1
|
Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J 2022; 39:443-471. [PMID: 35334027 DOI: 10.1007/s10719-022-10055-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023]
Abstract
The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Barone E, Di Domenico F, Perluigi M, Butterfield DA. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic Biol Med 2021; 176:16-33. [PMID: 34530075 PMCID: PMC8595768 DOI: 10.1016/j.freeradbiomed.2021.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly followed by vascular dementia. In addition to clinically diagnosed dementia, cognitive dysfunction has been reported in diabetic patients. Recent studies are now beginning to recognize type 2 diabetes mellitus (T2DM), characterized by chronic hyperglycemia and insulin resistance, as a risk factor for AD and other cognitive disorders. While studies on insulin action have remained traditionally in the domain of peripheral tissues, the detrimental effects of insulin resistance in the central nervous system on cognitive dysfunction are increasingly being reported in recent clinical and preclinical studies. Brain functions require continuous supply of glucose and oxygen and a tight regulation of metabolic processes. Loss of this metabolic regulation has been proposed to be a contributor to memory dysfunction associated with neurodegeneration. Within the above scenario, this review will focus on the interplay among oxidative stress (OS), insulin resistance and AMPK dysfunctions in the brain by highlighting how these neurotoxic events contribute to neurodegeneration. We provide an overview on the detrimental effects of OS on proteins regulating insulin signaling and how these alterations impact cell metabolic dysfunctions through AMPK dysregulation. Such processes, we assert, are critically involved in the molecular pathways that underlie AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
3
|
Zuliani I, Lanzillotta C, Tramutola A, Barone E, Perluigi M, Rinaldo S, Paone A, Cutruzzolà F, Bellanti F, Spinelli M, Natale F, Fusco S, Grassi C, Di Domenico F. High-Fat Diet Leads to Reduced Protein O-GlcNAcylation and Mitochondrial Defects Promoting the Development of Alzheimer's Disease Signatures. Int J Mol Sci 2021; 22:ijms22073746. [PMID: 33916835 PMCID: PMC8038495 DOI: 10.3390/ijms22073746] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer's disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.
Collapse
Affiliation(s)
- Ilaria Zuliani
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Chiara Lanzillotta
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Antonella Tramutola
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Eugenio Barone
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Marzia Perluigi
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Alessio Paone
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
| | - Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.S.); (F.N.); (S.F.); (C.G.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Fabio Di Domenico
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (C.L.); (A.T.); (E.B.); (M.P.); (S.R.); (A.P.); (F.C.)
- Correspondence:
| |
Collapse
|
4
|
Verathamjamras C, Sriwitool TE, Netsirisawan P, Chaiyawat P, Chokchaichamnankit D, Prasongsook N, Srisomsap C, Svasti J, Champattanachai V. Aberrant RL2 O-GlcNAc antibody reactivity against serum-IgA1 of patients with colorectal cancer. Glycoconj J 2021; 38:55-65. [PMID: 33608772 DOI: 10.1007/s10719-021-09978-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
O-GlcNAcylation, a single attachment of N-acetylglucosamine (GlcNAc) on serine and threonine residues, plays important roles in normal and pathobiological states of many diseases. Aberrant expression of O-GlcNAc modification was found in many types of cancer including colorectal cancer (CRC). This modification mainly occurs in nuclear-cytoplasmic proteins; however, it can exist in some extracellular and secretory proteins. In this study, we investigated whether O-GlcNAc-modified proteins are present in serum of patients with CRC. Serum glycoproteins of CRC patients and healthy controls were enriched by wheat germ agglutinin, a glycan binding protein specifically binds to terminal GlcNAc and sialic acid. Two-dimensional gel electrophoresis, RL2 O-GlcNAc immunoblotting, affinity purification, and mass spectrometry were performed. The results showed that RL2 O-GlcNAc antibody predominantly reacted against serum immunoglobulin A1 (IgA1). The levels of RL2-reacted IgA were significantly increased while total IgA were not different in patients with CRC compared to those of healthy controls. Analyses by ion trap mass spectrometry using collision-induced dissociation and electron-transfer dissociation modes revealed one O-linked N-acetylhexosamine modification site at Ser268 located in the heavy constant region of IgA1; unfortunately, it cannot be discriminated whether it was N-acetylglucosamine or N-acetylgalactosamine because of their identical molecular mass. Although failed to demonstrate unequivocally it was O-GlcNAc, these data indicated that serum-IgA had an aberrantly increased reactivity against RL2 O-GlcNAc antibody in CRC patients. This specific glycosylated form of serum-IgA1 will expand the spectrum of aberrant glycosylation which provides valuable information to cancer glycobiology.
Collapse
Affiliation(s)
- Chris Verathamjamras
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Tanin-Ek Sriwitool
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand
| | | | - Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand.,Muscoloskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Naiyarat Prasongsook
- Divison of Medical Oncology, Department of Medicine, Faculty of Medicine, Phramongkutklao Hospital, Ratchathewi, Bangkok, 10400, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand
| | - Voraratt Champattanachai
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand. .,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok, 10210, Thailand.
| |
Collapse
|
5
|
Trentzsch M, Nyamugenda E, Miles TK, Griffin H, Russell S, Koss B, Cooney KA, Phelan KD, Tackett AJ, Iyer S, Boysen G, Baldini G. Delivery of phosphatidylethanolamine blunts stress in hepatoma cells exposed to elevated palmitate by targeting the endoplasmic reticulum. Cell Death Discov 2020; 6:8. [PMID: 32123584 PMCID: PMC7028721 DOI: 10.1038/s41420-020-0241-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic obesity increases in liver phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio, inducing endoplasmic reticulum (ER) stress without concomitant increase of ER chaperones. Here, it is found that exposing mice to a palm oil-based high fat (HF) diet induced obesity, loss of liver PE, and loss of the ER chaperone Grp78/BiP in pericentral hepatocytes. In Hepa1-6 cells treated with elevated concentration of palmitate to model lipid stress, Grp78/BiP mRNA was increased, indicating onset of stress-induced Unfolded Protein Response (UPR), but Grp78/BiP protein abundance was nevertheless decreased. Exposure to elevated palmitate also induced in hepatoma cells decreased membrane glycosylation, nuclear translocation of pro-apoptotic C/EBP-homologous-protein-10 (CHOP), expansion of ER-derived quality control compartment (ERQC), loss of mitochondrial membrane potential (MMP), and decreased oxidative phosphorylation. When PE was delivered to Hepa1-6 cells exposed to elevated palmitate, effects by elevated palmitate to decrease Grp78/BiP protein abundance and suppress membrane glycosylation were blunted. Delivery of PE to Hepa1-6 cells treated with elevated palmitate also blunted expansion of ERQC, decreased nuclear translocation of CHOP and lowered abundance of reactive oxygen species (ROS). Instead, delivery of the chemical chaperone 4-phenyl-butyrate (PBA) to Hepa1-6 cells treated with elevated palmitate, while increasing abundance of Grp78/BiP protein and restoring membrane glycosylation, also increased ERQC, expression and nuclear translocation of CHOP, non-mitochondrial oxygen consumption, and generation of ROS. Data indicate that delivery of PE to hepatoma cells under lipid stress recovers cell function by targeting the secretory pathway and by blunting pro-apoptotic branches of the UPR.
Collapse
Affiliation(s)
- Marcus Trentzsch
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Eugene Nyamugenda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Tiffany K. Miles
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Haven Griffin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Susan Russell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Kimberly A. Cooney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Srividhya Iyer
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| |
Collapse
|
6
|
Changes of Blood-Brain Barrier and Brain Parenchymal Protein Expression Levels of Mice under Different Insulin-Resistance Conditions Induced by High-Fat Diet. Pharm Res 2019; 36:141. [PMID: 31367840 DOI: 10.1007/s11095-019-2674-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/20/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of the present study was to investigate changes of blood-brain barrier (BBB) and brain parenchymal protein expression due to type II diabetes mellitus (T2DM) induced by a high-fat diet (HFD) by using SWATH-based quantitative proteomics. METHODS Mice were fed a HFD for 2 or 10 weeks, and then SWATH-based quantitative proteomic analysis, western blot analysis, immunohistochemistry and functional transport studies were performed. RESULTS In brain capillaries, expression levels of BBB transporters (Glut1, P-glycoprotein) and tight-junction proteins (claudin-5, occludin) were significantly reduced in HFD mice at 2 weeks, but recovered to the levels in the normal diet (ND) group at 10 weeks. P-glycoprotein function at the BBB was reduced at 2 weeks. In the cerebral cortex and hippocampus, neurofilament, which is important for neuronal function, was decreased in HFD mice at 2 weeks, but recovered at 10 weeks. CONCLUSION Our results suggest that changes in the status of insulin resistance influence expression of BBB transporters, which in turn may alter the expression of cognitive function-related proteins.
Collapse
|
7
|
Tramutola A, Sharma N, Barone E, Lanzillotta C, Castellani A, Iavarone F, Vincenzoni F, Castagnola M, Butterfield DA, Gaetani S, Cassano T, Perluigi M, Di Domenico F. Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3309-3321. [PMID: 30031227 DOI: 10.1016/j.bbadis.2018.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022]
Abstract
PET scan analysis demonstrated the early reduction of cerebral glucose metabolism in Alzheimer disease (AD) patients that can make neurons vulnerable to damage via the alteration of the hexosamine biosynthetic pathway (HBP). Defective HBP leads to flawed protein O-GlcNAcylation coupled, by a mutual inverse relationship, with increased protein phosphorylation on Ser/Thr residues. Altered O-GlcNAcylation of Tau and APP have been reported in AD and is closely related with pathology onset and progression. In addition, type 2 diabetes patients show an altered O-GlcNAcylation/phosphorylation that might represent a link between metabolic defects and AD progression. Our study aimed to decipher the specific protein targets of altered O-GlcNAcylation in brain of 12-month-old 3×Tg-AD mice compared with age-matched non-Tg mice. Hence, we analysed the global O-GlcNAc levels, the levels and activity of OGT and OGA, the enzymes controlling its cycling and protein specific O-GlcNAc levels using a bi-dimensional electrophoresis (2DE) approach. Our data demonstrate the alteration of OGT and OGA activation coupled with the decrease of total O-GlcNAcylation levels. Data from proteomics analysis led to the identification of several proteins with reduced O-GlcNAcylation levels, which belong to key pathways involved in the progression of AD such as neuronal structure, protein degradation and glucose metabolism. In parallel, we analysed the O-GlcNAcylation/phosphorylation ratio of IRS1 and AKT, whose alterations may contribute to insulin resistance and reduced glucose uptake. Our findings may contribute to better understand the role of altered protein O-GlcNAcylation profile in AD, by possibly identifying novel mechanisms of disease progression related to glucose hypometabolism.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Nidhi Sharma
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy; Universidad Autònoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Providencia, Santiago, Chile
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Castellani
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Federica Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Massimo Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Butterfield DA. Perspectives on Oxidative Stress in Alzheimer’s Disease and Predictions of Future Research Emphases. J Alzheimers Dis 2018; 64:S469-S479. [DOI: 10.3233/jad-179912] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
10
|
Di Domenico F, Tramutola A, Foppoli C, Head E, Perluigi M, Butterfield DA. mTOR in Down syndrome: Role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia. Free Radic Biol Med 2018; 114:94-101. [PMID: 28807816 PMCID: PMC5748251 DOI: 10.1016/j.freeradbiomed.2017.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase involved in the regulation of protein synthesis and degradation, longevity and cytoskeletal formation. The mTOR pathway represents a key growth and survival pathway involved in several diseases such as cancer, obesity, cardiovascular disease and neurodegenerative diseases. Numerous studies linked the alterations of mTOR pathway to age-dependent cognitive decline, pathogenesis of Alzheimer disease (AD) and AD-like dementia in Down syndrome (DS). DS is the most frequent chromosomal abnormality that causes intellectual disability. The neuropathology of AD in DS is complex and involves impaired mitochondrial function, defects in neurogenesis, increased oxidative stress, altered proteostasis and autophagy networks as a result of triplication of chromosome 21(chr 21). The chr21 gene products are considered a principal neuropathogenic moiety in DS. Several genes involved respectively in the formation of senile plaques and neurofibrillary tangles (NFT), two main pathological hallmarks of AD, are mapped on chr21. Further, in subjects with DS the activation of mTOR signaling contributes to Aβ generation and the formation of NFT. This review discusses recent research highlighting the complex role of mTOR associated with the presence of two hallmarks of AD pathology, senile plaques (composed mostly of fibrillar Aß peptides), and NFT (composed mostly of hyperphosphorylated tau protein). Oxidative stress, associated with chr21-related Aβ and mitochondrial alterations, may significantly contribute to this linkage of mTOR to AD-like neuropathology in DS.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Cesira Foppoli
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Elizabeth Head
- Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506 USA.
| |
Collapse
|
11
|
Butterfield DA, Boyd-Kimball D. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer's Disease. J Alzheimers Dis 2018; 62:1345-1367. [PMID: 29562527 PMCID: PMC5870019 DOI: 10.3233/jad-170543] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Oxidative stress is implicated in the pathogenesis and progression of Alzheimer's disease (AD) and its earlier stage, amnestic mild cognitive impairment (aMCI). One source of oxidative stress in AD and aMCI brains is that associated with amyloid-β peptide, Aβ1-42 oligomers. Our laboratory first showed in AD elevated oxidative stress occurred in brain regions rich in Aβ1-42, but not in Aβ1-42-poor regions, and was among the first to demonstrate Aβ peptides led to lipid peroxidation (indexed by HNE) in AD and aMCI brains. Oxidatively modified proteins have decreased function and contribute to damaged key biochemical and metabolic pathways in which these proteins normally play a role. Identification of oxidatively modified brain proteins by the methods of redox proteomics was pioneered in the Butterfield laboratory. Four recurring altered pathways secondary to oxidative damage in brain from persons with AD, aMCI, or Down syndrome with AD are interrelated and contribute to neuronal death. This "Quadrilateral of Neuronal Death" includes altered: glucose metabolism, mTOR activation, proteostasis network, and protein phosphorylation. Some of these pathways are altered even in brains of persons with preclinical AD. We opine that targeting these pathways pharmacologically and with lifestyle changes potentially may provide strategies to slow or perhaps one day, prevent, progression or development of this devastating dementing disorder. This invited review outlines both in vitro and in vivo studies from the Butterfield laboratory related to Aβ1-42 and AD and discusses the importance and implications of some of the major achievements of the Butterfield laboratory in AD research.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH, USA
| |
Collapse
|
12
|
Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. J Neurochem 2017; 144:7-34. [PMID: 29049853 DOI: 10.1111/jnc.14242] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022]
Abstract
Proteostasis is essential in the mammalian brain where post-mitotic cells must function for decades to maintain synaptic contacts and memory. The brain is dependent on glucose and other metabolites for proper function and is spared from metabolic deficits even during starvation. In this review, we outline how the nutrient-sensitive nucleocytoplasmic post-translational modification O-linked N-acetylglucosamine (O-GlcNAc) regulates protein homeostasis. The O-GlcNAc modification is highly abundant in the mammalian brain and has been linked to proteopathies, including neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. C. elegans, Drosophila, and mouse models harboring O-GlcNAc transferase- and O-GlcNAcase-knockout alleles have helped define the role O-GlcNAc plays in development as well as age-associated neurodegenerative disease. These enzymes add and remove the single monosaccharide from protein serine and threonine residues, respectively. Blocking O-GlcNAc cycling is detrimental to mammalian brain development and interferes with neurogenesis, neural migration, and proteostasis. Findings in C. elegans and Drosophila model systems indicate that the dynamic turnover of O-GlcNAc is critical for maintaining levels of key transcriptional regulators responsible for neurodevelopment cell fate decisions. In addition, pathways of autophagy and proteasomal degradation depend on a transcriptional network that is also reliant on O-GlcNAc cycling. Like the quality control system in the endoplasmic reticulum which uses a 'mannose timer' to monitor protein folding, we propose that cytoplasmic proteostasis relies on an 'O-GlcNAc timer' to help regulate the lifetime and fate of nuclear and cytoplasmic proteins. O-GlcNAc-dependent developmental alterations impact metabolism and growth of the developing mouse embryo and persist into adulthood. Brain-selective knockout mouse models will be an important tool for understanding the role of O-GlcNAc in the physiology of the brain and its susceptibility to neurodegenerative injury.
Collapse
Affiliation(s)
- Ilhan Akan
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Michelle R Bond
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Hastings NB, Wang X, Song L, Butts BD, Grotz D, Hargreaves R, Fred Hess J, Hong KLK, Huang CRR, Hyde L, Laverty M, Lee J, Levitan D, Lu SX, Maguire M, Mahadomrongkul V, McEachern EJ, Ouyang X, Rosahl TW, Selnick H, Stanton M, Terracina G, Vocadlo DJ, Wang G, Duffy JL, Parker EM, Zhang L. Inhibition of O-GlcNAcase leads to elevation of O-GlcNAc tau and reduction of tauopathy and cerebrospinal fluid tau in rTg4510 mice. Mol Neurodegener 2017; 12:39. [PMID: 28521765 PMCID: PMC5437664 DOI: 10.1186/s13024-017-0181-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hyperphosphorylation of microtubule-associated protein tau is a distinct feature of neurofibrillary tangles (NFTs) that are the hallmark of neurodegenerative tauopathies. O-GlcNAcylation is a lesser known post-translational modification of tau that involves the addition of N-acetylglucosamine onto serine and threonine residues. Inhibition of O-GlcNAcase (OGA), the enzyme responsible for the removal of O-GlcNAc modification, has been shown to reduce tau pathology in several transgenic models. Clarifying the underlying mechanism by which OGA inhibition leads to the reduction of pathological tau and identifying translatable measures to guide human dosing and efficacy determination would significantly facilitate the clinical development of OGA inhibitors for the treatment of tauopathies. METHODS Genetic and pharmacological approaches are used to evaluate the pharmacodynamic response of OGA inhibition. A panel of quantitative biochemical assays is established to assess the effect of OGA inhibition on pathological tau reduction. A "click" chemistry labeling method is developed for the detection of O-GlcNAcylated tau. RESULTS Substantial (>80%) OGA inhibition is required to observe a measurable increase in O-GlcNAcylated proteins in the brain. Sustained and substantial OGA inhibition via chronic treatment with Thiamet G leads to a significant reduction of aggregated tau and several phosphorylated tau species in the insoluble fraction of rTg4510 mouse brain and total tau in cerebrospinal fluid (CSF). O-GlcNAcylated tau is elevated by Thiamet G treatment and is found primarily in the soluble 55 kD tau species, but not in the insoluble 64 kD tau species thought as the pathological entity. CONCLUSION The present study demonstrates that chronic inhibition of OGA reduces pathological tau in the brain and total tau in the CSF of rTg4510 mice, most likely by directly increasing O-GlcNAcylation of tau and thereby maintaining tau in the soluble, non-toxic form by reducing tau aggregation and the accompanying panoply of deleterious post-translational modifications. These results clarify some conflicting observations regarding the effects and mechanism of OGA inhibition on tau pathology, provide pharmacodynamic tools to guide human dosing and identify CSF total tau as a potential translational biomarker. Therefore, this study provides additional support to develop OGA inhibitors as a treatment for Alzheimer's disease and other neurodegenerative tauopathies.
Collapse
Affiliation(s)
| | - Xiaohai Wang
- Department of In Vivo Pharmacology, West Point, PA USA
| | - Lixin Song
- Department of Neuroscience, Kenilworth, NJ USA
| | | | - Diane Grotz
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Kenilworth, NJ USA
| | | | | | | | | | - Lynn Hyde
- Department of Neuroscience, Kenilworth, NJ USA
| | | | - Julie Lee
- Department of Neuroscience, Kenilworth, NJ USA
| | - Diane Levitan
- Department of Molecular Biomarkers, Kenilworth, NJ USA
| | | | | | | | | | | | | | - Harold Selnick
- Discovery Chemistry, Merck Research Laboratories, West Point, PA USA
| | | | | | | | | | - Joseph L. Duffy
- Discovery Chemistry Merck Research Laboratories, Kenilworth, NJ USA
| | | | - Lili Zhang
- Department of Neuroscience, Kenilworth, NJ USA
| |
Collapse
|
14
|
Wang J, Cunningham R, Zetterberg H, Asthana S, Carlsson C, Okonkwo O, Li L. Label-free quantitative comparison of cerebrospinal fluid glycoproteins and endogenous peptides in subjects with Alzheimer's disease, mild cognitive impairment, and healthy individuals. Proteomics Clin Appl 2016; 10:1225-1241. [DOI: 10.1002/prca.201600009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/18/2016] [Accepted: 11/08/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Jingxin Wang
- Neuroscience Training Program; University of Wisconsin-Madison; Madison WI USA
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital; Mölndal Sweden
- Department of Psychiatry and Neurochemistry; Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Mölndal Sweden
- Department of Molecular Neuroscience; UCL Institute of Neurology; Queen Square London UK
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center; University of Wisconsin School of Medicine and Public Health; Madison WI USA
- Geriatric Research Education and Clinical Center; Wm. S. Middleton Veterans Hospital; Madison WI USA
- Wisconsin Alzheimer's Institute; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Cynthia Carlsson
- Wisconsin Alzheimer's Disease Research Center; University of Wisconsin School of Medicine and Public Health; Madison WI USA
- Geriatric Research Education and Clinical Center; Wm. S. Middleton Veterans Hospital; Madison WI USA
- Wisconsin Alzheimer's Institute; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Ozioma Okonkwo
- Neuroscience Training Program; University of Wisconsin-Madison; Madison WI USA
- Wisconsin Alzheimer's Disease Research Center; University of Wisconsin School of Medicine and Public Health; Madison WI USA
- Geriatric Research Education and Clinical Center; Wm. S. Middleton Veterans Hospital; Madison WI USA
- Wisconsin Alzheimer's Institute; University of Wisconsin School of Medicine and Public Health; Madison WI USA
| | - Lingjun Li
- Neuroscience Training Program; University of Wisconsin-Madison; Madison WI USA
- School of Pharmacy; University of Wisconsin-Madison; Madison WI USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI USA
- School of Life Sciences; Tianjin University; Tianjin China
| |
Collapse
|
15
|
Lee A, Miller D, Henry R, Paruchuri VDP, O'Meally RN, Boronina T, Cole RN, Zachara NE. Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress. J Proteome Res 2016; 15:4318-4336. [PMID: 27669760 DOI: 10.1021/acs.jproteome.6b00369] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
O-Linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies and regulates over 3000 nuclear, cytoplasmic, and mitochondrial proteins. Upon exposure to stress and injury, cells and tissues increase the O-GlcNAc modification, or O-GlcNAcylation, of numerous proteins promoting the cellular stress response and thus survival. The aim of this study was to identify proteins that are differentially O-GlcNAcylated upon acute oxidative stress (H2O2) to provide insight into the mechanisms by which O-GlcNAc promotes survival. We achieved this goal by employing Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC) and a novel "G5-lectibody" immunoprecipitation strategy that combines four O-GlcNAc-specific antibodies (CTD110.6, RL2, HGAC39, and HGAC85) and the lectin WGA. Using the G5-lectibody column in combination with basic reversed phase chromatography and C18 RPLC-MS/MS, 990 proteins were identified and quantified. Hundreds of proteins that were identified demonstrated increased (>250) or decreased (>110) association with the G5-lectibody column upon oxidative stress, of which we validated the O-GlcNAcylation status of 24 proteins. Analysis of proteins with altered glycosylation suggests that stress-induced changes in O-GlcNAcylation cluster into pathways known to regulate the cell's response to injury and include protein folding, transcriptional regulation, epigenetics, and proteins involved in RNA biogenesis. Together, these data suggest that stress-induced O-GlcNAcylation regulates numerous and diverse cellular pathways to promote cell and tissue survival.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Devin Miller
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Roger Henry
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Venkata D P Paruchuri
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N O'Meally
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States.,Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
16
|
Swomley AM, Triplett JC, Keeney JT, Warrier G, Pearson KJ, Mattison JA, de Cabo R, Cai J, Klein JB, Butterfield DA. Comparative proteomic analyses of the parietal lobe from rhesus monkeys fed a high-fat/sugar diet with and without resveratrol supplementation, relative to a healthy diet: Insights into the roles of unhealthy diets and resveratrol on function. J Nutr Biochem 2016; 39:169-179. [PMID: 27840293 DOI: 10.1016/j.jnutbio.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
A diet consisting of a high intake of saturated fat and refined sugars is characteristic of a Western-diet and has been shown to have a substantial negative effect on human health. Expression proteomics were used to investigate changes to the parietal lobe proteome of rhesus monkeys consuming either a high fat and sugar (HFS) diet, a HFS diet supplemented with resveratrol (HFS+RSV), or a healthy control diet for 2 years. Here we discuss the modifications in the levels of 12 specific proteins involved in various cellular systems including metabolism, neurotransmission, structural integrity, and general cellular signaling following a nutritional intervention. Our results contribute to a better understanding of the mechanisms by which resveratrol functions through the up- or down-regulation of proteins in different cellular sub-systems to affect the overall health of the brain.
Collapse
Affiliation(s)
- Aaron M Swomley
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jeriel T Keeney
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Govind Warrier
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Kevin J Pearson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Molecular and Biomedical Pharmacology and Nutrition, University of Kentucky, Lexington, KY 40536, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jian Cai
- Proteomics Center, University of Louisville, Louisville, KY 40202, USA
| | - Jon B Klein
- Proteomics Center, University of Louisville, Louisville, KY 40202, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40536, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
17
|
Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1871-82. [PMID: 27425034 DOI: 10.1016/j.bbadis.2016.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022]
Abstract
Protein phosphorylation of serine, threonine, and tyrosine residues is one of the most prevalent post-translational modifications fundamental in mediating diverse cellular functions in living cells. Aberrant protein phosphorylation is currently recognized as a critical step in the pathogenesis and progression of Alzheimer disease (AD). Changes in the pattern of protein phosphorylation of different brain regions are suggested to promote AD transition from a presymptomatic to a symptomatic state in response to accumulating amyloid β-peptide (Aβ). Several experimental approaches have been utilized to profile alteration of protein phosphorylation in the brain, including proteomics. Among central pathways regulated by kinases/phosphatases those involved in the activation/inhibition of both pro survival and cell death pathways play a central role in AD pathology. We discuss in detail how aberrant phosphorylation could contribute to dysregulate p53 activity and insulin-mediated signaling. Taken together these results highlight that targeted therapeutic intervention, which can restore phosphorylation homeostasis, either acting on kinases and phosphatases, conceivably may prove to be beneficial to prevent or slow the development and progression of AD.
Collapse
|
18
|
Miura Y, Endo T. Glycomics and glycoproteomics focused on aging and age-related diseases--Glycans as a potential biomarker for physiological alterations. Biochim Biophys Acta Gen Subj 2016; 1860:1608-14. [PMID: 26801879 DOI: 10.1016/j.bbagen.2016.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Since glycosylation depends on glycosyltransferases, glycosidases, and sugar nucleotide donors, it is susceptible to the changes associated with physiological and pathological conditions. Therefore, alterations in glycan structures may be good targets and biomarkers for monitoring health conditions. Since human aging and longevity are affected by genetic and environmental factors such as diseases, lifestyle, and social factors, a scale that reflects various environmental factors is required in the study of human aging and longevity. SCOPE OF REVIEW We herein focus on glycosylation changes elucidated by glycomic and glycoproteomic studies on aging, longevity, and age-related diseases including cognitive impairment, diabetes mellitus, and frailty. We also consider the potential of glycan structures as biomarkers and/or targets for monitoring physiological and pathophysiological changes. MAJOR CONCLUSIONS Glycan structures are altered in age-related diseases. These glycans and glycoproteins may be involved in the pathophysiology of these diseases and, thus, be useful diagnostic markers. Age-dependent changes in N-glycans have been reported previously in cohort studies, and characteristic N-glycans in extreme longevity have been proposed. These findings may lead to a deeper understanding of the mechanisms underlying aging as well as the factors influencing longevity. GENERAL SIGNIFICANCE Alterations in glycosylation may be good targets and biomarkers for monitoring health conditions, and be applicable to studies on age-related diseases and healthy aging. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Tamao Endo
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| |
Collapse
|
19
|
García-Ayllón MS, Botella-López A, Cuchillo-Ibañez I, Rábano A, Andreasen N, Blennow K, Ávila J, Sáez-Valero J. HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain. Mol Neurobiol 2016; 54:188-199. [PMID: 26738850 DOI: 10.1007/s12035-015-9644-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/16/2015] [Indexed: 12/30/2022]
Abstract
The human natural killer-1 (HNK-1), 3-sulfonated glucuronic acid, is a glycoepitope marker of cell adhesion that participates in cell-cell and cell-extracellular matrix interactions and in neurite growth. Very little is known about the regulation of the HNK-1 glycan in neurodegenerative disease, particularly in Alzheimer's disease (AD). In this study, we investigate changes in the levels of HNK-1 carrier glycoproteins in AD. We demonstrate an overall decrease in HNK-1 immunoreactivity in glycoproteins extracted from the frontal cortex of AD subjects, compared with levels from non-demented controls (NDC). Immunoblotting of ventricular post-mortem and lumbar ante-mortem cerebrospinal fluid with HNK-1 antibodies indicate similar levels of carrier glycoproteins in AD and NDC samples. Decrease in HNK-1 carrier glycoproteins were not paralleled by changes in messenger RNA (mRNA) levels of the enzymes involved in the synthesis of the glycoepitope, β-1,4-galactosyltransferase (β4GalT), glucuronyltransferases GlcAT-P and GlcAT-S, or sulfotransferase HNK-1ST. Over-expression of amyloid precursor protein in Tg2576 transgenic mice and in vitro treatment of SH-SY5Y neuroblastoma cells with the amyloidogenic Aβ42 peptide resulted in a decrease in HNK-1 immunoreactivity levels in brain and cellular extracts, whereas the levels of soluble HNK-1 glycoproteins detected in culture media were not affected by Aβ treatment. HNK-1 levels remain unaffected in the brain extracts of Tg-VLW mice, a model of mutant hyperphosphorylated tau, and in SH-SY5Y cells over-expressing hyperphosphorylated wild-type tau. These results provide evidence that cellular levels of HNK-1 carrier glycoforms are decreased in the brain of AD subjects, probably influenced by the β-amyloid protein.
Collapse
Affiliation(s)
- María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain. .,Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain.
| | - Arancha Botella-López
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - Alberto Rábano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.,Banco de Tejidos de la Fundación CIEN, CIEN Foundation, Carlos III Institute of Health, Alzheimer Center Reina Sofia Foundation, Madrid, Spain
| | - Niels Andreasen
- Karolinska Institute-Alzheimer Disease Research center, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.,Centro de Biología Molecular "Severo Ochoa", Universidad, Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| |
Collapse
|
20
|
Labrador‐Garrido A, Cejudo‐Guillén M, Daturpalli S, Leal MM, Klippstein R, De Genst EJ, Villadiego J, Toledo‐Aral JJ, Dobson CM, Jackson SE, Pozo D, Roodveldt C. Chaperome screening leads to identification of Grp94/Gp96 and FKBP4/52 as modulators of the α‐synuclein‐elicited immune response. FASEB J 2015; 30:564-77. [DOI: 10.1096/fj.15-275131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Adahir Labrador‐Garrido
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of MedicineUniversity of SevilleSevilleSpain
| | - Marta Cejudo‐Guillén
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of MedicineUniversity of SevilleSevilleSpain
| | - Soumya Daturpalli
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - María M. Leal
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
| | - Rebecca Klippstein
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of MedicineUniversity of SevilleSevilleSpain
| | - Erwin J. De Genst
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Javier Villadiego
- Department of Medical Physiology and BiophysicsSchool of MedicineUniversity of SevilleSevilleSpain
- Institute of Biomedicine of Seville (IBiS)University Hospital Virgen del RocioConsejo Superior de Investigaciones Científicas (CSIC)University of SevilleSevilleSpain
- Centers for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)SevilleSpain
| | - Juan J. Toledo‐Aral
- Department of Medical Physiology and BiophysicsSchool of MedicineUniversity of SevilleSevilleSpain
- Institute of Biomedicine of Seville (IBiS)University Hospital Virgen del RocioConsejo Superior de Investigaciones Científicas (CSIC)University of SevilleSevilleSpain
- Centers for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)SevilleSpain
| | | | - Sophie E. Jackson
- Department of ChemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
- Department of Medical Biochemistry, Molecular Biology, and ImmunologySchool of MedicineUniversity of SevilleSevilleSpain
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER)SevilleSpain
| |
Collapse
|
21
|
A platelet protein biochip rapidly detects an Alzheimer's disease-specific phenotype. Acta Neuropathol 2014; 128:665-77. [PMID: 25248508 PMCID: PMC4201753 DOI: 10.1007/s00401-014-1341-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD), a multifactorial neurodegenerative condition caused by genetic and environmental factors, is diagnosed using neuropsychological tests and brain imaging; molecular diagnostics are not routinely applied. Studies have identified AD-specific cerebrospinal fluid (CSF) biomarkers but sample collection requires invasive lumbar puncture. To identify AD-modulated proteins in easily accessible blood platelets, which share biochemical signatures with neurons, we compared platelet lysates from 62 AD, 24 amnestic mild cognitive impairment (aMCI), 13 vascular dementia (VaD), and 12 Parkinson's disease (PD) patients with those of 112 matched controls by fluorescence two-dimensional differential gel electrophoresis in independent discovery and verification sets. The optimal sum score of four mass spectrometry (MS)-identified proteins yielded a sensitivity of 94 % and a specificity of 89 % (AUC = 0.969, 95 % CI = 0.944-0.994) to differentiate AD patients from healthy controls. To bridge the gap between bench and bedside, we developed a high-throughput multiplex protein biochip with great potential for routine AD screening. For convenience and speed of application, this array combines loading control-assisted protein quantification of monoamine oxidase B and tropomyosin 1 with protein-based genotyping for single nucleotide polymorphisms (SNPs) in the apolipoprotein E and glutathione S-transferase omega 1 genes. Based on minimally invasive blood drawing, this innovative protein biochip enables identification of AD patients with an accuracy of 92 % in a single analytical step in less than 4 h.
Collapse
|
22
|
Ren RJ, Dammer EB, Wang G, Seyfried NT, Levey AI. Proteomics of protein post-translational modifications implicated in neurodegeneration. Transl Neurodegener 2014; 3:23. [PMID: 25671099 PMCID: PMC4323146 DOI: 10.1186/2047-9158-3-23] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022] Open
Abstract
Mass spectrometry (MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following: oxidative damage to proteins (redox proteomics), phosphorylation (phosphoproteomics), ubiquitination (diglycine remnant proteomics), protein fragmentation (degradomics), and other posttranslational modifications (PTMs). Many studies have linked these PTMs to pathogenic mechanisms of neurodegeneration. To date, identifying PTMs on specific pathology-associated proteins has proven to be a valuable step in the evaluation of functional alteration of proteins and also elucidates biochemical and structural explanations for possible pathophysiological mechanisms of neurodegenerative diseases. This review provides an overview of methods applicable to the identification and quantification of PTMs on proteins and enumerates historic, recent, and potential future research endeavours in the field of proteomics furthering the understanding of PTM roles in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Ru-Jing Ren
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Eric B Dammer
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gang Wang
- />Department of Pharmacology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Nicholas T Seyfried
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Emory Proteomics Service Center, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Allan I Levey
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
23
|
Butterfield DA. The 2013 SFRBM discovery award: selected discoveries from the butterfield laboratory of oxidative stress and its sequela in brain in cognitive disorders exemplified by Alzheimer disease and chemotherapy induced cognitive impairment. Free Radic Biol Med 2014; 74:157-74. [PMID: 24996204 PMCID: PMC4146642 DOI: 10.1016/j.freeradbiomed.2014.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 12/21/2022]
Abstract
This retrospective review on discoveries of the roles of oxidative stress in brain of subjects with Alzheimer disease (AD) and animal models thereof as well as brain from animal models of chemotherapy-induced cognitive impairment (CICI) results from the author receiving the 2013 Discovery Award from the Society for Free Radical Biology and Medicine. The paper reviews our laboratory's discovery of protein oxidation and lipid peroxidation in AD brain regions rich in amyloid β-peptide (Aβ) but not in Aβ-poor cerebellum; redox proteomics as a means to identify oxidatively modified brain proteins in AD and its earlier forms that are consistent with the pathology, biochemistry, and clinical presentation of these disorders; how Aβ in in vivo, ex vivo, and in vitro studies can lead to oxidative modification of key proteins that also are oxidatively modified in AD brain; the role of the single methionine residue of Aβ(1-42) in these processes; and some of the potential mechanisms in the pathogenesis and progression of AD. CICI affects a significant fraction of the 14 million American cancer survivors, and due to diminished cognitive function, reduced quality of life of the persons with CICI (called "chemobrain" by patients) often results. A proposed mechanism for CICI employed the prototypical ROS-generating and non-blood brain barrier (BBB)-penetrating chemotherapeutic agent doxorubicin (Dox, also called adriamycin, ADR). Because of the quinone moiety within the structure of Dox, this agent undergoes redox cycling to produce superoxide free radical peripherally. This, in turn, leads to oxidative modification of the key plasma protein, apolipoprotein A1 (ApoA1). Oxidized ApoA1 leads to elevated peripheral TNFα, a proinflammatory cytokine that crosses the BBB to induce oxidative stress in brain parenchyma that affects negatively brain mitochondria. This subsequently leads to apoptotic cell death resulting in CICI. This review outlines aspects of CICI consistent with the clinical presentation, biochemistry, and pathology of this disorder. To the author's knowledge this is the only plausible and self-consistent mechanism to explain CICI. These two different disorders of the CNS affect millions of persons worldwide. Both AD and CICI share free radical-mediated oxidative stress in brain, but the source of oxidative stress is not the same. Continued research is necessary to better understand both AD and CICI. The discoveries about these disorders from the Butterfield Laboratory that led to the 2013 Discovery Award from the Society of Free Radical and Medicine provide a significant foundation from which this future research can be launched.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Free Radical Biology in Cancer, Shared Resource Facility of the Markey Cancer Center, Spinal Cord and Brain Injury Research Center, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
24
|
Krishnan S, Prasadarao NV. Identification of minimum carbohydrate moiety in N-glycosylation sites of brain endothelial cell glycoprotein 96 for interaction with Escherichia coli K1 outer membrane protein A. Microbes Infect 2014; 16:540-52. [PMID: 24932957 PMCID: PMC4123687 DOI: 10.1016/j.micinf.2014.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 12/19/2022]
Abstract
Bacterial meningitis is a serious central nervous system infection and Escherichia coli K1 (E. coli K1) is one of the leading etiological agents that cause meningitis in neonates. Outer membrane protein A (OmpA) of E. coli K1 is a major virulence factor in the pathogenesis of meningitis, and interacts with human brain microvascular endothelial cells (HBMEC) to cross the blood-brain barrier. Using site-directed mutagenesis, we demonstrate that two N-glycosylation sites (NG1 and NG2) in the extracellular domain of OmpA receptor, Ecgp96 are critical for bacterial binding to HBMEC. E. coli K1 invasion assays using CHO-Lec1 cells that express truncated N-glycans, and sequential digestion of HBMEC surface N-glycans using specific glycosidases showed that GlcNAc1-4GlcNAc epitopes are sufficient for OmpA interaction with HBMEC. Lack of NG1 and NG2 sites in Ecgp96 inhibits E. coli K1 OmpA induced F-actin polymerization, phosphorylation of protein kinase C-α, and disruption of transendothelial electrical resistance required for efficient invasion of E. coli K1 in HBMEC. Furthermore, the microvessels of cortex and hippocampus of the brain sections of E. coli K1 infected mice showed increased expression of glycosylated Ecgp96. Therefore, the interface of OmpA and GlcNAc1-4GlcNAc epitope interaction would be a target for preventative strategies against E. coli K1 meningitis.
Collapse
Affiliation(s)
- Subramanian Krishnan
- Division of Infectious Diseases and Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Nemani V Prasadarao
- Division of Infectious Diseases and Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA; Department of Surgery, Children's Hospital Los Angeles and University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027, USA.
| |
Collapse
|
25
|
Chaiyawat P, Netsirisawan P, Svasti J, Champattanachai V. Aberrant O-GlcNAcylated Proteins: New Perspectives in Breast and Colorectal Cancer. Front Endocrinol (Lausanne) 2014; 5:193. [PMID: 25426101 PMCID: PMC4227529 DOI: 10.3389/fendo.2014.00193] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022] Open
Abstract
Increasing glucose consumption is thought to provide an evolutionary advantage to cancer cells. Alteration of glucose metabolism in cancer influences various important metabolic pathways including the hexosamine biosynthesis pathway (HBP), a relatively minor branch of glycolysis. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an end product of HBP, is a sugar substrate used for classical glycosylation and O-GlcNAcylation, a post-translational protein modification implicated in a wide range of effects on cellular functions. Emerging evidence reveals that certain cellular proteins are abnormally O-GlcNAc modified in many kinds of cancers, indicating O-GlcNAcylation is associated with malignancy. Since O-GlcNAc rapidly on and off modifies in a similar time scale as in phosphorylation and these modifications may occur on proteins at either on the same or adjacent sites, it suggests that both modifications can work to regulate the cellular signaling pathways. This review describes the metabolic shifts related to the HBP, which are commonly found in most cancers. It also describes O-GlcNAc modified proteins identified in primary breast and colorectal cancer, as well as in the related cancer cell lines. Moreover, we also discuss the potential use of aberrant O-GlcNAcylated proteins as novel biomarkers of cancer.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | - Jisnuson Svasti
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Voraratt Champattanachai
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
- *Correspondence: Voraratt Champattanachai, Laboratory of Biochemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand e-mail:
| |
Collapse
|
26
|
Schedin-Weiss S, Winblad B, Tjernberg LO. The role of protein glycosylation in Alzheimer disease. FEBS J 2013; 281:46-62. [PMID: 24279329 DOI: 10.1111/febs.12590] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022]
Abstract
Glycosylation is one of the most common, and the most complex, forms of post-translational modification of proteins. This review serves to highlight the role of protein glycosylation in Alzheimer disease (AD), a topic that has not been thoroughly investigated, although glycosylation defects have been observed in AD patients. The major pathological hallmarks in AD are neurofibrillary tangles and amyloid plaques. Neurofibrillary tangles are composed of phosphorylated tau, and the plaques are composed of amyloid β-peptide (Aβ), which is generated from amyloid precursor protein (APP). Defects in glycosylation of APP, tau and other proteins have been reported in AD. Another interesting observation is that the two proteases required for the generation of amyloid β-peptide (Aβ), i.e. γ-secretase and β-secretase, also have roles in protein glycosylation. For instance, γ-secretase and β-secretase affect the extent of complex N-glycosylation and sialylation of APP, respectively. These processes may be important in AD pathogenesis, as proper intracellular sorting, processing and export of APP are affected by how it is glycosylated. Furthermore, lack of one of the key components of γ-secretase, presenilin, leads to defective glycosylation of many additional proteins that are related to AD pathogenesis and/or neuronal function, including nicastrin, reelin, butyrylcholinesterase, cholinesterase, neural cell adhesion molecule, v-ATPase, and tyrosine-related kinase B. Improved understanding of the effects of AD on protein glycosylation, and vice versa, may therefore be important for improving the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Sophia Schedin-Weiss
- Karolinska Institutet Alzheimer Disease Research Center (KI-ADRC), Novum, Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Barone E, Di Domenico F, Butterfield DA. Statins more than cholesterol lowering agents in Alzheimer disease: their pleiotropic functions as potential therapeutic targets. Biochem Pharmacol 2013; 88:605-16. [PMID: 24231510 DOI: 10.1016/j.bcp.2013.10.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 02/05/2023]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive impairment, inability to perform activities of daily living and mood changes. Statins, long known to be beneficial in conditions where dyslipidemia occurs by lowering serum cholesterol levels, also have been proposed for use in neurodegenerative conditions, including AD. However, it is not clear that the purported effectiveness of statins in neurodegenerative disorders is directly related to cholesterol-lowering effects of these agents; rather, the pleiotropic functions of statins likely play critical roles. The aim of this review is to provide an overview on the new discoveries about the effects of statin therapy on the oxidative and nitrosative stress levels as well as on the modulation of the heme oxygenase/biliverdin reductase (HO/BVR) system in the brain. We propose a novel mechanism of action for atorvastatin which, through the activation of HO/BVR-A system, may contribute to the neuroprotective effects thus suggesting a potential therapeutic role in AD and potentially accounting for the observation of decreased AD incidence with persons on statin.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
28
|
Champattanachai V, Netsirisawan P, Chaiyawat P, Phueaouan T, Charoenwattanasatien R, Chokchaichamnankit D, Punyarit P, Srisomsap C, Svasti J. Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics 2013; 13:2088-99. [PMID: 23576270 DOI: 10.1002/pmic.201200126] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 02/20/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023]
Abstract
O-GlcNAcylation is a dynamic PTM of nuclear and cytoplasmic proteins, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase, which catalyze the addition and removal of O-GlcNAc, respectively. This modification is associated with glucose metabolism, which plays important roles in many diseases including cancer. Although emerging evidence reveals that some tumor-associated proteins are O-GlcNAc modified, the total O-GlcNAcylation in cancer is still largely unexplored. Here, we demonstrate that O-GlcNAcylation was increased in primary breast malignant tumors, not in benign tumors and that this augmentation was associated with increased expression of OGT level. Using 2D O-GlcNAc immnoblotting and LC-MS/MS analysis, we successfully identified 29 proteins, with seven being uniquely O-GlcNAcylated or associated with O-GlcNAcylation in cancer. Of these identified proteins, some were related to the Warburg effect, including metabolic enzymes, proteins involved in stress responses and biosynthesis. In addition, proteins associated with RNA metabolism, gene expression, and cytoskeleton were highly O-GlcNAcylated or associated with O-GlcNAcylation. Moreover, OGT knockdown showed that decreasing O-GlcNAcylation was related to inhibition of the anchorage-independent growth in vitro. These data indicate that aberrant protein O-GlcNAcylation is associated with breast cancer. Abnormal modification of these O-GlcNAc-modified proteins might be one of the vital malignant characteristics of cancer.
Collapse
|
29
|
Barone R, Sturiale L, Palmigiano A, Zappia M, Garozzo D. Glycomics of pediatric and adulthood diseases of the central nervous system. J Proteomics 2012; 75:5123-39. [DOI: 10.1016/j.jprot.2012.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/05/2012] [Accepted: 07/04/2012] [Indexed: 12/14/2022]
|
30
|
Jain MR, Li Q, Liu T, Rinaggio J, Ketkar A, Tournier V, Madura K, Elkabes S, Li H. Proteomic identification of immunoproteasome accumulation in formalin-fixed rodent spinal cords with experimental autoimmune encephalomyelitis. J Proteome Res 2012; 11:1791-803. [PMID: 22188123 DOI: 10.1021/pr201043u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinically relevant formalin-fixed and paraffin-embedded (FFPE) tissues have not been widely used in neuroproteomic studies because many proteins are presumed to be degraded during tissue preservation. Recent improvements in proteomics technologies, from the 2D gel analysis of intact proteins to the "shotgun" quantification of peptides and the use of isobaric tags for absolute and relative quantification (iTRAQ) method, have made the analysis of FFPE tissues possible. In recent years, iTRAQ has been one of the main methods of choice for high throughput quantitative proteomics analysis, which enables simultaneous comparison of up to eight samples in one experiment. Our objective was to assess the relative merits of iTRAQ analysis of fresh frozen versus FFPE nervous tissues by comparing experimental autoimmune encephalomyelitis (EAE)-induced proteomic changes in FFPE rat spinal cords and frozen tissues. EAE-induced proteomic changes in FFPE tissues were positively correlated with those found in the frozen tissues, albeit with ∼50% less proteome coverage. Subsequent validation of the enrichment of immunoproteasome (IP) activator 1 in EAE spinal cords led us to evaluate other proteasome and IP-specific proteins. We discovered that many IP-specific (as opposed to constitutive) proteasomal proteins were enriched in EAE rat spinal cords, and EAE-induced IP accumulation also occurred in the spinal cords of an independent mouse EAE model in a disability score-dependent manner. Therefore, we conclude that it is feasible to generate useful information from iTRAQ-based neuroproteomics analysis of archived FFPE tissues for studying neurological disease tissues.
Collapse
Affiliation(s)
- Mohit Raja Jain
- Center For Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center , 205 S. Orange Ave., Newark, New Jersey 07103, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Di Francesco L, Correani V, Fabrizi C, Fumagalli L, Mazzanti M, Maras B, Schininà ME. 14-3-3ε marks the amyloid-stimulated microglia long-term activation. Proteomics 2011; 12:124-34. [DOI: 10.1002/pmic.201100113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 10/05/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022]
|
32
|
Sultana R, Robinson RAS, Di Domenico F, Mohmmad Abdul H, St. Clair DK, Markesbery WR, Cai J, Pierce WM, Butterfield DA. Proteomic identification of specifically carbonylated brain proteins in APP(NLh)/APP(NLh) × PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice model of Alzheimer disease as a function of age. J Proteomics 2011; 74:2430-40. [PMID: 21726674 PMCID: PMC3199338 DOI: 10.1016/j.jprot.2011.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is the most common type of dementia and is characterized pathologically by the presence of neurofibrillary tangles (NFTs), senile plaques (SPs), and loss of synapses. The main component of SP is amyloid-beta peptide (Aβ), a 39 to 43 amino acid peptide, generated by the proteolytic cleavage of amyloid precursor protein (APP) by the action of beta- and gamma-secretases. The presenilins (PS) are components of the γ-secretase, which contains the protease active center. Mutations in PS enhance the production of the Aβ42 peptide. To date, more than 160 mutations in PS1 have been identified. Many PS mutations increase the production of the β-secretase-mediated C-terminal (CT) 99 amino acid-long fragment (CT99), which is subsequently cleaved by γ-secretase to yield Aβ peptides. Aβ has been proposed to induce oxidative stress and neurotoxicity. Previous studies from our laboratory and others showed an age-dependent increase in oxidative stress markers, loss of lipid asymmetry, and Aβ production and amyloid deposition in the brain of APP/PS1 mice. In the present study, we used APP (NLh)/APP(NLh) × PS-1(P246L)/PS-1(P246L) human double mutant knock-in APP/PS-1 mice to identify specific targets of brain protein carbonylation in an age-dependent manner. We found a number of proteins that are oxidatively modified in APP/PS1 mice compared to age-matched controls. The relevance of the identified proteins to the progression and pathogenesis of AD is discussed.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Renã A. S. Robinson
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Hafiz Mohmmad Abdul
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Daret K. St. Clair
- Graduate Center of Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Jian Cai
- Department of Pharmacology, University of Louisville, Louisville, Kentucky 40292
| | - William M. Pierce
- Department of Pharmacology, University of Louisville, Louisville, Kentucky 40292
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
33
|
Di Domenico F, Sultana R, Barone E, Perluigi M, Cini C, Mancuso C, Cai J, Pierce WM, Butterfield DA. Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects. J Proteomics 2011; 74:1091-103. [PMID: 21515431 DOI: 10.1016/j.jprot.2011.03.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/07/2011] [Accepted: 03/31/2011] [Indexed: 01/20/2023]
Abstract
Phosphorylation on tyrosine, threonine and serine residues represents one of the most important post-translational modifications and is a key regulator of cellular signaling of multiple biological processes that require a strict control by protein kinases and protein phosphatases. Abnormal protein phosphorylation has been associated with several human diseases including Alzheimer's disease (AD). One of the characteristic hallmarks of AD is the presence of neurofibrillary tangles, composed of microtubule-associated, abnormally hyperphosphorylated tau protein. However, several others proteins showed altered phosphorylation levels in AD suggesting that deregulated phosphorylation may contribute to AD pathogenesis. Phosphoproteomics has recently gained attention as a valuable approach to analyze protein phosphorylation, both in a quantitative and a qualitative way. We used the fluorescent phosphospecific Pro-Q Diamond dye to identify proteins that showed alterations in their overall phosphorylation in the hippocampus of AD vs. control (CTR) subjects. Significant changes were found for 17 proteins involved in crucial neuronal process such as energy metabolism or signal transduction. These phosphoproteome data may provide new clues to better understand molecular pathways that are deregulated in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|