1
|
Sørensen M, Andersen JV, Bjerring PN, Vilstrup H. Hepatic encephalopathy as a result of ammonia-induced increase in GABAergic tone with secondary reduced brain energy metabolism. Metab Brain Dis 2024; 40:19. [PMID: 39560844 PMCID: PMC11576828 DOI: 10.1007/s11011-024-01473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome caused by liver insufficiency and/or portosystemic shunting. HE is mostly episodic and as such reversible. Hyperammonemia clearly plays a key role in the pathophysiology, but the precise detrimental events in the brain leading to HE remain equivocal. Several pathogenic models have been proposed, but few have been linked to clinical studies and observations. Decreased oxygen metabolism is observed in both type A and C HE and in this review, we advocate that this reflects an actual reduced oxygen demand and not a primary cause of HE. As driving force, we propose that the hyperammonemia via astrocytic glutamine synthetase causes an increased γ-aminobutyric acid (GABA) mediated neuro-inhibition which subsequently leads to an overall decreased energy demand of the brain, something that can be enhanced by concomitant neuroinflammation. This also explains the reversibility of the condition.
Collapse
Affiliation(s)
- Michael Sørensen
- Department of Internal Medicine, Viborg Regional Hospital, Viborg, Denmark.
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nissen Bjerring
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Elsherbini DMA, Ghoneim FM, El-Mancy EM, Ebrahim HA, El-Sherbiny M, El-Shafey M, Al-Serwi RH, Elsherbiny NM. Astrocytes profiling in acute hepatic encephalopathy: Possible enrolling of glial fibrillary acidic protein, tumor necrosis factor-alpha, inwardly rectifying potassium channel (Kir 4.1) and aquaporin-4 in rat cerebral cortex. Front Cell Neurosci 2022; 16:896172. [PMID: 36060277 PMCID: PMC9428715 DOI: 10.3389/fncel.2022.896172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disarray manifested as a sequel to chronic and acute liver failure (ALF). A potentially fatal consequence of ALF is brain edema with concomitant astrocyte enlargement. This study aims to outline the role of astrocytes in acute HE and shed light on the most critical mechanisms driving this role. Rats were allocated into two groups. Group 1, the control group, received the vehicle. Group 2, the TAA group, received TAA (300 mg/kg) for 3 days. Serum AST, ALT, and ammonia were determined. Liver and cerebral cortical sections were processed for hematoxylin and eosin staining. Additionally, mRNA expression and immunohistochemical staining of cortical GFAP, TNFα, Kir4.1, and AQP4 were performed. Cortical sections from the TAA group demonstrated neuropil vacuolation and astrocytes enlargement with focal gliosis. GFAP, TNFα, and AQP4 revealed increased mRNA expression, positive immunoreactivity, and a positive correlation to brain water content. In contrast, Kir 4.1 showed decreased mRNA expression and immunoreactivity and a negative correlation to brain water content. In conclusion, our findings revealed altered levels of TNFα, Kir 4.1, GFAP, and AQP4 in HE-associated brain edema. A more significant dysregulation of Kir 4.1 and TNFα was observed compared to AQP4 and GFAP.
Collapse
Affiliation(s)
- Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Dalia Mahmoud Abdelmonem Elsherbini,
| | - Fatma M. Ghoneim
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohammed El-Mancy
- Deanship of Common First Year, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Mohamed El-Sherbiny,
| | - Mohamed El-Shafey
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Physiological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Tureckova J, Kamenicka M, Kolenicova D, Filipi T, Hermanova Z, Kriska J, Meszarosova L, Pukajova B, Valihrach L, Androvic P, Zucha D, Chmelova M, Vargova L, Anderova M. Compromised Astrocyte Swelling/Volume Regulation in the Hippocampus of the Triple Transgenic Mouse Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 13:783120. [PMID: 35153718 PMCID: PMC8829436 DOI: 10.3389/fnagi.2021.783120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer’s disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.
Collapse
Affiliation(s)
- Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Jana Tureckova,
| | - Monika Kamenicka
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lenka Meszarosova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Barbora Pukajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
- Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Wang Q, Guan K, Lv Y, Zhang Y, Yu Z, Kan Q. Disturbance of hepatocyte growth and metabolism in a hyperammonemia microenvironment. Arch Biochem Biophys 2021; 716:109109. [PMID: 34932992 DOI: 10.1016/j.abb.2021.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND We found through previous research that hyperammonemia can cause secondary liver damage. However, whether hepatocytes are target cells of ammonia toxicity and whether hyperammonemia affects hepatocyte metabolism remain unknown. AIMS The purpose of the current study is to examine whether the hepatocyte is a specific target cell of ammonia toxicity and whether hyperammonemia can interfere with hepatocyte metabolism. METHODS Cell viability and apoptosis were analyzed in primary hepatocytes and other cells that had been exposed to ammonium chloride. Western blotting was adopted to examine the expression of proteins related to ammonia transport. We also established a metabolomics method based on gas chromatography-mass spectrometry to understand the characteristics of the hepatocyte metabolic spectrum in a hyperammonemia microenvironment, to screen and identify differential metabolites, and to determine the differential metabolic pathway. Different technologies were used to verify the differential metabolic pathways. RESULTS Hepatocytes are target cells of ammonia toxicity. The mechanism is related to the ammonia transporter. Hyperammonemia interferes with hepatocyte metabolism, which leads to TCA cycle, urea cycle, and RNA synthesis disorder. CONCLUSIONS This study demonstrates that hepatocyte growth and metabolism are disturbed in a hyperammonemia microenvironment, which further deteriorates hepatocyte function.
Collapse
Affiliation(s)
- Qiongye Wang
- Departments of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kelei Guan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanjun Lv
- Department of Respiratory. the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingxuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery. the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Departments of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Quancheng Kan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Joghataei MT, Larsen FS. Drug-induced-acute liver failure: A critical appraisal of the thioacetamide model for the study of hepatic encephalopathy. Toxicol Rep 2021; 8:962-970. [PMID: 34026559 PMCID: PMC8122178 DOI: 10.1016/j.toxrep.2021.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) following acute and chronic liver failure is defined as a complex of neuropsychiatric abnormalities, such as discrete personal changes, sleep disorder, forgetfulness, confusion, and decreasing the level of consciousness to coma. The use and design of suitable animal models that represent clinical features and pathological changes of HE are valuable to map the molecular mechanisms that result in HE. Among different types of animal models, thioacetamide (TAA) has been used extensively for the induction of acute liver injury and HE. This agent is not directly hepatotoxic but its metabolites induce liver injury through the induction of oxidative stress and produce systemic inflammation similar to that seen in acute HE patients. In this short review article, we shortly review the most important pathological findings in animal models of acute HE following the administration of TAA.
Collapse
Key Words
- ALT, alanine aminotransferase
- AQP4, aquaporin 4 water channel
- AST, aspartate aminotransferase
- Acute liver failure
- Animal model
- B7, B7 molecules (CD80+CD86)
- BBB, blood-brain barrier
- CBF, cerebral blood flow
- CCL2, chemokine ligand 2
- CNS, central nervous system
- CTLA4, Cytotoxic T-lymphocyte-associated Protein 4
- CYP2E1, Cytochrome P450 family 2 subfamily E member 1
- GFAP, glial fibrillary acidic protein
- HE, hepatic encephalopathy
- Hepatic encephalopathy
- IL-6, interleukin 6
- IL-β, interleukin 1 β
- Iba1, ionized calcium-binding adaptor molecule 1
- JNK, c-Jun N-terminal kinase
- NAC, N-acetylcysteine
- NF-κB, nuclear factor κB
- OA, L-ornithine-l-aspartate
- ROS, reactive oxygen species
- TAA, thioacetamide
- TASO, thioacetamide sulfoxide
- TASO2, thioacetamide sulfdioxide
- TLR-2, toll-like receptor 2
- TLR-4, toll-like receptor 4
- TNFα, tumor necrosis factor α
- Thioacetamide
- Toxicity pathway
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
6
|
Bursting at the Seams: Molecular Mechanisms Mediating Astrocyte Swelling. Int J Mol Sci 2019; 20:ijms20020330. [PMID: 30650535 PMCID: PMC6359623 DOI: 10.3390/ijms20020330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/31/2023] Open
Abstract
Brain swelling is one of the most robust predictors of outcome following brain injury, including ischemic, traumatic, hemorrhagic, metabolic or other injury. Depending on the specific type of insult, brain swelling can arise from the combined space-occupying effects of extravasated blood, extracellular edema fluid, cellular swelling, vascular engorgement and hydrocephalus. Of these, arguably the least well appreciated is cellular swelling. Here, we explore current knowledge regarding swelling of astrocytes, the most abundant cell type in the brain, and the one most likely to contribute to pathological brain swelling. We review the major molecular mechanisms identified to date that contribute to or mitigate astrocyte swelling via ion transport, and we touch upon the implications of astrocyte swelling in health and disease.
Collapse
|
7
|
Jayakumar AR, Norenberg MD. Hyperammonemia in Hepatic Encephalopathy. J Clin Exp Hepatol 2018; 8:272-280. [PMID: 30302044 PMCID: PMC6175739 DOI: 10.1016/j.jceh.2018.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
The precise mechanism underlying the neurotoxicity of Hepatic Encephalopathy (HE) is remains unclear. The dominant view has been that gut-derived nitrogenous toxins are not extracted by the diseased liver and thereby enter the brain. Among the various toxins proposed, the case for ammonia is most compelling. Events that lead to increased levels of blood or brain ammonia have been shown to worsen HE, whereas reducing blood ammonia levels alleviates HE. Clinical, pathological, and biochemical changes observed in HE can be reproduced by increasing blood or brain ammonia levels in experimental animals, while exposure of cultured astrocytes to ammonium salts reproduces the morphological and biochemical findings observed in HE. However, factors other than ammonia have recently been proposed to be involved in the development of HE, including cytokines and other blood and brain immune factors. Moreover, recent studies have questioned the critical role of ammonia in the pathogenesis of HE since blood ammonia levels do not always correlate with the level/severity of encephalopathy. This review summarizes the vital role of ammonia in the pathogenesis of HE in humans, as well as in experimental models of acute and chronic liver failure. It further emphasizes recent advances in the molecular mechanisms involved in the progression of neurological complications that occur in acute and chronic liver failure.
Collapse
Key Words
- AHE, Acute Hepatic Encephalopathy
- ALF, Acute Liver Failure
- CHE, Chronic Hepatic Encephalopathy
- CNS, Central Nervous System
- CSF, Cerebrospinal Fluid
- ECs, Endothelial Cells
- HE, Hepatic Encephalopathy
- IL, Interleukin
- LPS, Lipopolysaccharide
- MAPKs, Mitogen-Activated Protein Kinases
- NCX, Sodium-Calcium Exchanger
- NF-κB, Nuclear Factor-kappaB
- NHE, Sodium/Hydrogen Exchanger-1 or SLC9A1 (SoLute Carrier Family 9A1)
- SUR1, The Sulfonylurea Receptor 1
- TDP-43 and tau proteinopathies
- TDP-43, TAR DNA-Binding Protein, 43 kDa
- TLR, Toll-like Receptor
- TNF-α, Tumor Necrosis Factor-Alpha
- TSP-1, Thrombospondin-1
- ammonia
- hepatic encephalopathy
- inflammation
- matricellular proteins
Collapse
Affiliation(s)
- A R Jayakumar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL 33125, United States
- South Florida VA Foundation for Research and Education Inc., Veterans Affairs Medical Center, Miami, FL 33125, United States
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, FL 33125, United States
- Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL 33125, United States
- Department of Neurology and Neurological Surgery, University of Miami School of Medicine, Miami, FL 33125, United States
| |
Collapse
|
8
|
Obara-Michlewska M, Ding F, Popek M, Verkhratsky A, Nedergaard M, Zielinska M, Albrecht J. Interstitial ion homeostasis and acid-base balance are maintained in oedematous brain of mice with acute toxic liver failure. Neurochem Int 2018; 118:286-291. [PMID: 29772253 DOI: 10.1016/j.neuint.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 01/25/2023]
Abstract
Acute toxic liver failure (ATLF) rapidly leads to brain oedema and neurological decline. We evaluated the ability of ATLF-affected brain to control the ionic composition and acid-base balance of the interstitial fluid. ATLF was induced in 10-12 weeks old male C57Bl mice by single intraperitoneal (i.p.) injection of 100 μg/g azoxymethane (AOM). Analyses were carried out in cerebral cortex of precomatous mice 20-24 h after AOM administration. Brain fluid status was evaluated by measuring apparent diffusion coefficient [ADC] using NMR spectroscopy, Evans Blue extravasation, and accumulation of an intracisternally-injected fluorescent tracer. Extracellular pH ([pH]e) and ([K+]e) were measured in situ with ion-sensitive microelectrodes. Cerebral cortical microdialysates were subjected to photometric analysis of extracellular potassium ([K+]e), sodium ([Na+]e) and luminometric assay of extracellular lactate ([Lac]e). Potassium transport in cerebral cortical slices was measured ex vivo as 86Rb uptake. Cerebral cortex of AOM-treated mice presented decreased ADC supporting the view that ATLF-induced brain oedema is primarily cytotoxic in nature. In addition, increased Evans blue extravasation indicated blood brain barrier leakage, and increased fluorescent tracer accumulation suggested impaired interstitial fluid passage. However, [K+]e, [Na+]e, [Lac]e, [pH]e and potassium transport in brain of AOM-treated mice was not different from control mice. We conclude that in spite of cytotoxic oedema and deregulated interstitial fluid passage, brain of mice with ATLF retains the ability to maintain interstitial ion homeostasis and acid-base balance. Tentatively, uncompromised brain ion homeostasis and acid-base balance may contribute to the relatively frequent brain function recovery and spontaneous survival rate in human patients with ATLF.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, NY, USA
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, NY, USA
| | - Magdalena Zielinska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St, 02-106 Warsaw, Poland.
| |
Collapse
|
9
|
Rivera-Aponte DE, Méndez-González MP, Rivera-Pagán AF, Kucheryavykh YV, Kucheryavykh LY, Skatchkov SN, Eaton MJ. Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake. Neuroscience 2015; 310:216-23. [PMID: 26404875 DOI: 10.1016/j.neuroscience.2015.09.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 11/24/2022]
Abstract
Diabetics are at risk for a number of serious health complications including an increased incidence of epilepsy and poorer recovery after ischemic stroke. Astrocytes play a critical role in protecting neurons by maintaining extracellular homeostasis and preventing neurotoxicity through glutamate uptake and potassium buffering. These functions are aided by the presence of potassium channels, such as Kir4.1 inwardly rectifying potassium channels, in the membranes of astrocytic glial cells. The purpose of the present study was to determine if hyperglycemia alters Kir4.1 potassium channel expression and homeostatic functions of astrocytes. We used q-PCR, Western blot, patch-clamp electrophysiology studying voltage and potassium step responses and a colorimetric glutamate clearance assay to assess Kir4.1 channel levels and homeostatic functions of rat astrocytes grown in normal and high glucose conditions. We found that astrocytes grown in high glucose (25 mM) had an approximately 50% reduction in Kir4.1 mRNA and protein expression as compared with those grown in normal glucose (5mM). These reductions occurred within 4-7 days of exposure to hyperglycemia, whereas reversal occurred between 7 and 14 days after return to normal glucose. The decrease in functional Kir channels in the astrocytic membrane was confirmed using barium to block Kir channels. In the presence of 100-μM barium, the currents recorded from astrocytes in response to voltage steps were reduced by 45%. Furthermore, inward currents induced by stepping extracellular [K(+)]o from 3 to 10mM (reflecting potassium uptake) were 50% reduced in astrocytes grown in high glucose. In addition, glutamate clearance by astrocytes grown in high glucose was significantly impaired. Taken together, our results suggest that down-regulation of astrocytic Kir4.1 channels by elevated glucose may contribute to the underlying pathophysiology of diabetes-induced CNS disorders and contribute to the poor prognosis after stroke.
Collapse
Affiliation(s)
- D E Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - M P Méndez-González
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - A F Rivera-Pagán
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - Y V Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - L Y Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| | - S N Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA; Department of Physiology, Universidad Central del Caribe, Bayamón, PR, USA.
| | - M J Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, USA.
| |
Collapse
|
10
|
Kimoloi S, Rashid K. Potential role of Plasmodium falciparum-derived ammonia in the pathogenesis of cerebral malaria. Front Neurosci 2015; 9:234. [PMID: 26190968 PMCID: PMC4490226 DOI: 10.3389/fnins.2015.00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria (CM) is the most severe complication associated with Plasmodium falciparum infection. The exact pathogenic mechanisms leading to the development of CM remains poorly understood while the mortality rates remain high. Several potential mechanisms including mechanical obstruction of brain microvasculature, inflammation, oxidative stress, cerebral energy defects, and hemostatic dysfunction have been suggested to play a role in CM pathogenesis. However, these proposed mechanisms, even when considered together, do not fully explain the pathogenesis and clinicopathological features of human CM. This necessitates consideration of alternative pathogenic mechanisms. P. falciparum generates substantial amounts of ammonia as a catabolic by-product, but lacks detoxification mechanisms. Whether this parasite-derived ammonia plays a pathogenic role in CM is presently unknown, despite its potential to cause localized brain ammonia elevation and subsequent neurotoxic effects. This article therefore, explores and proposes a potential role of parasite-derived ammonia in the pathogenesis and neuropathology of CM. A consideration of parasite-derived ammonia as a factor in CM pathogenesis provides plausible explanations of the various features observed in CM patients including how a largely intravascular parasite can cause neuronal dysfunction. It also provides a framework for rational development and testing of novel drugs targeting the parasite's ammonia handling.
Collapse
Affiliation(s)
- Sammy Kimoloi
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology Kakamega, Kenya
| | - Khalid Rashid
- Biochemistry and Molecular Biology Department, Egerton University Nakuru, Kenya
| |
Collapse
|
11
|
Obara-Michlewska M, Ruszkiewicz J, Zielińska M, Verkhratsky A, Albrecht J. Astroglial NMDA receptors inhibit expression of Kir4.1 channels in glutamate-overexposed astrocytes in vitro and in the brain of rats with acute liver failure. Neurochem Int 2014; 88:20-5. [PMID: 25451797 DOI: 10.1016/j.neuint.2014.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Astroglial inward rectifying Kir4.1 potassium channels are fundamental for the maintenance of ion and water homeostasis in the central nervous system (CNS). Down-regulation of Kir4.1 expression is observed in CNS disorders associated with excessive extracellular glutamate (Glu) accumulation, including hepatic encephalopathy related to acute liver failure (ALF). Here we demonstrate that prolonged (3 days) treatment of cultured rat cortical astrocytes with 2 mM Glu or 100 µM NMDA decreases the expression of Kir4.1 mRNA and protein. Inhibition by Glu of Kir4.1 mRNA expression was reversed by NMDA receptor antagonists MK-801 and AP-5 (each at 50 µM), and by a non-transportable inhibitor of Glu uptake TBOA (100 µM). MK-801 reversed the inhibitory effect of Glu on Kir4.1 protein expression. In contrast, transcription of Kir4.1 channels was not affected by: (i) a transportable Glu uptake inhibitor PDC (100 µM); (ii) by group I mGluR antagonist MTEP (100 µM); (iii) by antagonists of oxidative-nitrosative stress (ONS) in astrocytes, including the neuroprotective amino acid taurine (Tau; 10 mM), the NADPH oxidase inhibitor apocyanine (APO; 300 µM), the nitric oxide synthase inhibitor, L-NNA (100 µM), and a membrane permeable glutathione precursor, glutathione-diethyl ester (GEE; 3 mM). Down-regulation of Kir4.1 transcription in rats with ALF was attenuated by intraperitoneal administration of a competitive NMDA receptor antagonist memantine, but not by histidine, which reverses ONS associated with ALF. Collectively, the results indicate that over-activation of astroglial NMDA receptors, aided by as yet undefined effects of Glu entry to astrocytes, is a primary cause of the reduction of Kir4.1 expression in CNS disorders associated with increased exposure to Glu.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Joanna Ruszkiewicz
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland
| | - Alexei Verkhratsky
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland; Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Science, Warsaw, Poland.
| |
Collapse
|
12
|
Albrecht J, Zielińska M. Deficit of astroglia-derived thrombospondin-1 and loss of synaptic proteins in hepatic encephalopathy: do ammonia-overexposed astrocytes derange the synaptic hardware? J Neurochem 2014; 131:265-7. [DOI: 10.1111/jnc.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
13
|
Modulation by kynurenine of extracellular kynurenate and glutamate in cerebral cortex of rats with acute liver failure. Pharmacol Rep 2014; 66:466-70. [DOI: 10.1016/j.pharep.2013.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 01/07/2023]
|
14
|
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36:595-612. [PMID: 23109059 DOI: 10.1007/s10545-012-9546-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Collapse
Affiliation(s)
- Olivier Braissant
- Service of Biomedicine, Lausanne University Hospital, Avenue Pierre-Decker 2, CI 02/33, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
15
|
Li JJ, Ji R, Shi YQ, Wang YY, Yang YL, Dou KF. Changes in expression of the chloride homeostasis-regulating genes, KCC2 and NKCC1, in the blood of cirrhotic patients with hepatic encephalopathy. Exp Ther Med 2012; 4:1075-1080. [PMID: 23226777 PMCID: PMC3494113 DOI: 10.3892/etm.2012.721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/19/2012] [Indexed: 12/14/2022] Open
Abstract
Hepatic encephalopathy (HE), a neuropsychiatric abnormality that commonly accompanies cirrhosis of the liver, is often difficult to treat and manage. Changes in chloride homeostasis are involved in the generation of a number of brain disorders. In this study, we considered whether chloride homeostasis is associated with HE. The mRNA levels of the Cl− extrusion system (KCC2) and the Cl− intrusion system (NKCC1) were detected by real-time RT-PCR in the plasma of 29 cirrhotic patients with HE of grade I-II, 36 cirrhotic patients with HE of grade III–IV, 20 cirrhotic patients without HE and 15 healthy controls. The mRNA levels of KCC2 in cirrhotic patients with mild and severe HE were significantly lower compared to those in cirrhotic patients without HE or in the healthy controls. However, NKCC1 mRNA levels did not differ between the different groups. In addition, for cirrhotic patients with HE, there were significant negative correlations between KCC2 levels and the levels of blood ammonia and hepatic function scores (Child-Pugh and model for end-stage liver disease scores); there was also a significant positive correlation between KCC2 levels and neurological status (Glasgow scores). In conclusion, our study indicates that an imbalance of KCC2 and NKCC1 may be a novel biomarker for detecting HE and for monitoring disease development.
Collapse
Affiliation(s)
- Jun-Jie Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University; ; Departments of Hepatobiliary Surgery and
| | | | | | | | | | | |
Collapse
|
16
|
Glutamine in the pathogenesis of acute hepatic encephalopathy. Neurochem Int 2012; 61:575-80. [DOI: 10.1016/j.neuint.2012.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 01/28/2023]
|
17
|
Pasantes-Morales H, Vázquez-Juárez E. Transporters and channels in cytotoxic astrocyte swelling. Neurochem Res 2012; 37:2379-87. [PMID: 22544664 DOI: 10.1007/s11064-012-0777-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 12/29/2022]
Abstract
Brain edema is a severe clinical complication in a number of pathologies and is a major cause of increased morbidity and death. The swelling of astrocytes caused by a disruption of water and ion homeostasis, is the primary event contributing to the cytotoxic form of brain edema. Astrocyte cytotoxic swelling ultimately leads to transcapillary fluxes of ions and water into the brain parenchyma. This review focuses on the implication of transporters and channels in cytotoxic astrocyte swelling in hyponatremia, ischemia, trauma and hepatic encephalopathy. Emphasis is put on some salient features of the astrocyte physiology, all related to cell swelling, i.e. predominance of aquaporins, control of K(+) homeostasis and ammonia accumulation during the brain ammonia-detoxifying process.
Collapse
Affiliation(s)
- Herminia Pasantes-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | |
Collapse
|
18
|
Benesova J, Rusnakova V, Honsa P, Pivonkova H, Dzamba D, Kubista M, Anderova M. Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One 2012; 7:e29725. [PMID: 22253765 PMCID: PMC3256164 DOI: 10.1371/journal.pone.0029725] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/02/2011] [Indexed: 11/19/2022] Open
Abstract
Recently, we have identified two astrocytic subpopulations in the cortex of GFAP-EGFP mice, in which the astrocytes are visualized by the enhanced green-fluorescent protein (EGFP) under the control of the human glial fibrillary acidic protein (GFAP) promotor. These astrocytic subpopulations, termed high response- (HR-) and low response- (LR-) astrocytes, differed in the extent of their swelling during oxygen-glucose deprivation (OGD). In the present study we focused on identifying the ion channels or transporters that might underlie the different capabilities of these two astrocytic subpopulations to regulate their volume during OGD. Using three-dimensional confocal morphometry, which enables quantification of the total astrocytic volume, the effects of selected inhibitors of K⁺ and Cl⁻ channels/transporters or glutamate transporters on astrocyte volume changes were determined during 20 minute-OGD in situ. The inhibition of volume regulated anion channels (VRACs) and two-pore domain potassium channels (K(2P)) highlighted their distinct contributions to volume regulation in HR-/LR-astrocytes. While the inhibition of VRACs or K(2P) channels revealed their contribution to the swelling of HR-astrocytes, in LR-astrocytes they were both involved in anion/K⁺ effluxes. Additionally, the inhibition of Na⁺-K⁺-Cl⁻ co-transporters in HR-astrocytes led to a reduction of cell swelling, but it had no effect on LR-astrocyte volume. Moreover, employing real-time single-cell quantitative polymerase chain reaction (PCR), we characterized the expression profiles of EGFP-positive astrocytes with a focus on those ion channels and transporters participating in astrocyte swelling and volume regulation. The PCR data revealed the existence of two astrocytic subpopulations markedly differing in their gene expression levels for inwardly rectifying K⁺ channels (Kir4.1), K(2P) channels (TREK-1 and TWIK-1) and Cl⁻ channels (ClC2). Thus, we propose that the diverse volume changes displayed by cortical astrocytes during OGD mainly result from their distinct expression patterns of ClC2 and K(2P) channels.
Collapse
Affiliation(s)
- Jana Benesova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Vendula Rusnakova
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Honsa
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Helena Pivonkova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - David Dzamba
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Second Medical Faculty, Charles University, Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- TATAA Biocenter, Gothenburg, Sweden
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
19
|
Abstract
Glutamine (Gln) is found abundantly in the central nervous system (CNS) where it participates in a variety of metabolic pathways. Its major role in the brain is that of a precursor of the neurotransmitter amino acids: the excitatory amino acids, glutamate (Glu) and aspartate (Asp), and the inhibitory amino acid, γ-amino butyric acid (GABA). The precursor-product relationship between Gln and Glu/GABA in the brain relates to the intercellular compartmentalization of the Gln/Glu(GABA) cycle (GGC). Gln is synthesized from Glu and ammonia in astrocytes, in a reaction catalyzed by Gln synthetase (GS), which, in the CNS, is almost exclusively located in astrocytes (Martinez-Hernandez et al., 1977). Newly synthesized Gln is transferred to neurons and hydrolyzed by phosphate-activated glutaminase (PAG) to give rise to Glu, a portion of which may be decarboxylated to GABA or transaminated to Asp. There is a rich body of evidence which indicates that a significant proportion of the Glu, Asp and GABA derived from Gln feed the synaptic, neurotransmitter pools of the amino acids. Depolarization-induced-, calcium- and PAG activity-dependent releases of Gln-derived Glu, GABA and Asp have been observed in CNS preparations in vitro and in the brain in situ. Immunocytochemical studies in brain slices have documented Gln transfer from astrocytes to neurons as well as the location of Gln-derived Glu, GABA and Asp in the synaptic terminals. Patch-clamp studies in brain slices and astrocyte/neuron co-cultures have provided functional evidence that uninterrupted Gln synthesis in astrocytes and its transport to neurons, as mediated by specific carriers, promotes glutamatergic and GABA-ergic transmission. Gln entry into the neuronal compartment is facilitated by its abundance in the extracellular spaces relative to other amino acids. Gln also appears to affect neurotransmission directly by interacting with the NMDA class of Glu receptors. Transmission may also be modulated by alterations in cell membrane polarity related to the electrogenic nature of Gln transport or to uncoupled ion conductances in the neuronal or glial cell membranes elicited by Gln transporters. In addition, Gln appears to modulate the synthesis of the gaseous messenger, nitric oxide (NO), by controlling the supply to the cells of its precursor, arginine. Disturbances of Gln metabolism and/or transport contribute to changes in Glu-ergic or GABA-ergic transmission associated with different pathological conditions of the brain, which are best recognized in epilepsy, hepatic encephalopathy and manganese encephalopathy.
Collapse
|