1
|
Rimawi I, Yanai S, Turgeman G, Yanai J. Whole transcriptome analysis in offspring whose fathers were exposed to a developmental insult: a novel avian model. Sci Rep 2023; 13:16499. [PMID: 37779136 PMCID: PMC10543553 DOI: 10.1038/s41598-023-43593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
Although the effects of paternal exposure to insults on the offspring received limited attention in the past, it is currently gaining interest especially after understanding the mechanisms which may mediate such exposure effects. In the current study, the well-controlled avian model (Fayoumi) was utilized to investigate the effects of paternal exposure to the developmental insult, chlorpyrifos on the offspring's gene expression via mRNA and small RNA sequencing. Numerous mRNA gene expression changes were detected in the offspring after paternal exposure to the developmental insult, especially in genes related to neurogenesis, learning and memory. qPCR analysis of several genes, that were significantly changed in mRNA sequencing, confirmed the results obtained in mRNA sequencing. On the other hand, small RNA sequencing did not identify significant microRNA genes expression changes in the offspring after paternal exposure to the developmental insult. The effects of the paternal exposure were more pronounced in the female offspring compared to the male offspring. The results identified expression alterations in major genes (some of which were pertinent to the functional changes observed in other forms of early developmental exposure) after paternal insult exposure and provided a direction for future studies involving the most affected genes.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Sunny Yanai
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Rimawi I, Turgeman G, Avital-Cohen N, Rozenboim I, Yanai J. Parental Preconception and Pre-Hatch Exposure to a Developmental Insult Alters Offspring's Gene Expression and Epigenetic Regulations: An Avian Model. Int J Mol Sci 2023; 24:5047. [PMID: 36902484 PMCID: PMC10003510 DOI: 10.3390/ijms24055047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Parental exposure to insults was initially considered safe if stopped before conception. In the present investigation, paternal or maternal preconception exposure to the neuroteratogen chlorpyrifos was investigated in a well-controlled avian model (Fayoumi) and compared to pre-hatch exposure focusing on molecular alterations. The investigation included the analysis of several neurogenesis, neurotransmission, epigenetic and microRNA genes. A significant decrease in the vesicular acetylcholine transporter (SLC18A3) expression was detected in the female offspring in the three investigated models: paternal (57.7%, p < 0.05), maternal (36%, p < 0.05) and pre-hatch (35.6%, p < 0.05). Paternal exposure to chlorpyrifos also led to a significant increase in brain-derived neurotrophic factor (BDNF) gene expression mainly in the female offspring (27.6%, p < 0.005), while its targeting microRNA, miR-10a, was similarly decreased in both female (50.5%, p < 0.05) and male (56%, p < 0.05) offspring. Doublecortin's (DCX) targeting microRNA, miR-29a, was decreased in the offspring after maternal preconception exposure to chlorpyrifos (39.8%, p < 0.05). Finally, pre-hatch exposure to chlorpyrifos led to a significant increase in protein kinase C beta (PKCß; 44.1%, p < 0.05), methyl-CpG-binding domain protein 2 (MBD2; 44%, p < 0.01) and 3 (MBD3; 33%, p < 0.05) genes expression in the offspring. Although extensive studies are required to establish a mechanism-phenotype relationship, it should be noted that the current investigation does not include phenotype assessment in the offspring.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, Hadassah Medical School, The Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Nataly Avital-Cohen
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Israel Rozenboim
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, Hadassah Medical School, The Hebrew University, P.O. Box 12272, Jerusalem 91120, Israel
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Reversal of prenatal heroin-induced alterations in hippocampal gene expression via transplantation of mesenchymal stem cells during adulthood. Neurotoxicol Teratol 2022; 90:107063. [PMID: 34999215 DOI: 10.1016/j.ntt.2022.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Neurobehavioral teratology is the study of typically subtle neurobehavioral birth defects. Our previously described mouse model demonstrated septohippocampal cholinergic innervation-related molecular and behavioral deficits after prenatal exposure to heroin. Since the alterations are below malformation level, they are likely to represent consequences of regulatory processes, feasibly gene expression. Consequently, in the present study pregnant mice were injected with heroin on gestation days 9-18 and were transplanted with mesenchymal stem cells (MSC) on postnatal day (PD) 105. The hippocampi of the offspring were analyzed on PD120 for the expression of the pertinent genes. Heroin induced global gender-dependent statistically significant changes in the expression of several genes. Significant Treatment X Sex interaction occurred in D1 and SOX2 genes (p < 0.01). Transplantation of MSC reversed the prenatal heroin-induced alterations in approximately 80% of the genes. The reversal index (RI), shifting the score of the heroin-exposed offspring by transplantation back toward the control level, was 0.61 ± 0.10 for the difference from RI = 0 (p < 0.001), confirming the validity of the effect of the neuroteratogens across variations among different genes. The present study suggests that neurobehavioral defects induced by prenatal heroin exposure are likely to be a consequence of regulatory changes. This study on prenatal exposure to insults with subsequent MSC therapy provides a model for elucidating the mechanisms of both the neuroteratogenicity and the therapy, steps that are critical for progress toward therapeutic applications.
Collapse
|
4
|
Lichtensteiger W, Bassetti-Gaille C, Rehrauer H, Georgijevic JK, Tresguerres JAF, Schlumpf M. Converging Effects of Three Different Endocrine Disrupters on Sox and Pou Gene Expression in Developing Rat Hippocampus: Possible Role of microRNA in Sex Differences. Front Genet 2021; 12:718796. [PMID: 34858468 PMCID: PMC8632217 DOI: 10.3389/fgene.2021.718796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) can impair hippocampus-dependent behaviors in rat offspring and in children. In search for key processes underlying this effect, we compared the transcriptomes of rat hippocampus on postnatal day 6 after gestational and lactational exposure to three different EDCs at doses known to impair development of learning and memory. Aroclor 1254, a commercial PCB mixture (5 mg/kg or 0.5 mg/kg), or bisphenol A (5 mg/kg or 0.5 mg/kg) were administered in chow, chlorpyrifos (3 mg/kg or 1 mg/kg) was injected subcutaneously. Male hippocampus exhibited a common effect of all three chemicals on genes involved in cell-autonomous processes, Sox6, Sox11, Pou2f2/Oct2, and Pou3f2/Brn2, all upregulated at the high dose. Additional genes of the Sox and Pou families were affected by only one or two of the chemicals. Real time RT PCR showed a comparable expression change for bisphenol A also at the lower dose. Female hippocampus exhibited much fewer genes with expression changes (almost none with false discovery rate <0.05), and none of the genes of the Sox and Pou families was affected. Since gene network analyses in male hippocampus suggested a link between Sox6 and miR-24, known to be repressed by activation of ER-alpha and to repress Sox6 in other tissues, this microRNA was measured. miR-24 was downregulated by all chemicals at the high dose in males. Values of Sox6 mRNA and miR-24 were inversely correlated in individual male hippocampus samples, supporting the hypothesis that the change in Sox6 expression resulted from an action of miR-24. In contrast, miR-24 levels remained unchanged in hippocampus of females. A sexually dimorphic response of miR-24 may thus be at the basis of the sex difference in Sox6 expression changes following exposure to the three chemicals. ER-alpha expression was also sex-dependent, but the expression changes did not parallel those of potential downstream genes such as Sox6. Sox6 is known to suppress differentiation of Parvalbumin (Pvalb)-expressing interneurons. Individual Sox6 levels (FPKM) were inversely correlated with levels of Pvalb, but not with markers of Sox6-independent interneuron subpopulations, Nos1 and 5HT3aR. Effects on interneuron development are further suggested, in males, by expression changes of Nrg1 and its receptor Erbb4, controlling interneuron migration. Our study disclosed new types of EDC-responsive morphogenetic genes, and illustrated the potential relevance of microRNAs in sexually dimorphic EDC actions.
Collapse
Affiliation(s)
- Walter Lichtensteiger
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Catherine Bassetti-Gaille
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | - Jelena Kühn Georgijevic
- Functional Genomics Center, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland
| | | | - Margret Schlumpf
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Silva MH. Effects of low‐dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and
Caenorhabditis elegans. Birth Defects Res 2020; 112:445-479. [DOI: 10.1002/bdr2.1661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Marilyn H. Silva
- Retired from a career in regulatory toxicology and risk assessment
| |
Collapse
|
6
|
Reversal of neurobehavioral teratogenicity in animal models and human: Three decades of progress. Brain Res Bull 2019; 150:328-342. [DOI: 10.1016/j.brainresbull.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
|
7
|
Learning, memory and the expression of cholinergic components in mice are modulated by the pesticide chlorpyrifos depending upon age at exposure and apolipoprotein E (APOE) genotype. Arch Toxicol 2019; 93:693-707. [DOI: 10.1007/s00204-019-02387-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
|
8
|
Uniyal S, Sharma RK. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosens Bioelectron 2018; 116:37-50. [DOI: 10.1016/j.bios.2018.05.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023]
|
9
|
Gobshtis N, Tfilin M, Wolfson M, Fraifeld VE, Turgeman G. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget 2017; 8:17443-17452. [PMID: 28407680 PMCID: PMC5392261 DOI: 10.18632/oncotarget.15245] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023] Open
Abstract
Neurodevelopmental impairment can affect lifelong brain functions such as cognitive and social behaviour, and may contribute to aging-related changes of these functions. In the present study, we hypothesized that bone marrow-derived mesenchymal stem cells (MSC) administration may repair neurodevelopmental behavioural deficits by modulating adult hippocampal neurogenesis. Indeed, postnatal intracerebral transplantation of MSC has restored cognitive and social behaviour in mice prenatally exposed to valproic acid (VPA). MSC transplantation also restored post-developmental hippocampal neurogenesis, which was impaired in VPA-exposed mice displaying delayed differentiation and maturation of newly formed neurons in the granular cell layer of the dentate gyrus. Importantly, a statistically significant correlation was found between neuronal differentiation scores and behavioural scores, suggesting a mechanistic relation between the two. We thus conclude that post-developmental MSC administration can overcome prenatal neurodevelopmental deficits and restore cognitive and social behaviours via modulation of hippocampal adult neurogenesis.
Collapse
Affiliation(s)
- Nikolai Gobshtis
- Departments of Pre-Medical Studies & Molecular Biology, Ariel University, Ariel, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israe
| | - Matanel Tfilin
- Departments of Pre-Medical Studies & Molecular Biology, Ariel University, Ariel, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israe
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israe
| | - Gadi Turgeman
- Departments of Pre-Medical Studies & Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
10
|
Jian R, Yixu Y, Sheyu L, Jianhong S, Yaohua Y, Xing S, Qingfeng H, Xiaojian L, Lei Z, Yan Z, Fangling X, Huasong G, Yilu G. Repair of spinal cord injury by chitosan scaffold with glioma ECM and SB216763 implantation in adult rats. J Biomed Mater Res A 2015; 103:3259-72. [PMID: 25809817 DOI: 10.1002/jbm.a.35466] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 01/13/2015] [Accepted: 03/21/2015] [Indexed: 02/06/2023]
Abstract
The loss of spinal cord tissue and the cavity formation are major obstacles to the repair of spinal cord injury (SCI). In the study, the scaffold of chitosan+ECM+SB216763 was fabricated and used for the repair of injured spinal cord injury. First, the biocompatibility of the scaffold was analyzed and results showed that the scaffold had a good compatibility with the neural stem cells. Especially, the processes of differentiated neural stem cell embedded in the scaffold were found in the experiment. At the same time, we also investigated the effect of scaffold on the differentiation of neural stem cell. The results showed that the scaffold of chitosan+ECM+SB216763 could significantly promote the differentiation of neural stem cells into neurons, astrocytes, and oligodendrocytes relative to those in other groups. In order to probe the application of scaffold in vivo, the rat models of spinal cord hemisection were set up and scaffolds were implanted into transected gap. Then the electrophysiology and BBB score were evaluated and results showed that the amplitude, latency period and BBB score in chitosan+ECM+SB216763 group were dramatically better than those in other groups. In addition, the differentiation of neural stem cells into nerve cells was also assayed and the results revealed that the number of neural stem cells differentiating into neuron, astrocytes and oligodendrocytes in chitosan+ECM+SB216763 group was significantly bigger than those in other groups. All these data suggested that the scaffold of chitosan+ECM+SB216763 would be a promising medium for the repair of injured spinal cord.
Collapse
Affiliation(s)
- Rao Jian
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Yixu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lin Sheyu
- Department of Biological Sciences, School of Life Sciences, Nantong University, Nantong, China
| | - Shen Jianhong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Yaohua
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Su Xing
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Huang Qingfeng
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Lu Xiaojian
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhang Lei
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhen Yan
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiong Fangling
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Gao Huasong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Gao Yilu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
11
|
Mullins RJ, Xu S, Pereira EFR, Pescrille JD, Todd SW, Mamczarz J, Albuquerque EX, Gullapalli RP. Prenatal exposure of guinea pigs to the organophosphorus pesticide chlorpyrifos disrupts the structural and functional integrity of the brain. Neurotoxicology 2015; 48:9-20. [PMID: 25704171 DOI: 10.1016/j.neuro.2015.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
This study was designed to test the hypothesis that prenatal exposure of guinea pigs to the organophosphorus (OP) pesticide chlorpyrifos (CPF) disrupts the structural and functional integrity of the brain. Pregnant guinea pigs were injected with chlorpyrifos (25 mg/kg, s.c.) or vehicle (peanut oil) once per day for 10 consecutive days, starting approximately on the 50th day of gestation. Cognitive behavior of female offspring was examined starting at 40-45 post-natal days (PND) using the Morris water maze (MWM), and brain structural integrity was analyzed at PND 70 using magnetic resonance imaging (MRI) methods, including T2-weighted anatomical scans and diffusion kurtosis imaging (DKI). The offspring of exposed mothers had significantly decreased body weight and brain volume, particularly in the frontal regions of the brain including the striatum. Furthermore, the offspring demonstrated significant spatial learning deficits in MWM recall compared to the vehicle group. Diffusion measures revealed reduced white matter integrity within the striatum and amygdala that correlated with spatial learning performance. These findings reveal the lasting effect of prenatal exposure to CPF as well as the danger of mother to child transmission of CPF in the environment.
Collapse
Affiliation(s)
- Roger J Mullins
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Su Xu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph D Pescrille
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Spencer W Todd
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jacek Mamczarz
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Rao P Gullapalli
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Core for Translational Research in Imaging, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
12
|
Vera-Candioti J, Soloneski S, Larramendy ML. Chlorpyrifos-based insecticides induced genotoxic and cytotoxic effects in the ten spotted live-bearer fish, Cnesterodon decemmaculatus (Jenyns, 1842). ENVIRONMENTAL TOXICOLOGY 2014; 29:1390-1398. [PMID: 23661578 DOI: 10.1002/tox.21869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Mortality, genotoxicity, and cytotoxicity of the 48% chlorpyrifos (CPF)-based formulations Lorsban* 48E(®) and CPF Zamba(®) were evaluated on Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces, Poeciliidae) under laboratory conditions. Induction of micronucleus (MN) and alterations in the erythrocyte/erythroblast frequencies were employed as end points for genotoxicity and cytotoxicity, respectively. For Lorsban* 48E(®) , mean values of 0.13 and 0.03 mg/L were determined for LC50 at 24 and 96 h, respectively, and these concentrations reached mean values of 0.40 and 0.21 mg/L for CPF Zamba(®) . Mortality values increased as a positive linear function of the CPF Zamba(®) concentrations, but not for Lorsban* 48E(®) concentrations. There was no significant relationship between mortality and exposure time within the 0-96 h period for both formulations. LC50 values indicated that the fish were seven fold more sensitive to Lorsban* 48E(®) than to CPF Zamba(®) . Lorsban* 48E(®) within the concentration range of 0.008-0.025 mg/L increased MN frequency at both 48 and 96 h of treatment. Similar results were also observed when fish were exposed to 0.052-0.155 mg/L of CPF Zamba(®) , regardless of the exposure time. Cellular cytotoxicity was found after Lorsban* 48E(®) and CPF Zamba(®) treatments for all concentrations and time exposures, estimated by a decrease in the frequency of mature erythrocytes and a concomitant enhanced frequency of erythroblasts in circulating blood. Furthermore, our results demonstrated that Lorsban* 48E(®) and CPF Zamba(®) should be considered as CPF-based commercial formulations with marked genotoxic and cytotoxic properties.
Collapse
Affiliation(s)
- Josefina Vera-Candioti
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 No. 3, B1904AMA La Plata, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | |
Collapse
|
13
|
Pereira EFR, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, Albuquerque EX. Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther 2014; 350:313-21. [PMID: 24907067 DOI: 10.1124/jpet.114.214932] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The translational capacity of data generated in preclinical toxicological studies is contingent upon several factors, including the appropriateness of the animal model. The primary objectives of this article are: 1) to analyze the natural history of acute and delayed signs and symptoms that develop following an acute exposure of humans to organophosphorus (OP) compounds, with an emphasis on nerve agents; 2) to identify animal models of the clinical manifestations of human exposure to OPs; and 3) to review the mechanisms that contribute to the immediate and delayed OP neurotoxicity. As discussed in this study, clinical manifestations of an acute exposure of humans to OP compounds can be faithfully reproduced in rodents and nonhuman primates. These manifestations include an acute cholinergic crisis in addition to signs of neurotoxicity that develop long after the OP exposure, particularly chronic neurologic deficits consisting of anxiety-related behavior and cognitive deficits, structural brain damage, and increased slow electroencephalographic frequencies. Because guinea pigs and nonhuman primates, like humans, have low levels of circulating carboxylesterases-the enzymes that metabolize and inactivate OP compounds-they stand out as appropriate animal models for studies of OP intoxication. These are critical points for the development of safe and effective therapeutic interventions against OP poisoning because approval of such therapies by the Food and Drug Administration is likely to rely on the Animal Efficacy Rule, which allows exclusive use of animal data as evidence of the effectiveness of a drug against pathologic conditions that cannot be ethically or feasibly tested in humans.
Collapse
Affiliation(s)
- Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Yasco Aracava
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Louis J DeTolla
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - E Jeffrey Beecham
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - G William Basinger
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edgar J Wakayama
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health (E.F.R.P., Y.A., E.X.A.), and Program of Comparative Medicine and Departments of Pathology, Medicine, and Epidemiology and Public Health (L.J.D.), University of Maryland School of Medicine, Baltimore, Maryland; Countervail Corporation, Charlotte, North Carolina (E.J.B., G.W.B.); and Biomedical Advanced Research and Development Authority and Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC (E.J.W.)
| |
Collapse
|
14
|
Lee H, Park JR, Yang J, Kim E, Hong SH, Woo HM, Ryu SM, Cho SJ, Park SM, Yang SR. Nicotine inhibits the proliferation by upregulation of nitric oxide and increased HDAC1 in mouse neural stem cells. In Vitro Cell Dev Biol Anim 2014; 50:731-9. [PMID: 24789730 DOI: 10.1007/s11626-014-9763-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022]
Abstract
Cigarette smoking (CS) is considered one of the major risk factors to cause neurodegenerative disorders. Nicotine is the main chemical in CS which is responsible for dysfunction of the brain as a neuroteratogen. Also, nicotine dependency is a real mental illness and disease. Recently, chronic nicotine exposure has been shown to cause oxidative/nitrosative stress leading to a deleterious condition to cellular death in different brain regions. However, little is known about the effects of nicotine on mouse neural stem cells (mNSCs). The aim of this study is to investigate the effects of nicotine on mNSCs and elucidate underlying mechanisms involved in expression of a diversity of genes regulated by nicotine. When mNSCs were isolated from the whole brain of embryonic day 16 mice treated with nicotine at vehicle, 100, 400, and 800 μM for 5 d, nicotine significantly decreased the number and size of neurospheres. In immunocytochemistry, nicotine-exposed mNSCs expressing nestin showed the shortened filaments and condensed nuclei. In RT-PCR, messenger RNA (mRNA) levels of proliferating cell nuclear antigen (PCNA) and sirtuin1 (SIRT1) were significantly decreased, while the production of nitric oxide and mRNA levels of cyclooxygenase2 (COX-2), tumor necrosis factor-alpha TNF-α, and histone deacetylase 1 (HDAC1) were increased in a dose-dependent manner. In addition, sodium butyrate and valproic acid, HDAC inhibitors, partially rescue proliferation of mNSCs via inhibition of HDAC1 expression and NO production. Taken together, these data demonstrate that prolonged exposure of nicotine decreased proliferation of mNSCs by increased NO and inflammatory cytokine through increased HDAC1. Furthermore, this study could help in the development of a therapy for nicotine-induced neurodegenerative disorder and drug abuse.
Collapse
Affiliation(s)
- Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Burns CJ, McIntosh LJ, Mink PJ, Jurek AM, Li AA. Pesticide exposure and neurodevelopmental outcomes: review of the epidemiologic and animal studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:127-283. [PMID: 23777200 PMCID: PMC3705499 DOI: 10.1080/10937404.2013.783383] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Assessment of whether pesticide exposure is associated with neurodevelopmental outcomes in children can best be addressed with a systematic review of both the human and animal peer-reviewed literature. This review analyzed epidemiologic studies testing the hypothesis that exposure to pesticides during pregnancy and/or early childhood is associated with neurodevelopmental outcomes in children. Studies that directly queried pesticide exposure (e.g., via questionnaire or interview) or measured pesticide or metabolite levels in biological specimens from study participants (e.g., blood, urine, etc.) or their immediate environment (e.g., personal air monitoring, home dust samples, etc.) were eligible for inclusion. Consistency, strength of association, and dose response were key elements of the framework utilized for evaluating epidemiologic studies. As a whole, the epidemiologic studies did not strongly implicate any particular pesticide as being causally related to adverse neurodevelopmental outcomes in infants and children. A few associations were unique for a health outcome and specific pesticide, and alternative hypotheses could not be ruled out. Our survey of the in vivo peer-reviewed published mammalian literature focused on effects of the specific active ingredient of pesticides on functional neurodevelopmental endpoints (i.e., behavior, neuropharmacology and neuropathology). In most cases, effects were noted at dose levels within the same order of magnitude or higher compared to the point of departure used for chronic risk assessments in the United States. Thus, although the published animal studies may have characterized potential neurodevelopmental outcomes using endpoints not required by guideline studies, the effects were generally observed at or above effect levels measured in repeated-dose toxicology studies submitted to the U.S. Environmental Protection Agency (EPA). Suggestions for improved exposure assessment in epidemiology studies and more effective and tiered approaches in animal testing are discussed.
Collapse
Affiliation(s)
| | | | - Pamela J. Mink
- Allina Health Center for Healthcare Research & Innovation, Minneapolis, Minnesota, USA
| | - Anne M. Jurek
- Allina Health Center for Healthcare Research & Innovation, Minneapolis, Minnesota, USA
| | - Abby A. Li
- Exponent, Inc., Menlo Park, California, USA
- Address correspondence to Abby A. Li, PhD, Attn: Rebecca Edwards, Exponent, Inc., Health Sciences Group, 149 Commonwealth Drive, Menlo Park, CA 94025-1133, USA. E-mail:
| |
Collapse
|
16
|
Chen XP, Chen WZ, Wang FS, Liu JX. Selective cognitive impairments are related to selective hippocampus and prefrontal cortex deficits after prenatal chlorpyrifos exposure. Brain Res 2012; 1474:19-28. [PMID: 22842080 DOI: 10.1016/j.brainres.2012.07.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/21/2012] [Accepted: 07/18/2012] [Indexed: 11/16/2022]
Abstract
Prenatal exposure to chlorpyrifos (CPF) leads to cognitive impairments in adulthood. The cytoarchitectural basis is unclear. In the present study, we assessed the effects of prenatal CPF exposure on T-maze delayed alternation task and the win-shift/lose-shift responses associated with the morphology of the dorsal hippocampus (dHPC) and the medial prefrontal cortex (mPFC) in adult animals. Gestational ICR female mice were exposed to 0, 1 or 5mg/kg/d of CPF through gestational days 13-17. Behavioral experiments were performed on postnatal days (PD) 45-60 of the male and female offsprings; morphological samples were collected on PD 60. Our behavioral study results showed a gradual increase in the number of lose-shift errors on increased memory loads in the 5mg/kg/d CPF-treated males. A weak initial increase in the number of lose-shift errors was observed in the females. In all of the groups, no significant differences were observed in the number of win-shift errors and correct of the first choice. The morphological studies showed extensive condensed nucleus and enlarged intercellular spaces in the CA1 and DG sub-regions in the dHPC of the CPF-treated males and the DG sub-region of the CPF-treated females. The cell count was significantly reduced in these sub-regions. The morphological studies showed no obvious abnormalities at PrL and IL of mPFC in the CPF-treated males and females, but the cell count was reduced. Our findings suggest that prenatal CPF exposure at 5mg/kg/d induces selective cognitive impairments, which based on the morphological deficits in the dHPC and the mPFC.
Collapse
Affiliation(s)
- Xiao-Ping Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 Chao-Wang Road, Hangzhou 310014, China.
| | | | | | | |
Collapse
|