1
|
Barros M, Liang M, Iannucci N, Dickinson R. Xenon and Argon as Neuroprotective Treatments for Perinatal Hypoxic-Ischemic Brain Injury: A Preclinical Systematic Review and Meta-Analysis. Anesth Analg 2024:00000539-990000000-01012. [PMID: 39453983 DOI: 10.1213/ane.0000000000007223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Xenon and argon are currently being evaluated as potential neuroprotective treatments for acquired brain injuries. Xenon has been evaluated clinically as a treatment for brain ischemia with equivocal results in small trials, but argon has not yet undergone clinical evaluation. Several preclinical studies have investigated xenon or argon as treatments in animal models of perinatal hypoxic-ischemic encephalopathy (HIE). A systematic review of MEDLINE and Embase databases was performed. After screening of titles, abstracts, and full text, data were extracted from included studies. A pairwise meta-analysis of neuroprotective efficacy was performed using a random effects model. Heterogeneity was investigated using subgroup analysis, funnel plot asymmetry, and Egger's regression. The protocol was prospectively registered on PROSPERO (CRD42022301986). A total of 21 studies met the inclusion criteria. The data extracted included measurements from 1591 animals, involving models of HIE in mice, rats, and pigs. The meta-analysis found that both xenon and argon had significant (P < .0001) neuroprotective efficacies. The summary estimate for xenon was 39.7% (95% confidence interval [CI], 28.3%-51.1%) and for argon it was 70.3% (95% CI, 59.0%-81.7%). The summary effect for argon was significantly (P < .001) greater than that of xenon. Our results provide evidence supporting further investigation of xenon and argon as neuroprotective treatments for HIE.
Collapse
Affiliation(s)
- Mariana Barros
- From the Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Min Liang
- Anaesthesiology Research Institute, Department of Anaesthesiology, First Affiliated Hospital of Fujian Medical University, Binhai Campus, Fuzhou, China
| | - Noemi Iannucci
- From the Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Robert Dickinson
- From the Anaesthetics, Pain Medicine and Intensive Care Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Lee BL, Glass HC. Cognitive outcomes in late childhood and adolescence of neonatal hypoxic-ischemic encephalopathy. Clin Exp Pediatr 2021; 64:608-618. [PMID: 34044480 PMCID: PMC8650814 DOI: 10.3345/cep.2021.00164] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/18/2021] [Indexed: 12/04/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the most common cause of neonatal encephalopathy with a global incidence of approximately 1 to 8 per 1,000 live births. Neonatal encephalopathy can cause neurodevelopmental and cognitive impairments in survivors of hypoxic-ischemic insults with and without functional motor deficits. Normal neurodevelopmental outcomes in early childhood do not preclude cognitive and behavioral difficulties in late childhood and adolescence because cognitive functions are not yet fully developed at this early age. Therapeutic hypothermia has been shown to significantly reduced death and severe disabilities in term newborns with HIE. However, children treated with hypothermia therapy remain at risk for cognitive impairments and follow-up is necessary throughout late childhood and adolescence. Novel adjunctive neuroprotective therapies combined with therapeutic hypothermia may enhance the survival and neurodevelopmental outcomes of infants with HIE. The extent and severity of brain injury on magnetic resonance imaging might predict neurodevelopmental outcomes and lead to targeted interven tions in children with a history of neonatal encephalopathy. We provide a summary of the long-term cognitive outcomes in late childhood and adolescence in children with a history of HIE and the association between pattern of brain injury and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Bo Lyun Lee
- Department of Pediatrics, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hannah C Glass
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.,Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Xu L, Li G, Tang X, Feng C, Li M, Jiang X, Gu Y, Yun Y, Lu L, Feng X, Ding X, Sun B. MiR-375-3p mediates reduced pineal function in hypoxia-ischemia brain damage. Exp Neurol 2021; 344:113814. [PMID: 34280452 DOI: 10.1016/j.expneurol.2021.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/21/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
The functional roles of microRNAs (miRNAs) have been studied in various diseases, including hypoxic-ischemic brain damage (HIBD). However, changes in the expression of miRNAs and the underlying mechanisms in the pineal gland during HIBD remain unknown. Based on the previous study by microRNA array, hundreds of miRNAs showed altered expression patterns in the pineal gland in a rat model of HIBD. MiR-375-3p was found to be significantly upregulated and abundant in the pineal gland. Further investigation in an in vitro HI model of pinealocytes showed that miRNA-375 exacerbated the damage to pineal function. After oxygen-glucose deprivation / reoxygenation (OGD/R), miR-375-3p expression increased, while aralkylamine N-acetyltransferase (AANAT) expression and melatonin (MT) secretion decreased. Overexpression of miRNA-375 in pinealocytes aggravated the influence of OGD/R on AANAT expression and MT secretion. Because miRNA-375 overexpression in pinealocytes induced decreased rasd1 mRNA and protein expression, rasd1 may mediate the effect of miR-375-3p on pineal function. Furthermore, miR-375-3p aggravated the cognitive impairment caused by HIBD in rats, as observed by Morris water maze test, and also affected emotion and circadian rhythm in HIBD-treated rats. Thus, miR-375-3p may be a key regulatory molecule in the pineal gland following HIBD, and targeting of miR-375-3p may represent a new strategy for the treatment of HIBD.
Collapse
Affiliation(s)
- Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xiaojuan Tang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xiaolu Jiang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yan Gu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yajing Yun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Lianghua Lu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China.
| | - Bin Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|
4
|
Yang G, Xue Z, Zhao Y. Efficacy of erythropoietin alone in treatment of neonates with hypoxic-ischemic encephalopathy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26365. [PMID: 34128891 PMCID: PMC8213261 DOI: 10.1097/md.0000000000026365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Multiple clinical trials have demonstrated the safety and efficacy of erythropoietin in improving neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy (HIE). It is undoubtedly urgent to include only randomized controlled trials (RCTs) for more standardized systematic reviews and meta-analyses. The purpose of this study is to examine whether erythropoietin reduces the risk of death and improve neurodevelopmental disorders in infants with HIE. METHODS The electronic databases of Cochrane Library, EMBASE, PubMed, and Web of Science were searched from the inception to June 2021 using the following key terms: "erythropoietin," "hypoxic-ischemic encephalopathy," and "prospective," for all relevant RCTs. Only English publications were included. The primary outcome was mortality rate. Secondary outcomes included neurodevelopmental disorders, brain injury, and cognitive impairment. The Cochrane risk of bias tool was independently used to evaluate the risk of bias of included RCTs by 2 reviewers. RESULTS We hypothesized that group with erythropoietin would provide better therapeutic benefits compared with control group. OSF REGISTRATION NUMBER 10.17605/OSF.IO/FERUS.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Shanxi Medical University
| | - Zhimin Xue
- Neonatal Medicine, Shanxi Children's Hospital, Shanxi, China
| | - Yuan Zhao
- Neonatal Medicine, Shanxi Children's Hospital, Shanxi, China
| |
Collapse
|
5
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
6
|
Le Nogue D, Lavaur J, Milet A, Ramirez-Gil JF, Katz I, Lemaire M, Farjot G, Hirsch EC, Michel PP. Neuroprotection of dopamine neurons by xenon against low-level excitotoxic insults is not reproduced by other noble gases. J Neural Transm (Vienna) 2020; 127:27-34. [PMID: 31807953 PMCID: PMC6942589 DOI: 10.1007/s00702-019-02112-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Abstract
Using midbrain cultures, we previously demonstrated that the noble gas xenon is robustly protective for dopamine (DA) neurons exposed to L-trans-pyrrolidine-2,4-dicarboxylate (PDC), an inhibitor of glutamate uptake used to generate sustained, low-level excitotoxic insults. DA cell rescue was observed in conditions where the control atmosphere for cell culture was substituted with a gas mix, comprising the same amount of oxygen (20%) and carbon dioxide (5%) but 75% of xenon instead of nitrogen. In the present study, we first aimed to determine whether DA cell rescue against PDC remains detectable when concentrations of xenon are progressively reduced in the cell culture atmosphere. Besides, we also sought to compare the effect of xenon to that of other noble gases, including helium, neon and krypton. Our results show that the protective effect of xenon for DA neurons was concentration-dependent with an IC50 estimated at about 44%. We also established that none of the other noble gases tested in this study protected DA neurons from PDC-mediated insults. Xenon's effectiveness was most probably due to its unique capacity to block NMDA glutamate receptors. Besides, mathematical modeling of gas diffusion in the culture medium revealed that the concentration reached by xenon at the cell layer level is the highest of all noble gases when neurodegeneration is underway. Altogether, our data suggest that xenon may be of potential therapeutic value in Parkinson disease, a chronic neurodegenerative condition where DA neurons appear vulnerable to slow excitotoxicity.
Collapse
Affiliation(s)
- Déborah Le Nogue
- Sorbonne Université, Institut du Cerveau et de la Moelle Epinière (ICM), Inserm U 1127, CNRS, UMR 7225, Paris, France
| | - Jérémie Lavaur
- Sorbonne Université, Institut du Cerveau et de la Moelle Epinière (ICM), Inserm U 1127, CNRS, UMR 7225, Paris, France
| | - Aude Milet
- Air Liquide Santé International, Campus Innovation Paris, Jouy-en-Josas, France
| | | | - Ira Katz
- Air Liquide Santé International, Campus Innovation Paris, Jouy-en-Josas, France
| | - Marc Lemaire
- Air Liquide Santé International, Campus Innovation Paris, Jouy-en-Josas, France
| | - Géraldine Farjot
- Air Liquide Santé International, Campus Innovation Paris, Jouy-en-Josas, France
| | - Etienne C Hirsch
- Sorbonne Université, Institut du Cerveau et de la Moelle Epinière (ICM), Inserm U 1127, CNRS, UMR 7225, Paris, France
| | - Patrick Pierre Michel
- Sorbonne Université, Institut du Cerveau et de la Moelle Epinière (ICM), Inserm U 1127, CNRS, UMR 7225, Paris, France.
| |
Collapse
|
7
|
Cardinali DP. An Assessment of Melatonin's Therapeutic Value in the Hypoxic-Ischemic Encephalopathy of the Newborn. Front Synaptic Neurosci 2019; 11:34. [PMID: 31920617 PMCID: PMC6914689 DOI: 10.3389/fnsyn.2019.00034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the most frequent causes of brain injury in the newborn. From a pathophysiological standpoint, a complex process takes place at the cellular and tissue level during the development of newborn brain damage in the absence of oxygen. Initially, the lesion is triggered by a deficit in the supply of oxygen to cells and tissues, causing a primary energy insufficiency. Subsequently, high energy phosphate levels recover transiently (the latent phase) that is followed by a secondary phase, in which many of the pathophysiological mechanisms involved in the development of neonatal brain damage ensue (i.e., excitotoxicity, massive influx of Ca2+, oxidative and nitrosative stress, inflammation). This leads to cell death by necrosis or apoptosis. Eventually, a tertiary phase occurs, characterized by the persistence of brain damage for months and even years after the HI insult. Hypothermia is the only therapeutic strategy against HIE that has been incorporated into neonatal intensive care units with limited success. Thus, there is an urgent need for agents with the capacity to curtail acute and chronic damage in HIE. Melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, has a potential role as a neuroprotective agent both acutely and chronically in HIE. Melatonin displays a remarkable antioxidant and anti-inflammatory activity and is capable to cross the blood-brain barrier readily. Moreover, in many animal models of brain degeneration, melatonin was effective to impair chronic mechanisms of neuronal death. In animal models, and in a limited number of clinical studies, melatonin increased the level of protection developed by hypothermia in newborn asphyxia. This review article summarizes briefly the available therapeutic strategies in HIE and assesses the role of melatonin as a potentially relevant therapeutic tool to cover the hypoxia-ischemia phase and the secondary and tertiary phases following a hypoxic-ischemic insult.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
8
|
|
9
|
Cánovas-Ahedo M, Alonso-Alconada D. [Combined therapy in neonatal hypoxic-ischaemic encephalopathy]. An Pediatr (Barc) 2019; 91:59.e1-59.e7. [PMID: 31109785 DOI: 10.1016/j.anpedi.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 01/01/2023] Open
Abstract
Neonatal hypoxic-ischaemic encephalopathy due to the lack of oxygen at birth can have severe neurological consequences, such as cerebral palsy, or even the death of the asphyxiated newborn. Hypothermia is currently the only therapy included in intensive care neonatal units. This shows a clinical benefit in neonates suffering from hypoxic-ischaemic encephalopathy, mainly because of its ability to decrease the accumulation of excitatory amino acids and its anti-inflammatory, antioxidant, and anti-apoptotic effects. However, hypothermia is not effective in half of the cases, making it necessary to search for new, or to optimize current therapies, with the aim on reducing asphyxia-derived neurological consequences, either as single treatments or in combination with cooling. Within current potential therapies, melatonin, allopurinol, and erythropoietin stand out among the others, with clinical trials on the way. While, stem cells, N-acetylcysteine and noble gases have obtained promising pre-clinical results. Melatonin produces a powerful antioxidant and anti-inflammatory effect, acting as free radical scavenger and regulating pro-inflammatory mediators. Through the inhibition of xanthine oxidase, allopurinol can decrease oxidative stress. Erythropoietin has cell death and neurogenesis as its main therapeutic targets. Keeping in mind the whole scenario of current therapies, management of neonates suffering from neonatal asphyxia could rely on the combination of one or some of these treatments, together with therapeutic hypothermia.
Collapse
Affiliation(s)
- María Cánovas-Ahedo
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, España
| | - Daniel Alonso-Alconada
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, España.
| |
Collapse
|
10
|
Gunn AJ, Thoresen M. Neonatal encephalopathy and hypoxic-ischemic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:217-237. [PMID: 31324312 DOI: 10.1016/b978-0-444-64029-1.00010-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute hypoxic-ischemic encephalopathy around the time of birth remains a major cause of death and life-long disability. The key insight that led to the modern revival of studies of neuroprotection was that, after profound asphyxia, many brain cells show initial recovery from the insult during a short "latent" phase, typically lasting approximately 6h, only to die hours to days later after a "secondary" deterioration characterized by seizures, cytotoxic edema, and progressive failure of cerebral oxidative metabolism. Studies designed around this framework showed that mild hypothermia initiated as early as possible before the onset of secondary deterioration and continued for a sufficient duration to allow the secondary deterioration to resolve is associated with potent, long-lasting neuroprotection. There is now compelling evidence from randomized controlled trials that mild to moderate induced hypothermia significantly improves survival and neurodevelopmental outcomes in infancy and mid-childhood.
Collapse
Affiliation(s)
- Alistair J Gunn
- Departments of Physiology and Paediatrics, University of Auckland, Auckland, New Zealand.
| | - Marianne Thoresen
- Department of Physiology University of Oslo, Oslo, Norway; Neonatal Neuroscience, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Amin P, Zaher S, Penketh R, Cherian S, Collis RE, Sanders J, Bhal K. Falling caesarean section rate and improving intra-partum outcomes: a prospective cohort study. J Matern Fetal Neonatal Med 2018; 32:2475-2480. [DOI: 10.1080/14767058.2018.1439006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Pina Amin
- Department of Obstetrics and Gynaecology, Child Health and Women’s Health Clinical Board, University Hospital of Wales, Cardiff, UK
| | - Summia Zaher
- Department of Obstetrics and Gynaecology, Child Health and Women’s Health Clinical Board, University Hospital of Wales, Cardiff, UK
| | - Richard Penketh
- Department of Obstetrics and Gynaecology, Child Health and Women’s Health Clinical Board, University Hospital of Wales, Cardiff, UK
| | - Sobha Cherian
- Department of Child Health, Child Health and Women’s Health Clinical Board, University Hospital of Wales, Cardiff, UK
| | - Rachel E. Collis
- Department of Obstetric Anaesthesia, Anaesthetics Clinical Board, University Hospital of Wales, Cardiff, UK
| | - Julia Sanders
- Midwifery Led Unit, University Hospital of Wales, Cardiff, UK
| | - Kiron Bhal
- Department of Urogynaeclogy, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
12
|
Parikh P, Juul SE. Neuroprotective Strategies in Neonatal Brain Injury. J Pediatr 2018; 192:22-32. [PMID: 29031859 DOI: 10.1016/j.jpeds.2017.08.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/26/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Pratik Parikh
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA
| | - Sandra E Juul
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA.
| |
Collapse
|
13
|
Jin M, Yang Y, Pan X, Lu J, Zhang Z, Cheng W. Effects of pulmonary static inflation with 50% xenon on oxygen impairment during cardiopulmonary bypass for stanford type A acute aortic dissection: A pilot study. Medicine (Baltimore) 2017; 96:e6253. [PMID: 28272227 PMCID: PMC5348175 DOI: 10.1097/md.0000000000006253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The goal of this study was to investigate the effects of pulmonary static inflation with 50% xenon on postoperative oxygen impairment during cardiopulmonary bypass (CPB) for Stanford type A acute aortic dissection (AAD). METHODS This prospective single-center nonrandomized controlled clinical trial included 100 adult patients undergoing surgery for Stanford type A AAD at an academic hospital in China. Fifty subjects underwent pulmonary static inflation with 50% oxygen from January 2013 to January 2014, and 50 underwent inflation with 50% xenon from January 2014 to December 2014. During CPB, the lungs were inflated with either 50% xenon (xenon group) or 50% oxygen (control group) to maintain an airway pressure of 5 cm H2O. The primary outcome was oxygenation index (OI) value after intubation, and 10 minutes and 6 hours after the operation. The second outcome was cytokine and reactive oxygen species levels after intubation and 10 minutes, 6 hours, and 24 hours after the operation. RESULTS Patients treated with xenon had lower OI levels compared to the control group before surgery (P = 0.002); however, there was no difference in postoperative values between the 2 groups. Following surgery, mean maximal OI values decreased by 18.8% and 33.8%, respectively, in the xenon and control groups. After surgery, the levels of interleukin-6 (IL-6), tumor necrosis factor alpha, and thromboxane B2 decreased by 23.5%, 9.1%, and 30.2%, respectively, in the xenon group, but increased by 10.8%, 26.2%, and 26.4%, respectively, in the control group. Moreover, IL-10 levels increased by 28% in the xenon group and decreased by 7.5% in the control group. There were significant time and treatment-time interaction effects on methane dicarboxylic aldehyde (P = 0.000 and P = 0.050, respectively) and myeloperoxidase (P = 0.000 and P = 0.001 in xenon and control groups, respectively). There was no difference in hospital mortality and 1-year survival rate between the 2 groups. CONCLUSION Pulmonary static inflation with 50% xenon during CPB could attenuate OI decreases at the end of surgery for Stanford type A AAD. Thus, xenon may function by triggering anti-inflammatory responses and suppressing pro-inflammatory and oxidative effects.
Collapse
Affiliation(s)
- Mu Jin
- Department of Anaesthesiology
| | | | - Xudong Pan
- Department of Cardiology Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, and Beijing Engineering Research Center of Vascular Prostheses, Beijing, China
| | | | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
14
|
Mueller M, Oppliger B, Joerger-Messerli M, Reinhart U, Barnea E, Paidas M, Kramer BW, Surbek DV, Schoeberlein A. Wharton's Jelly Mesenchymal Stem Cells Protect the Immature Brain in Rats and Modulate Cell Fate. Stem Cells Dev 2016; 26:239-248. [PMID: 27842457 DOI: 10.1089/scd.2016.0108] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of a mammalian brain is a complex and long-lasting process. Not surprisingly, preterm birth is the leading cause of death in newborns and children. Advances in perinatal care reduced mortality, but morbidity still represents a major burden. New therapeutic approaches are thus desperately needed. Given that mesenchymal stem/stromal cells (MSCs) emerged as a promising candidate for cell therapy, we transplanted MSCs derived from the Wharton's Jelly (WJ-MSCs) to reduce the burden of immature brain injury in a murine animal model. WJ-MSCs transplantation resulted in protective activity characterized by reduced myelin loss and astroglial activation. WJ-MSCs improved locomotor behavior as well. To address the underlying mechanisms, we tested the key regulators of responses to DNA-damaging agents, such as cyclic AMP-dependent protein kinase/calcium-dependent protein kinase (PKA/PKC), cyclin-dependent kinase (CDK), ataxia-telangiectasia-mutated/ATM- and Rad3-related (ATM/ATR) substrates, protein kinase B (Akt), and 14-3-3 binding protein partners. We characterized WJ-MSCs using a specific profiler polymerase chain reaction array. We provide evidence that WJ-MSCs target pivotal regulators of the cell fate such as CDK/14-3-3/Akt signaling. We identified leukemia inhibitory factor as a potential candidate of WJ-MSCs' induced modifications as well. We hypothesize that WJ-MSCs may exert adaptive responses depending on the type of injury they are facing, making them prominent candidates for cell therapy in perinatal injuries.
Collapse
Affiliation(s)
- Martin Mueller
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland .,3 Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine , New Haven, Connecticut
| | - Byron Oppliger
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| | - Marianne Joerger-Messerli
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| | - Ursula Reinhart
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| | - Eytan Barnea
- 4 Society for the Investigation of Early Pregnancy and BioIncept LLC , Cherry Hill, New Jersey
| | - Michael Paidas
- 3 Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine , New Haven, Connecticut
| | - Boris W Kramer
- 5 Department of Pediatrics, Maastricht University Medical Center (MUMC) , Maastricht, the Netherlands .,6 Division Neuroscience, Department of Neuropsychology, School of Mental Health and Neuroscience (MHeNS), Maastricht University , Maastricht, the Netherlands
| | - Daniel V Surbek
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| | - Andreina Schoeberlein
- 1 Department of Clinical Research, University of Bern , Bern, Switzerland .,2 Department of Obstetrics and Gynecology, University of Bern , Bern, Switzerland
| |
Collapse
|
15
|
Sneyd J. Time to move the goalposts? Do we need new targets for developing i.v. anaesthetics? Br J Anaesth 2016; 117:684-687. [DOI: 10.1093/bja/aew330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
Yıldız EP, Ekici B, Tatlı B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother 2016; 17:449-459. [PMID: 27830959 DOI: 10.1080/14737175.2017.1259567] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Hypoxic ischemic encephalopathy (HIE) is the most important reason for morbidity and mortality in term-born infants. Understanding pathophysiology of the brain damage is essential for the early detection of patients with high risk for HIE and development of strategies for their treatments. Areas covered: This review discusses pathophysiology of the neonatal HIE and its treatment options, including hypothermia, melatonin, allopurinol, topiramate, erythropoietin, N-acetylcyctein, magnesium sulphate and xenon. Expert commentary: Several clinical studies have been performed in order to decrease the risk of brain injury due to difficulties in the early diagnosis and treatment, and to develop strategies for better long-term outcomes. Although currently standard treatment methods include therapeutic hypothermia for neonates with moderate to severe HIE, new supportive options are needed to enhance neuroprotective effects of the hypothermia, which should aim to reduce production of the free radicals and to have anti-inflammatory and anti-apoptotic actions.
Collapse
Affiliation(s)
| | - Barış Ekici
- b Department of Pediatric Neurology , Liv Hospital , Istanbul , Turkey
| | - Burak Tatlı
- a Department of Pediatric Neurology , Istanbul University , Istanbul , Turkey
| |
Collapse
|
17
|
McAdams RM, Juul SE. Neonatal Encephalopathy: Update on Therapeutic Hypothermia and Other Novel Therapeutics. Clin Perinatol 2016; 43:485-500. [PMID: 27524449 PMCID: PMC4987711 DOI: 10.1016/j.clp.2016.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neonatal encephalopathy (NE) is a major cause of neonatal mortality and morbidity. Therapeutic hypothermia (TH) is standard treatment for newborns at 36 weeks of gestation or greater with intrapartum hypoxia-related NE. Term and late preterm infants with moderate to severe encephalopathy show improved survival and neurodevelopmental outcomes at 18 months of age after TH. TH can increase survival without increasing major disability, rates of an IQ less than 70, or cerebral palsy. Neonates with severe NE remain at risk of death or severe neurodevelopmental impairment. This review discusses the evidence supporting TH for term or near term neonates with NE.
Collapse
|
18
|
Barnea E, Almogi-Hazan O, Or R, Mueller M, Ria F, Weiss L, Paidas M. Immune regulatory and neuroprotective properties of preimplantation factor: From newborn to adult. Pharmacol Ther 2015; 156:10-25. [DOI: 10.1016/j.pharmthera.2015.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ. Therapeutic Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy - Where to from Here? Front Neurol 2015; 6:198. [PMID: 26441818 PMCID: PMC4568393 DOI: 10.3389/fneur.2015.00198] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-ischemia before or around the time of birth occurs in approximately 2/1000 live births and is associated with a high risk of death or lifelong disability. Therapeutic hypothermia is now well established as standard treatment for infants with moderate to severe hypoxic-ischemic encephalopathy but is only partially effective. There is compelling preclinical and clinical evidence that hypothermia is most protective when it is started as early as possible after hypoxia-ischemia. Further improvements in outcome from therapeutic hypothermia are very likely to arise from strategies to reduce the delay before starting treatment of affected infants. In this review, we examine evidence that current protocols are reasonably close to the optimal depth and duration of cooling, but that the optimal rate of rewarming after hypothermia is unclear. The potential for combination treatments to augment hypothermic neuroprotection has considerable promise, particularly with endogenous targets such as melatonin and erythropoietin, and noble gases such as xenon. We dissect the critical importance of preclinical studies using realistic delays in treatment and clinically relevant cooling protocols when examining combination treatment, and that for many strategies overlapping mechanisms of action can substantially attenuate any effects.
Collapse
Affiliation(s)
- Joanne O Davidson
- The Department of Physiology, The University of Auckland , Auckland , New Zealand
| | - Guido Wassink
- The Department of Physiology, The University of Auckland , Auckland , New Zealand
| | | | - Laura Bennet
- The Department of Physiology, The University of Auckland , Auckland , New Zealand
| | - Alistair J Gunn
- The Department of Physiology, The University of Auckland , Auckland , New Zealand
| |
Collapse
|
20
|
Leigh S, Granby P, Turner M, Wieteska S, Haycox A, Collins B. The incidence and implications of cerebral palsy following potentially avoidable obstetric complications: a preliminary burden of disease study. BJOG 2014; 121:1720-8. [DOI: 10.1111/1471-0528.12897] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2014] [Indexed: 01/23/2023]
Affiliation(s)
- S Leigh
- Liverpool Health Economics; Management School; University of Liverpool; Liverpool UK
- Lifecode , the Old Vicarage; Lindley Huddersfield UK
| | - P Granby
- Liverpool Health Economics; Management School; University of Liverpool; Liverpool UK
- Lifecode , the Old Vicarage; Lindley Huddersfield UK
| | - M Turner
- Liverpool Women's NHS Foundation Trust; Merseyside UK
| | - S Wieteska
- The Advanced Life Support Group; ALSG Centre for Training & Development; Manchester UK
| | - A Haycox
- Liverpool Health Economics; Management School; University of Liverpool; Liverpool UK
| | - B Collins
- Liverpool Health Economics; Management School; University of Liverpool; Liverpool UK
| |
Collapse
|
21
|
Griesmaier E, Stock K, Medek K, Stanika RI, Obermair GJ, Posod A, Wegleiter K, Urbanek M, Kiechl-Kohlendorfer U. Levetiracetam increases neonatal hypoxic-ischemic brain injury under normothermic, but not hypothermic conditions. Brain Res 2014; 1556:10-8. [PMID: 24530252 DOI: 10.1016/j.brainres.2014.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 01/20/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) resulting from perinatal asphyxia often leads to severe neurologic impairment or even death. There is a need to advance therapy for infants with HIE, for example to combine hypothermia with pharmacological treatment strategies. Levetiracetam (LEV) is approved for clinical administration to infants older than 4 weeks of age and is also used off-label in neonates. Furthermore, LEV was shown to be neuroprotective in adult animal models of brain injury. AIM OF THE STUDY The aim of this study was to evaluate the neuroprotective potential of LEV in vitro using primary hippocampal neurons, and in vivo using an established model of neonatal hypoxic-ischemic brain injury. RESULTS LEV treatment per se did not induce neurotoxicity in the developing rodent brain. Following oxygen glucose deprivation, we observed some, although not a significant, increase in cell death after LEV treatment. In vivo, LEV was administered under normothermic and hypothermic conditions following hypoxic-ischemic brain damage. LEV administration significantly increased brain injury under normothermic conditions. Compared to the normothermia-treated group, in the hypothermia group LEV administration did not increase hypoxic-ischemic brain injury. DISCUSSION This study demonstrates that LEV treatment increases neonatal hypoxic-ischemic brain injury. Administration of LEV in the acute phase of the injury might interfere with the balanced activation and inactivation of excitatory and inhibitory receptors in the developing brain. The neurotoxic effect of LEV in the injured newborn brain might further suggest an agonistic effect of LEV on the GABAergic system. Hypothermia treatment attenuates glutamate release following hypoxic-ischemic brain injury and might therefore limit the potentially deleterious effects of LEV. As a consequence, our findings do not necessarily rule out a potentially beneficial effect, but argue for cautious use of LEV in newborn infants with pre-existing brain injury.
Collapse
Affiliation(s)
- Elke Griesmaier
- Department of Pediatrics II, Innsbruck Medical University, Austria.
| | - Katharina Stock
- Department of Pediatrics II, Innsbruck Medical University, Austria
| | - Katharina Medek
- Department of Pediatrics II, Innsbruck Medical University, Austria; Division of Experimental Dermatology and Eb House, Paracelsus Medical University, Salzburg, Austria
| | - Ruslan I Stanika
- Department of Physiology and Medical Physics, Innsbruck Medical University, Austria
| | - Gerald J Obermair
- Department of Physiology and Medical Physics, Innsbruck Medical University, Austria
| | - Anna Posod
- Department of Pediatrics II, Innsbruck Medical University, Austria
| | - Karina Wegleiter
- Department of Pediatrics II, Innsbruck Medical University, Austria
| | - Martina Urbanek
- Department of Pediatrics II, Innsbruck Medical University, Austria
| | | |
Collapse
|