ERGs were present in the mERG. The b-wave was blocked by L-AP4, an inhibitor of the mGluR6 receptor, and the OFF-component was blocked by exposure to PDA, an antagonist of ionotropic glutamate receptors, with a corresponding RGC responses. mERGs were also recorded from mice with progressive retinal degeneration, the C57BL/6J-Pde6brd1-2J/J (rd1) mice, from which conventional full-field ERGs are non-recordable. A blockade of the glutamate receptors indicated that the negative wave of rd1 mice do not originate from the photoreceptors but from the second or third order neurons. This technique of recording mERGs will be useful in assessing the focal properties of the retinas obtained from eyes with pathology and also to follow the recovery of the physiology of the retina in regenerative studies.
Collapse
Affiliation(s)
- Momo Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| |
Collapse
|
12
|
Jain V, Srivastava I, Palchaudhuri S, Goel M, Sinha-Mahapatra SK, Dhingra NK. Classical Photoreceptors Are Primarily Responsible for the Pupillary Light Reflex in Mouse. PLoS One 2016; 11:e0157226. [PMID: 27295136 PMCID: PMC4905644 DOI: 10.1371/journal.pone.0157226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/26/2016] [Indexed: 11/23/2022] Open
Abstract
Pupillary light reflex (PLR) is an important clinical tool to assess the integrity of visual pathways. The available evidence suggests that melanopsin-expressing retinal ganglion cells (mRGCs) mediate PLR—driven by the classical photoreceptors (rods and cones) at low irradiances and by melanopsin activation at high irradiances. However, genetic or pharmacological elimination of melanopsin does not completely abolish PLR at high irradiances, raising the possibility that classical photoreceptors may have a role even at high irradiances. Using an inducible mouse model of photoreceptor degeneration, we asked whether classical photoreceptors are responsible for PLR at all irradiances, and found that the PLR was severely attenuated at all irradiances. Using multiple approaches, we show that the residual PLR at high irradiances in this mouse was primarily from the remnant rods and cones, with a minor contribution from melanopsin activation. In contrast, in rd1 mouse where classical photoreceptor degeneration occurs during development, the PLR was absent at low irradiances but intact at high irradiances, as reported previously. Since mRGCs receive inputs from classical photoreceptors, we also asked whether developmental loss of classical photoreceptors as in rd1 mouse leads to compensatory takeover of the high-irradiance PLR by mRGCs. Specifically, we looked at a distinct subpopulation of mRGCs that express Brn3b transcription factor, which has been shown to mediate PLR. We found that rd1 mouse had a significantly higher proportion of Brn3b-expressing M1 type of mRGCs than in the inducible model. Interestingly, inducing classical photoreceptor degeneration during development also resulted in a higher proportion of Brn3b-expressing M1 cells and partially rescued PLR at high irradiances. These results suggest that classical photoreceptors are primarily responsible for PLR at all irradiances, while melanopsin activation makes a minor contribution at very high irradiances.
Collapse
Affiliation(s)
- Varsha Jain
- National Brain Research Centre, Manesar (Gurgaon), Haryana, India 122051
| | - Ipsit Srivastava
- National Brain Research Centre, Manesar (Gurgaon), Haryana, India 122051
| | | | - Manvi Goel
- National Brain Research Centre, Manesar (Gurgaon), Haryana, India 122051
| | | | - Narender K. Dhingra
- National Brain Research Centre, Manesar (Gurgaon), Haryana, India 122051
- * E-mail:
| |
Collapse
|
13
|
Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Marmor M, Marc RE. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res 2016; 150:149-65. [PMID: 27020758 DOI: 10.1016/j.exer.2016.03.018] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/23/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Retinitis Pigmentosa (RP) in the human is a progressive, currently irreversible neural degenerative disease usually caused by gene defects that disrupt the function or architecture of the photoreceptors. While RP can initially be a disease of photoreceptors, there is increasing evidence that the inner retina becomes progressively disorganized as the outer retina degenerates. These alterations have been extensively described in animal models, but remodeling in humans has not been as well characterized. This study, using computational molecular phenotyping (CMP) seeks to advance our understanding of the retinal remodeling process in humans. We describe cone mediated preservation of overall topology, retinal reprogramming in the earliest stages of the disease in retinal bipolar cells, and alterations in both small molecule and protein signatures of neurons and glia. Furthermore, while Müller glia appear to be some of the last cells left in the degenerate retina, they are also one of the first cell classes in the neural retina to respond to stress which may reveal mechanisms related to remodeling and cell death in other retinal cell classes. Also fundamentally important is the finding that retinal network topologies are altered. Our results suggest interventions that presume substantial preservation of the neural retina will likely fail in late stages of the disease. Even early intervention offers no guarantee that the interventions will be immune to progressive remodeling. Fundamental work in the biology and mechanisms of disease progression are needed to support vision rescue strategies.
Collapse
Affiliation(s)
- B W Jones
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA.
| | - R L Pfeiffer
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| | - W D Ferrell
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| | - C B Watt
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| | - M Marmor
- Dept. Ophthalmology, Stanford University, USA
| | - R E Marc
- Dept. Ophthalmology, Moran Eye Center, University of Utah, USA
| |
Collapse
|
14
|
CERQUERA EA, MUÑOZ J, ARAYA J, GÓMEZ O. REGISTRO DE ACTIVIDAD ELÉCTRICA EN LA RETINA DE UNA RATA ALBINA EMPLEANDO UNA MATRIZ DE MICROELECTRODOS. ACTA BIOLÓGICA COLOMBIANA 2015. [DOI: 10.15446/abc.v20n3.46216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>Las matrices de microelectrodos son dispositivos que permiten la detección de potenciales de acción o espigas en poblaciones de células excitables, ofreciendo varias aplicaciones en el campo de las neurociencias y la biología. Este trabajo muestra un protocolo para el registro de espigas en una población de células ganglionares retinales empleando una matriz de microelectrodos. La retina de una rata albina fue extraída y preparada para ser estimulada <em>in vitro </em>con luz led blanca, con el fin de registrar sus espigas evocadas ante estos estímulos. Cada microelectrodo puede registrar espigas de más de una célula ganglionar, razón por la cual se determinó a qué célula pertenece cada espiga aplicando un procedimiento conocido como “clasificación de espigas”. El trabajo permitió obtener el registro de un periodo de estimulación y otro de no estimulación, con el fin de representar los potenciales de acción evocados con luz y los espontáneos. Los registros fueron almacenados para visualizar las espigas de las células ganglionares y poder aplicar la herramienta de clasificación de espigas. De este modo, se almacenan los instantes de tiempo en los cuales cada célula ganglionar registrada generó potenciales de acción. Este trabajo conllevó al establecimiento de un protocolo de experimentación básico enfocado al uso de matrices MEA en el laboratorio de adquisición de potenciales extracelulares de la Universidad Antonio Nariño Sede Bogotá, no sólo para caracterizar los potenciales de acción de células ganglionares retinales, sino también para otro tipo de células que puedan ser estudiadas empleando matrices de microelectrodos.</p><p align="center"><strong>Recording of Electrical Activity in the Retina of an Albino Rat Employing a Microelectrode Array</strong></p><p>The microelectrode arrays (MEA) are devices that allow the detection of action potentials or spikes in populations of excitable cells, offering a wide spectrum of applications in topics of Neurosciences and Biology. This work describes a protocol for recording of spikes in a population of retinal ganglion cells employing a microelectrode array. The retina of an albino rat was dissected and prepared to be stimulated<em> in vitro </em>with white led light and to record their evoked spikes. Each microelectrode can record spikes from more than a ganglion cell, for which it was necessary to determine which cell fires each spike applying a procedure known as spike sorting. The work allowed to obtain the recording of a stimulation period and another of non-stimulation, representing evoked and spontaneous action potentials. The recordings were saved, in order to visualize the action potentials of the ganglion cells detected and to apply a computational method for the spike sorting. In this way, it was saved the time stamps in which each action potential was fired by its respective cell. This work established a basic experimentation protocol focused to the use of MEA devices in the laboratory for acquisition of extracellular potentials at the Antonio Nariño University – Bogota Headquarters, not only for characterization of action potentials fired by retinal ganglion cells populations, but also for other kind of cells that can be studied employing MEA devices.</p><p> </p>
Collapse
|
15
|
Tao Y, Chen T, Liu B, Yang GQ, Peng G, Zhang H, Huang YF. The neurotoxic effects of N-methyl-N-nitrosourea on the electrophysiological property and visual signal transmission of rat's retina. Toxicol Appl Pharmacol 2015; 286:44-52. [DOI: 10.1016/j.taap.2015.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
16
|
Lin JL, Wang YD, Ma Y, Zhong CM, Zhu MR, Chen WP, Lin BQ. Protective effects of naringenin eye drops on N-methyl-N-nitrosourea-induced photoreceptor cell death in rats. Int J Ophthalmol 2014; 7:391-6. [PMID: 24967179 DOI: 10.3980/j.issn.2222-3959.2014.03.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/04/2014] [Indexed: 12/28/2022] Open
Abstract
AIM To investigate the effects of naringenin eye drops on N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death in rats. METHODS Photoreceptor cell death was induced by single intraperitoneal injection of MNU (60 mg/kg) in rats. Both eyes of all animals were instilled with one drop of vehicle, 0.5% or 1.0% naringenin eye drops three times per day from 7d before to 17d after MNU injection. Effects of naringenin on MNU-induced photoreceptor cell death were evaluated by electrophysiological and histological analysis. RESULTS Flash electroretinography (FERG) and oscillatory potentials (OPs) recordings showed that the vehicle control group had remarkable reduction of amplitudes and prolongation of latency times. FERG and OPs responses were significantly reversed in MNU-induced rats treated with 0.5% or 1.0% naringenin eye drops compared with the vehicle control. The retinal morphological results showed that naringenin dose-dependently preserved the outer nuclear layer, outer retina and total retina. CONCLUSION These results indicate that topical treatment with naringenin eye drops prevented retinal neurons from MNU-induced structural and functional damages.
Collapse
Affiliation(s)
- Jun-Li Lin
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Yan-Dong Wang
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong Province, China
| | - Yan Ma
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Chun-Mei Zhong
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Mei-Rong Zhu
- Zhuhai United Laboratories Co., Ltd, Zhuhai 519040, Guangdong Province, China
| | - Wen-Pei Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Bao-Qin Lin
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
17
|
Wang D, Wang Z, Li Y, Chen X, Sun GY. Nimodipine inhibits N-methyl-N-nitrosourea-induced retinal photoreceptor apoptosis in vivo. Indian J Pharmacol 2014; 45:149-54. [PMID: 23716891 PMCID: PMC3660927 DOI: 10.4103/0253-7613.108297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/09/2012] [Accepted: 01/12/2012] [Indexed: 11/17/2022] Open
Abstract
Purpose: The purpose of the present study was to investigate the effect of nimodipine (NMD), a calcium channel blocker, on N-methyl-N-nitrosourea (MNU)-induced retinal degeneration. Materials and Methods: 60 mg/kg MNU was given intraperitoneally to 6-week-old female Sprague-Dawley rats, and NMD was injected intraperitoneally for up to 5 days after MNU. The effect of NMD was evaluated by electron microscopy and electroretinography (ERG). Proteins of Bax, Bcl-2, Caspase-3, and mitochondrial membrane potential (MMP) were analyzed with flow cytometry. The expressions of phosphodiesterase (PDE) and Caspase-3 were detected by reverse transcriptase polymerase chain reaction (RT-PCR). Results: The apparent preservation of NMD to the photoreceptor cell was demonstrated by electron microscopy. After NMD treatment, both a- and b-waves of ERG were significantly higher compared with the control group, and had a protective effect on MNU-damaged retinal ERG. Flow cytometric assays showed that NMD decreased the level of Bax and Caspase-3 and increased the activity of Bcl-2 in retina. NMD significantly restored the mitochondrial membrane potential (MMP). RT-PCR analysis demonstrated that NMD treatment significantly decreased mRNA level of Caspase-3, and mRNA level of PDE was clearly upregulated. Conclusions: These data suggest that NMD may regulate the expressions of Bax, Bcl-2, Caspases-3, and PDE, and protection on the functions of retinal cell mitochondria inhibit MNU-induced photoreceptor cell apoptosis and protect retinal function in rats.
Collapse
Affiliation(s)
- Dan Wang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang- 110 001, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Hofmann B, Kätelhön E, Schottdorf M, Offenhäusser A, Wolfrum B. Nanocavity electrode array for recording from electrogenic cells. LAB ON A CHIP 2011; 11:1054-1058. [PMID: 21286648 DOI: 10.1039/c0lc00582g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present a new nanocavity device for highly localized on-chip recordings of action potentials from individual cells in a network. Microelectrode recordings have become the method of choice for recording extracellular action potentials from high density cultures or slices. Nevertheless, interfacing individual cells of a network with high resolution still remains challenging due to an insufficient coupling of the signal to small electrodes, exhibiting diameters below 10 µm. We show that this problem can be overcome by a new type of sensor that features an electrode, which is accessed via a small aperture and a nanosized cavity. Thus, the properties of large electrodes are combined with a high local resolution and a good seal resistance at the interface. Fabrication of the device can be performed with state-of-the-art clean room technology and sacrificial layer etching allowing integration of the devices into sensor arrays. We demonstrate the capability of such an array by recording the propagation of action potentials in a network of cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Boris Hofmann
- PGI-8/ICS-8, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | |
Collapse
|
19
|
Gao Y, Deng XG, Sun QN, Zhong ZQ. Ganoderma spore lipid inhibits N-methyl-N-nitrosourea-induced retinal photoreceptor apoptosis in vivo. Exp Eye Res 2010; 90:397-404. [DOI: 10.1016/j.exer.2009.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
|
20
|
Safety, efficacy, and quality control of a photoelectric dye-based retinal prosthesis (Okayama University-type retinal prosthesis) as a medical device. J Artif Organs 2009; 12:213-25. [PMID: 20035394 DOI: 10.1007/s10047-009-0471-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
Patients with retinitis pigmentosa lose photoreceptor cells as a result of genetic abnormalities and hence become blind. Neurons such as bipolar cells and ganglion cells remain alive even in the retina of these patients, and ganglion cells send axons to the brain as the optic nerve. The basic concept of retinal prostheses is to replace dead photoreceptor cells with artificial devices to stimulate the remaining neurons with electric currents or potentials. Photodiode arrays and digital camera-type electrode arrays are the two main approaches for retinal prostheses to stimulate retinal neurons, but these arrays have the problems of poor biocompatibility, low sensitivity, and low output of electric currents, and hence have a requirement for external electric sources (batteries). To overcome these problems, we are developing photoelectric dye-based retinal prostheses that absorb light and convert photon energy to generate electric potentials. The prototype, using a photoelectric dye-coupled polyethylene film, could induce intracellular calcium elevation in photoreceptor-lacking embryonic retinal tissues and cultured retinal neurons. The subretinal implantation of the prototype in the eyes of Royal College of Surgeons (RCS) rats led to vision recovery as proved by a behavior test. The photoelectric dye that was chosen for the prototype did not exhibit any cytotoxicity. The surface potentials of the photoelectric dye-coupled film showed a rapid on-and-off response to illumination with a threshold for light intensity as measured by a Kelvin probe system. Photoelectric dye-based retinal prostheses are thin and soft, and therefore, a sheet of the film of large size, corresponding to a large visual field, could be inserted into the vitreous and then to the subretinal space through a small opening by rolling up the film. Clinical studies of photoelectric dye-based retinal prostheses in patients with retinitis pigmentosa who lose sight will be planned after the manufacturing control and the quality control had been established for the medical device.
Collapse
|
21
|
Boudard DL, Mendoza J, Hicks D. Loss of photic entrainment at low illuminances in rats with acute photoreceptor degeneration. Eur J Neurosci 2009; 30:1527-36. [PMID: 19821841 DOI: 10.1111/j.1460-9568.2009.06935.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In several species, an acute injection of N-methyl-N-nitrosourea (MNU) induces a retinal degeneration characterized principally by a rapid loss of the outer nuclear layer, the other layers remaining structurally intact. It has, however, also been reported that down-regulation of melanopsin gene expression is associated with the degeneration and is detectable soon after injection. Melanopsin is expressed by a small subset of intrinsically photosensitive retinal ganglion cells and plays an important role in circadian behaviour photoentrainment. We injected MNU into Long Evans rats and investigated the ability of animals to entrain to three light/dark cycles of different light intensities (300, 15 and 1 lux). Control animals entrained their locomotor activity rhythms to the three cycles. In contrast, MNU-treated animals could only entrain properly to the 300 lux cycle. For the 15 lux cycle, their phase angle was much altered compared with control animals, and for the 1 lux cycle, MNU-injected animals were unable to photoentrain and exhibited an apparent free-run activity pattern with a period of 24.3 h. Subsequent to behavioural studies the animals were killed and rod, cone, melanopsin expression and melanopsin-expressing cells were quantified. Rod and cone loss was almost complete, melanopsin protein was reduced by 83% and melanopsin-expressing cells were reduced by 37%. Our study provides a comprehensive model of photoreceptor degeneration at the adult stage and a simple and versatile method to investigate the relation between retinal photoreceptors and the circadian system.
Collapse
Affiliation(s)
- Domitille L Boudard
- Department of Neurobiology of Rhythms, UPR3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | | | | |
Collapse
|