1
|
Leal-Nazaré CG, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, Soares-Silva I, Crespo-Lopez ME, Augusto-Oliveira M. Methylmercury neurotoxicity: Beyond the neurocentric view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170939. [PMID: 38365040 DOI: 10.1016/j.scitotenv.2024.170939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Mercury is a highly toxic metal widely used in human activities worldwide, therefore considered a global public health problem. Many cases of mercury intoxication have occurred in history and represent a huge challenge nowadays. Of particular importance is its methylated form, methylmercury (MeHg). This mercurial species induces damage to several organs in the human body, especially to the central nervous system. Neurological impairments such as executive, memory, motor and visual deficits are associated with MeHg neurotoxicity. Molecular mechanisms involved in MeHg-induced neurotoxicity include excitotoxicity due to glutamatergic imbalance, disturbance in calcium homeostasis and oxidative balance, failure in synaptic support, and inflammatory response. Although neurons are largely affected by MeHg intoxication, they only represent half of the brain cells. Glial cells represent roughly 50 % of the brain cells and are key elements in the functioning of the central nervous system. Particularly, astrocytes and microglia are deeply involved in MeHg-induced neurotoxicity, resulting in distinct neurological outcomes depending on the context. In this review, we discuss the main findings on astroglial and microglial involvement as mediators of neuroprotective and neurotoxic responses to MeHg intoxication. The literature shows that these responses depend on chemical and morphophysiological features, thus, we present some insights for future investigations, considering the particularities of the context, including time and dose of exposure, brain region, and species of study.
Collapse
Affiliation(s)
- Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
2
|
de Paula Arrifano G, Crespo-Lopez ME, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, de Nazaré CGL, Freitas LGR, Augusto-Oliveira M. Neurotoxicity and the Global Worst Pollutants: Astroglial Involvement in Arsenic, Lead, and Mercury Intoxication. Neurochem Res 2023; 48:1047-1065. [PMID: 35997862 DOI: 10.1007/s11064-022-03725-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Environmental pollution is a global threat and represents a strong risk factor for human health. It is estimated that pollution causes about 9 million premature deaths every year. Pollutants that can cross the blood-brain barrier and reach the central nervous system are of special concern, because of their potential to cause neurological and development disorders. Arsenic, lead and mercury are usually ranked as the top three in priority lists of regulatory agencies. Against xenobiotics, astrocytes are recognised as the first line of defence in the CNS, being involved in virtually all brain functions, contributing to homeostasis maintenance. Here, we discuss the current knowledge on the astroglial involvement in the neurotoxicity induced by these pollutants. Beginning by the main toxicokinetic characteristics, this review also highlights the several astrocytic mechanisms affected by these pollutants, involving redox system, neurotransmitter and glucose metabolism, and cytokine production/release, among others. Understanding how these alterations lead to neurological disturbances (including impaired memory, deficits in executive functions, and motor and visual disfunctions), by revisiting the current knowledge is essential for future research and development of therapies and prevention strategies.
Collapse
Affiliation(s)
- Gabriela de Paula Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Amanda Lopes-Araújo
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Letícia Santos-Sacramento
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Jean L Barthelemy
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Caio Gustavo Leal de Nazaré
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Luiz Gustavo R Freitas
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
3
|
Pamies D, Vujić T, Schvartz D, Boccard J, Repond C, Nunes C, Rudaz S, Sanchez JC, González-Ruiz V, Zurich MG. Digoxin Induces Human Astrocyte Reaction In Vitro. Mol Neurobiol 2023; 60:84-97. [PMID: 36223047 PMCID: PMC9758102 DOI: 10.1007/s12035-022-03057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 12/30/2022]
Abstract
Astrocyte reaction is a complex cellular process involving astrocytes in response to various types of CNS injury and a marker of neurotoxicity. It has been abundantly studied in rodents but relatively poorly in human cells due to limited access to the brain. Astrocytes play important roles in cerebral energy metabolism and are also key players in neuroinflammation. Astroglial metabolic and inflammatory changes have been reported with age, leading to the hypothesis that mitochondrial metabolism and inflammatory responses are interconnected. However, the relationship between energy metabolism and astrocyte reactivity in the context of neurotoxicity is not known. We hypothesized that changes in energy metabolism of astrocytes will be coupled to their activation by xenobiotics. Astrocyte reaction and associated energy metabolic changes were assessed by immunostaining, gene expression, proteomics, metabolomics, and extracellular flux analyses after 24 h of exposure of human ReN-derived astrocytes to digoxin (1-10 µM) or TNFα (30 ng/ml) used as a positive control. Strong astrocytic reaction was observed, accompanied by increased glycolysis at low concentrations of digoxin (0.1 and 0.5 µM) and after TNFα exposure, suggesting that increased glycolysis may be a common feature of reactive astrocytes, independent of the triggering molecule. In conclusion, whether astrocyte activation is triggered by cytokines or a xenobiotic, it is strongly tied to energy metabolism in human ReN-derived astrocytes. Increased glycolysis might be considered as an endpoint to detect astrocyte activation by potentially neurotoxic compounds in vitro. Finally, ReN-derived astrocytes may help to decipher mechanisms of neurotoxicity in ascertaining the ability of chemicals to directly target astrocytes.
Collapse
Affiliation(s)
- David Pamies
- Department of Biological Sciences, University of Lausanne, Lausanne, Switzerland ,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Tatjana Vujić
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland ,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Domitille Schvartz
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland ,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Julien Boccard
- Translational Biomarker Group, Department of Medicine, University of Geneva, Geneva, Switzerland ,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Cendrine Repond
- Department of Biological Sciences, University of Lausanne, Lausanne, Switzerland
| | - Carolina Nunes
- Department of Biological Sciences, University of Lausanne, Lausanne, Switzerland ,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- Translational Biomarker Group, Department of Medicine, University of Geneva, Geneva, Switzerland ,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Jean-Charles Sanchez
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland ,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Víctor González-Ruiz
- Translational Biomarker Group, Department of Medicine, University of Geneva, Geneva, Switzerland ,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Marie-Gabrielle Zurich
- Department of Biological Sciences, University of Lausanne, Lausanne, Switzerland ,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Shinoda Y, Akiyama M, Toyama T. Potential Association between Methylmercury Neurotoxicity and Inflammation. Biol Pharm Bull 2023; 46:1162-1168. [PMID: 37661394 DOI: 10.1248/bpb.b23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methylmercury (MeHg) is the causal substrate of Minamata disease and a major environmental toxicant. MeHg is widely distributed, mainly in the ocean, meaning its bioaccumulation in seafood is a considerable problem for human health. MeHg has been intensively investigated and is known to induce inflammatory responses and neurodegeneration. However, the relationship between MeHg-induced inflammatory responses and neurodegeneration is not understood. In the present review, we first describe recent findings showing an association between inflammatory responses and certain MeHg-unrelated neurological diseases caused by neurodegeneration. In addition, cell-specific MeHg-induced inflammatory responses are summarized for the central nervous system including those of microglia, astrocytes, and neurons. We also describe MeHg-induced inflammatory responses in peripheral cells and tissue, such as macrophages and blood. These findings provide a concept of the relationship between MeHg-induced inflammatory responses and neurodegeneration, as well as direction for future research of MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
5
|
Role of Candida albicans in Oral Carcinogenesis. PATHOPHYSIOLOGY 2022; 29:650-662. [PMID: 36548207 PMCID: PMC9786125 DOI: 10.3390/pathophysiology29040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oral carcinogenesis is also dependent on the balance of the oral microbiota. Candida albicans is a member oral microbiota that acts as an opportunistic pathogen along with changes in the epithelium that can predispose to premalignancy and/or malignancy. This systematic review uses the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines to analyze the role of Candida albicans in the process of oral carcinogenesis. Eleven articles qualified inclusion criteria, matched keywords, and provided adequate information about the carcinogenesis parameters of Candida albicans in oral cancer. Candida albicans in oral carcinogenesis can be seen as significant virulent factors for patients with oral squamous cell carcinoma (OSCC) or potentially malignant disorder (OPMD) with normal adjacent mucosa. Candida albicans have a role in the process of oral carcinogenesis concerning morphological phenotype changes in cell structure and genotype and contribute to the formation of carcinogenic substances that can affect cell development towards malignancy.
Collapse
|
6
|
Migneron-Foisy V, Muckle G, Jacobson JL, Ayotte P, Jacobson SW, Saint-Amour D. Impact of chronic exposure to legacy environmental contaminants on the corpus callosum microstructure: A diffusion MRI study of Inuit adolescents. Neurotoxicology 2022; 92:200-211. [PMID: 35995272 DOI: 10.1016/j.neuro.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Exposure to environmental contaminants is an important public health concern for the Inuit population of northern Québec, who have been exposed to mercury (Hg), polychlorinated biphenyls (PCBs) and lead (Pb). During the last 25 years, the Nunavik Child Development Study (NCDS) birth cohort has reported adverse associations between these exposures and brain function outcomes. In the current study, we aimed to determine whether contaminant exposure is associated with alterations of the corpus callosum (CC), which plays an important role in various cognitive, motor and sensory function processes. Magnetic resonance imaging (MRI) was administered to 89 NCDS participants (mean age ± SD = 18.4 ± 1.2). Diffusion-weighted imaging was assessed to characterize the microstructure of the CC white matter in 7 structurally and functionally distinct regions of interest (ROIs) using a tractography-based segmentation approach. The following metrics were computed: fiber tract density, fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). Multiple linear regression models adjusted for sex, age, current alcohol/drug use and fish nutrients (omega-3 fatty acids and selenium) were conducted to assess the association between diffusion-weighted imaging metrics and Hg, PCB 153 and Pb concentrations obtained at birth in the cord blood and postnatally (mean values from blood samples at 11 and 18 years of age). Exposures were not associated with fiber tract density. Nor were significant associations found with cord and postnatal blood Pb concentrations for FA. However, pre- and postnatal Hg and PCB concentrations were significantly associated with higher FA of several regions of the CC, namely anterior midbody, posterior midbody, isthmus, and splenium, with the most pronounced effects observed in the splenium. FA results were mainly associated with lower RD. This study shows that exposure to Hg and PCB 153 alters the posterior microstructure of the CC, providing neuroimaging evidence of how developmental exposure to environmental chemicals can impair brain function and behavior in late adolescence.
Collapse
Affiliation(s)
- Vincent Migneron-Foisy
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Québec, Québec, Canada; Centre de Recherche du CHUQ de Québec, Université Laval, Québec, Canada
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pierre Ayotte
- Department of Social and Preventive Medicine, Université Laval, Québec, Québec, Canada
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dave Saint-Amour
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada.
| |
Collapse
|
7
|
Phytocomplex of a Standardized Extract from Red Orange ( Citrus sinensis L. Osbeck) against Photoaging. Cells 2022; 11:cells11091447. [PMID: 35563752 PMCID: PMC9103794 DOI: 10.3390/cells11091447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
Excessive exposure to solar radiation is associated with several deleterious effects on human skin. These effects vary from the occasional simple sunburn to conditions resulting from chronic exposure such as skin aging and cancers. Secondary metabolites from the plant kingdom, including phenolic compounds, show relevant photoprotective activities. In this study, we evaluated the potential photoprotective activity of a phytocomplex derived from three varieties of red orange (Citrus sinensis (L.) Osbeck). We used an in vitro model of skin photoaging on two human cell lines, evaluating the protective effects of the phytocomplex in the pathways involved in the response to damage induced by UVA-B. The antioxidant capacity of the extract was determined at the same time as evaluating its influence on the cellular redox state (ROS levels and total thiol groups). In addition, the potential protective action against DNA damage induced by UVA-B and the effects on mRNA and protein expression of collagen, elastin, MMP1, and MMP9 were investigated, including some inflammatory markers (TNF-α, IL-6, and total and phospho NFkB) by ELISA. The obtained results highlight the capacity of the extract to protect cells both from oxidative stress—preserving RSH (p < 0.05) content and reducing ROS (p < 0.01) levels—and from UVA-B-induced DNA damage. Furthermore, the phytocomplex is able to counteract harmful effects through the significant downregulation of proinflammatory markers (p < 0.05) and MMPs (p < 0.05) and by promoting the remodeling of the extracellular matrix through collagen and elastin expression. This allows the conclusion that red orange extract, with its strong antioxidant and photoprotective properties, represents a safe and effective option to prevent photoaging caused by UVA-B exposure.
Collapse
|
8
|
Ferrer B, Suresh H, Santamaria A, Rocha JB, Bowman AB, Aschner M. The antioxidant role of STAT3 in methylmercury-induced toxicity in mouse hypothalamic neuronal GT1-7 cell line. Free Radic Biol Med 2021; 171:245-259. [PMID: 34010664 PMCID: PMC8217327 DOI: 10.1016/j.freeradbiomed.2021.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/27/2022]
Abstract
Oxidative stress, impairment of antioxidant defenses, and disruption of calcium homeostasis are associated with the toxicity of methylmercury (MeHg). Yet, the relative contribution and interdependence of these effects and other molecular mechanisms that mediate MeHg-induced neurotoxicity remain uncertain. The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates the expression of anti-apoptotic and cell cycle progression genes. In addition to its role in cell growth and survival, STAT3 regulates redox homeostasis and prevents oxidative stress by the modulation of nuclear genes that encode for electron transport complexes (ETC) and antioxidant enzymes. Here we tested the hypothesis that STAT3 contributes to the orchestration of the antioxidant defense response against MeHg injury. We show that MeHg (>1 μM) exposure induced STAT3 activation within 1 h and beyond in mouse hypothalamic neuronal GT1-7 cells in a concentration-and time-dependent manner. Pharmacological inhibition of STAT3 phosphorylation exacerbated MeHg-induced reactive oxygen species (ROS) production and antioxidant responses. Finally, treatment with the antioxidant Trolox demonstrated that MeHg-induced STAT3 activation is mediated, at least in part, by MeHg-induced ROS generation. Combined, our results demonstrated a role for the STAT3 signaling pathway as an early response to MeHg-induced oxidative stress.
Collapse
Affiliation(s)
- Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Harshini Suresh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA.
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
| | - João Batista Rocha
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA; IM Sechenov First Moscow State Medical University, Moscow, Russia, Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
9
|
Revisiting Astrocytic Roles in Methylmercury Intoxication. Mol Neurobiol 2021; 58:4293-4308. [PMID: 33990914 DOI: 10.1007/s12035-021-02420-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Intoxication by heavy metals such as methylmercury (MeHg) is recognized as a global health problem, with strong implications in central nervous system pathologies. Most of these neuropathological conditions involve vascular, neurotransmitter recycling, and oxidative balance disruption leading to accelerated decline in fine balance, and learning, memory, and visual processes as main outcomes. Besides neurons, astrocytes are involved in virtually all the brain processes and perform important roles in neurological response following injuries. Due to astrocytes' strategic functions in brain homeostasis, these cells became the subject of several studies on MeHg intoxication. The most heterogenous glial cells, astrocytes, are composed of plenty of receptors and transporters to dialogue with neurons and other cells and to monitor extracellular environment responding tightly through fluctuation of cytosolic ions. The overall toxicity of MeHg might be determined on the basis of the balance between MeHg-mediated injury to neurons and protective responses from astrocytes. Although the role of neurons in MeHg intoxication is relatively well-established, the role of the astrocytes is only beginning to be understood. In this review, we update the information on astroglial modulation of the MeHg-induced neurotoxicity, providing remarks on their protective and deleterious roles and insights for future studies.
Collapse
|
10
|
Malfa GA, Tomasello B, Acquaviva R, Mantia AL, Pappalardo F, Ragusa M, Renis M, Di Giacomo C. The Antioxidant Activities of Betula etnensis Rafin. Ethanolic Extract Exert Protective and Anti-diabetic Effects on Streptozotocin-Induced Diabetes in Rats. Antioxidants (Basel) 2020; 9:E847. [PMID: 32927638 PMCID: PMC7555603 DOI: 10.3390/antiox9090847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/26/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022] Open
Abstract
Pathophysiological mechanisms correlating diabetes mellitus with associated complications are still not completely clear, even though oxidative stress seems to play a pivotal role. Literature data suggest that cell damages induced by hyperglycemia, although multifactorial, have a common pathway in oxidative/nitrosative stress. The present study evaluated the effects of Betula etnensis Raf. bark extract, a plant belonging to the Betulaceae family endemic to Sicily, on oxidative stress and in preventing and/or retarding diabetes-associated complications in streptozotocin diabetic rats treated with the extract at dose of 0.5 g/kg body weight per day for 28 consecutive days. The extract administration significant decreased food and water intake, fasting blood glucose, weight loss and polyuria, compared with untreated diabetic animals. Furthermore, oxidative stress markers particularly, lipid hydroperoxides (LOOH) and nitrite/nitrate levels, non-proteic thiol groups (RSH), γ-glutamyl-cysteine-synthetase (γ-GCS) activities and expression, heme oxygenase-1 (HO-1), endothelial and inducible nitric oxide synthases (i-NOS e-NOS) expression, significantly changed by streptozocin treatment, were markedly restored both in plasma and tissues together with nuclear sirtuins activity (Sirt1). Results suggested that B. etnensis bark alcoholic extract is able to counteract oxidative stress and to ameliorate some general parameters related to diabetes.
Collapse
Affiliation(s)
- Giuseppe Antonio Malfa
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Barbara Tomasello
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Alfonsina La Mantia
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Francesco Pappalardo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Monica Ragusa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Marcella Renis
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| | - Claudia Di Giacomo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (B.T.); (A.L.M.); (F.P.); (M.R.); (C.D.G.)
| |
Collapse
|
11
|
Tomasello B, Di Mauro MD, Malfa GA, Acquaviva R, Sinatra F, Spampinato G, Laudani S, Villaggio G, Bielak-Zmijewska A, Grabowska W, Barbagallo IA, Liuzzo MT, Sbisà E, Forte MG, Di Giacomo C, Bonucci M, Renis M. Rapha Myr ®, a Blend of Sulforaphane and Myrosinase, Exerts Antitumor and Anoikis-Sensitizing Effects on Human Astrocytoma Cells Modulating Sirtuins and DNA Methylation. Int J Mol Sci 2020; 21:E5328. [PMID: 32727075 PMCID: PMC7432334 DOI: 10.3390/ijms21155328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Brain and other nervous system cancers are the 10th leading cause of death worldwide. Genome instability, cell cycle deregulation, epigenetic mechanisms, cytoarchitecture disassembly, redox homeostasis as well as apoptosis are involved in carcinogenesis. A diet rich in fruits and vegetables is inversely related with the risk of developing cancer. Several studies report that cruciferous vegetables exhibited antiproliferative effects due to the multi-pharmacological functions of their secondary metabolites such as isothiocyanate sulforaphane deriving from the enzymatic hydrolysis of glucosinolates. We treated human astrocytoma 1321N1 cells for 24 h with different concentrations (0.5, 1.25 and 2.5% v/v) of sulforaphane plus active myrosinase (Rapha Myr®) aqueous extract (10 mg/mL). Cell viability, DNA fragmentation, PARP-1 and γH2AX expression were examined to evaluate genotoxic effects of the treatment. Cell cycle progression, p53 and p21 expression, apoptosis, cytoskeleton morphology and cell migration were also investigated. In addition, global DNA methylation, DNMT1 mRNA levels and nuclear/mitochondrial sirtuins were studied as epigenetic biomarkers. Rapha Myr® exhibited low antioxidant capability and exerted antiproliferative and genotoxic effects on 1321N1 cells by blocking the cell cycle, disarranging cytoskeleton structure and focal adhesions, decreasing the integrin α5 expression, renewing anoikis and modulating some important epigenetic pathways independently of the cellular p53 status. In addition, Rapha Myr® suppresses the expression of the oncogenic p53 mutant protein. These findings promote Rapha Myr® as a promising chemotherapeutic agent for integrated cancer therapy of human astrocytoma.
Collapse
Affiliation(s)
- Barbara Tomasello
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Maria Domenica Di Mauro
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Giuseppe Antonio Malfa
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Fulvia Sinatra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95125 Catania, Italy; (F.S.); (S.L.); (G.V.)
| | - Giorgia Spampinato
- Services Center B.R.I.T. of the University of Catania, 95124 Catania, Italy;
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95125 Catania, Italy; (F.S.); (S.L.); (G.V.)
| | - Giusy Villaggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95125 Catania, Italy; (F.S.); (S.L.); (G.V.)
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland; (A.B.-Z.); (W.G.)
| | - Wioleta Grabowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland; (A.B.-Z.); (W.G.)
| | - Ignazio Alberto Barbagallo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | | | - Elisabetta Sbisà
- Institute of Biomedical Technologies -National Research Council Bari, 70126 Bari, Italy;
| | | | - Claudia Di Giacomo
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| | - Massimo Bonucci
- Association Research Center for Integrative Oncology Treatments (ARTOI), 00165 Rome, Italy;
| | - Marcella Renis
- Department of Drug Science, Section of Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (M.D.D.M.); (G.A.M.); (R.A.); (I.A.B.); (C.D.G.)
| |
Collapse
|
12
|
Taviano MF, Miceli N, Acquaviva R, Malfa GA, Ragusa S, Giordano D, Cásedas G, Les F, López V. Cytotoxic, Antioxidant, and Enzyme Inhibitory Properties of the Traditional Medicinal Plant Matthiola incana (L.) R. Br. BIOLOGY 2020; 9:E163. [PMID: 32668697 PMCID: PMC7407578 DOI: 10.3390/biology9070163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Matthiola incana (L.) R. Br. (Brassicaceae) is widely cultivated for ornamental purposes and utilized as a medicinal plant. In the present work, the hydroalcoholic extract from the aerial parts of this species has been evaluated in different bioassays in order to detect potential pharmacological applications. The cytotoxic capacity against the human colorectal adenocarcinoma (CaCo-2) and breast cancer (MCF-7) cell lines was tested using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The extract was investigated as a neuroprotective inhibitor of central nervous system (CNS) enzymes such as monoamine oxidase A, tyrosinase, acetylcholinesterase, and as a natural enzyme inhibitor of α-glucosidase and lipase involved in some metabolic disorders such as obesity or type 2 diabetes. The antioxidant ability was also evaluated in an enzymatic system (xanthine/xanthine oxidase assay). Results showed that the M. incana extract displayed moderate to low cytotoxicity vs. CaCo-2 cells. The extract acted as a superoxide radical scavenger and enzymatic inhibitor of monoamine oxidase A, tyrosinase, α-glucosidase, and lipase. The best results were found in the α-glucosidase assay, as M. incana hydroalcoholic extract was able to inhibit the enzyme α-glucosidase up to 100% without significant differences, compared to the antidiabetic drug acarbose. Matthiola incana has been demonstrated to exert different biological properties. These are important in order to consider this species as a source of bioactive compounds.
Collapse
Affiliation(s)
- Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Annunziata, University of Messina, 98168 Messina, Italy; (M.F.T.); (N.M.); (D.G.)
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Annunziata, University of Messina, 98168 Messina, Italy; (M.F.T.); (N.M.); (D.G.)
| | - Rosaria Acquaviva
- Department of Drug Science, Biochemistry Section, University of Catania, 95123 Catania, Italy; (R.A.); (G.A.M.)
| | - Giuseppe Antonio Malfa
- Department of Drug Science, Biochemistry Section, University of Catania, 95123 Catania, Italy; (R.A.); (G.A.M.)
| | - Salvatore Ragusa
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Deborah Giordano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Polo Annunziata, University of Messina, 98168 Messina, Italy; (M.F.T.); (N.M.); (D.G.)
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Zaragoza), Spain; (G.C.); (F.L.)
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Zaragoza), Spain; (G.C.); (F.L.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Zaragoza), Spain; (G.C.); (F.L.)
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
13
|
Miceli N, Cavò E, Ragusa M, Cacciola F, Mondello L, Dugo L, Acquaviva R, Malfa GA, Marino A, D’Arrigo M, Taviano MF. Brassica incana Ten. (Brassicaceae): Phenolic Constituents, Antioxidant and Cytotoxic Properties of the Leaf and Flowering Top Extracts. Molecules 2020; 25:E1461. [PMID: 32213889 PMCID: PMC7145283 DOI: 10.3390/molecules25061461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022] Open
Abstract
Brassica incana Ten. is an edible plant belonging to the Brassicaceae family. In this work, the phenolic composition and the antioxidant and cytotoxic properties of the hydroalcoholic extracts obtained from the leaves and the flowering tops of B. incana grown wild in Sicily (Italy) were studied for the first time. A total of 17 and 20 polyphenolic compounds were identified in the leaf and in the flowering top extracts, respectively, by HPLC-PDA-ESI-MS analysis. Brassica incana extracts showed in vitro antioxidant properties; the leaf extract displayed greater radical scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test than the flowering top extract (IC50 = 1.306 ± 0.049 mg/mL and 2.077 ± 0.011 mg/mL), which in turn had a stronger ferrous ion chelating ability than the other (IC50 = 0.232 ± 0.002 mg/mL and 1.147 ± 0.016 mg/mL). The cytotoxicity of the extracts against human colorectal adenocarcinoma (CaCo-2) and breast cancer (MCF-7) cell lines was evaluated through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the lactic dehydrogenase (LDH) release determination. The extracts showed cytotoxic efficacy against Caco-2 cells, with the flowering top extract being the most effective (about 90% activity at the highest concentration tested). In the brine shrimp lethality bioassay, the extracts exhibited no toxicity, indicating their potential safety.
Collapse
Affiliation(s)
- Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
| | - Emilia Cavò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Monica Ragusa
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy;
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, via Àlvaro del Portillo 21, 00128 Rome, Italy;
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Laura Dugo
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, via Àlvaro del Portillo 21, 00128 Rome, Italy;
| | - Rosaria Acquaviva
- Department of Drug Science, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy; (R.A.); (G.A.M.)
| | - Giuseppe Antonio Malfa
- Department of Drug Science, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy; (R.A.); (G.A.M.)
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
| | - Manuela D’Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
| |
Collapse
|
14
|
La Rosa GRM, Gattuso G, Pedullà E, Rapisarda E, Nicolosi D, Salmeri M. Association of oral dysbiosis with oral cancer development. Oncol Lett 2020; 19:3045-3058. [PMID: 32211076 PMCID: PMC7079586 DOI: 10.3892/ol.2020.11441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the leading cause of mortality for oral cancer. Numerous risk factors mainly related to unhealthy habits and responsible for chronic inflammation and infections have been recognized as predisposing factors for oral carcinogenesis. Recently, even microbiota alterations have been associated with the development of human cancers. In particular, some specific bacterial strains have been recognized and strongly associated with oral cancer development (Capnocytophaga gingivalis, Fusobacterium spp., Streptococcus spp., Peptostreptococcus spp., Porphyromonas gingivalis and Prevotella spp.). Several hypotheses have been proposed to explain how the oral microbiota could be involved in cancer pathogenesis by mainly paying attention to chronic inflammation, microbial synthesis of cancerogenic substances, and alteration of epithelial barrier integrity. Based on knowledge of the carcinogenic effects of dysbiosis, it was recently suggested that probiotics may have anti-tumoral activity. Nevertheless, few data exist with regard to probiotic effects on oral cancer. On this basis, the association between the development of oral cancer and oral dysbiosis is discussed focusing attention on the potential benefits of probiotics administration in cancer prevention.
Collapse
Affiliation(s)
- Giusy Rita Maria La Rosa
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, I-95125 Catania, Italy.,Department of Biomedical and Biotechnological Sciences, International PhD Program in Basic and Applied Biomedical Sciences, University of Catania, I-95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, International PhD Program in Basic and Applied Biomedical Sciences, University of Catania, I-95123 Catania, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Eugenio Pedullà
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, I-95125 Catania, Italy
| | - Ernesto Rapisarda
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, I-95125 Catania, Italy
| | - Daria Nicolosi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy.,Department of Biomedical and Biotechnological Sciences, Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
15
|
Tenuta MC, Deguin B, Loizzo MR, Dugay A, Acquaviva R, Malfa GA, Bonesi M, Bouzidi C, Tundis R. Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L. Antioxidants (Basel) 2020; 9:antiox9020184. [PMID: 32098404 PMCID: PMC7071084 DOI: 10.3390/antiox9020184] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
This study aims at investigating the contribution of two classes of compounds, flavonoids and iridoids, to the bioactivity of Arbutus unedo L. leaves and fruits. The impact of different extraction procedures on phytochemicals content and hypoglycemic, antioxidant, and nitric oxide (NO) inhibitory activities of A. unedo fresh and dried plant materials was investigated. Ellagic acid 4-O-β-D-glucopyranoside, kaempferol 3-O-glucoside, and norbergenin were identified for the first time in this genus by using liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-QTOF-MS). Three iridoids (gardenoside, geniposide, unedoside) are specifically identified in the leaves. Interestingly, asperuloside was extracted only from dried fruits by ethanol with Soxhlet apparatus. Extracts were screened for their potential antioxidant activities by using the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Activity Power (FRAP), and β-carotene bleaching tests. Based on the Global Antioxidant Score (GAS) calculation, the most promising antioxidant extract was obtained by hydroalcoholic maceration of dried leaves that showed half maximal inhibitory concentration (IC50) of 0.42 and 0.98 μg/mL in ABTS and DPPH assays, respectively. The hypoglycaemic activity was investigated by α-amylase and α-glucosidase inhibition tests. Extracts obtained by ethanol ultrasound extraction of fresh leaves and hydroalcoholic maceration of fresh fruits (IC50 of 19.56 and 28.42 μg/mL, respectively) are more active against α-glucosidase than the positive control acarbose (IC50 of 35.50 μg/mL). Fruit extracts exhibited the highest anti-inflammatory activity.
Collapse
Affiliation(s)
- Maria Concetta Tenuta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (Cosenza), Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
- Université de Paris, UFR de Pharmacie de Paris, U.M.R. n°8038, -CiTCoM- (CNRS, Université de Paris), F-75006 Paris, France; (A.D.); (C.B.)
| | - Brigitte Deguin
- Université de Paris, UFR de Pharmacie de Paris, U.M.R. n°8038, -CiTCoM- (CNRS, Université de Paris), F-75006 Paris, France; (A.D.); (C.B.)
- Correspondence:
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (Cosenza), Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| | - Annabelle Dugay
- Université de Paris, UFR de Pharmacie de Paris, U.M.R. n°8038, -CiTCoM- (CNRS, Université de Paris), F-75006 Paris, France; (A.D.); (C.B.)
| | - Rosaria Acquaviva
- Department of Drug Science - Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.A.); (G.A.M.)
| | - Giuseppe Antonio Malfa
- Department of Drug Science - Biochemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.A.); (G.A.M.)
| | - Marco Bonesi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (Cosenza), Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| | - Chouaha Bouzidi
- Université de Paris, UFR de Pharmacie de Paris, U.M.R. n°8038, -CiTCoM- (CNRS, Université de Paris), F-75006 Paris, France; (A.D.); (C.B.)
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (Cosenza), Italy; (M.C.T.); (M.R.L.); (M.B.); (R.T.)
| |
Collapse
|
16
|
Non-competitive heme oxygenase-1 activity inhibitor reduces non-small cell lung cancer glutathione content and regulates cell proliferation. Mol Biol Rep 2020; 47:1949-1964. [PMID: 32056044 DOI: 10.1007/s11033-020-05292-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death mainly due to its high metastatic rate. Impairment of redox homeostasis mechanisms has been previously described in NSCLC and is associated with the disease itself as well as with comorbidities such as smoking. The aim of the present in vitro study was to evaluate the effect of selective and non-competitive inhibition of heme oxygenase-1 (HO-1) on cancer redox homeostasis with particular regards to glutathione (GSH) metabolism related enzymes. NSCLC cell line (A549) was treated with the HO-1 activity inhibitor VP13/47 (10 µM) and we further evaluated cell viability, apoptosis, mitochondrial dysfunction and oxidative stress. Our results showed that VP13/47 significantly reduced HO-1 expression and total HO activity thus, resulting in a significant reduction of cell viability, proliferation and increased apoptosis, mitochondrial dysfunction and oxidative stress. Consistently with increased oxidative stress, we also showed that reduced GSH was significantly decreased and such effect was also accompanied by a significant downregulation of the enzymes involved in its biosynthesis. Taken all together our results show that selective HO-1 inhibition significantly impairs NSCLC progression and may represent a possible pharmacological strategy for new chemotherapy agents.
Collapse
|
17
|
Calabrese EJ, Bhatia TN, Calabrese V, Dhawan G, Giordano J, Hanekamp YN, Kapoor R, Kozumbo WJ, Leak RK. Cytotoxicity models of Huntington’s disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacol Res 2019; 150:104371. [DOI: 10.1016/j.phrs.2019.104371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
|
18
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|
19
|
Concetta Scuto M, Mancuso C, Tomasello B, Laura Ontario M, Cavallaro A, Frasca F, Maiolino L, Trovato Salinaro A, Calabrese EJ, Calabrese V. Curcumin, Hormesis and the Nervous System. Nutrients 2019; 11:E2417. [PMID: 31658697 PMCID: PMC6835324 DOI: 10.3390/nu11102417] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Curcumin is a polyphenol compound extracted from the rhizome of Curcuma longa Linn (family Zingiberaceae) commonly used as a spice to color and flavor food. Several preclinical studies have suggested beneficial roles for curcumin as an adjuvant therapy in free radical-based diseases, mainly neurodegenerative disorders. Indeed, curcumin belongs to the family of hormetins and the enhancement of the cell stress response, mainly the heme oxygenase-1 system, is actually considered the common denominator for this dual response. However, evidence-based medicine has clearly demonstrated the lack of any therapeutic effect of curcumin to contrast the onset or progression of neurodegeneration and related diseases. Finally, the curcumin safety profile imposes a careful analysis of the risk/benefit balance prior to proposing chronic supplementation with curcumin.
Collapse
Affiliation(s)
- Maria Concetta Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
- Institute of Pharmacology, Catholic University of Sacred Heart, 00168 Roma, Italy.
| | - Barbara Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Andrea Cavallaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Francesco Frasca
- Department of Clinical and experimental Medicine, Division of Endocrinology, University of Catania, 95125 Catania, Italy.
| | - Luigi Maiolino
- Department of Medical and Surgery Sciences, University of Catania, 95125 Catania, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| |
Collapse
|
20
|
Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants (Basel) 2019; 8:antiox8100462. [PMID: 31597377 PMCID: PMC6827079 DOI: 10.3390/antiox8100462] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
The valorization of food wastes is a challenging opportunity for a green, sustainable, and competitive development of industry. Approximately 30 million m3 of olive mill wastewater (OMWW) are produced annually in the world as a by-product of the olive oil extraction process. In addition to being a serious environmental and economic issue because of their polluting load, OMWW can also represent a precious resource of high-added-value molecules such as polyphenols that show acclaimed antioxidant and anti-inflammatory activities and can find useful applications in the pharmaceutical industry. In particular, the possibility to develop novel nutraceutical ophthalmic formulations containing free radical scavengers would represent an important therapeutic opportunity for all inflammatory diseases of the ocular surface. In this work, different adsorbents were tested to selectively recover a fraction that is rich in polyphenols from OMWW. Afterward, cytotoxicity and antioxidant/anti-inflammatory activities of polyphenolic fraction were evaluated through in vitro tests. Our results showed that the fraction (0.01%) had no toxic effects and was able to protect cells against oxidant and inflammatory stimulus, reducing reactive oxygen species and TNF-α levels. Finally, a novel stable ophthalmic hydrogel containing a polyphenolic fraction (0.01%) was formulated and the technical and economic feasibility of the process at a pre-industrial level was investigated.
Collapse
|
21
|
Tomasello B, Malfa GA, La Mantia A, Miceli N, Sferrazzo G, Taviano MF, Di Giacomo C, Renis M, Acquaviva R. Anti-adipogenic and anti-oxidant effects of a standardised extract of Moro blood oranges (Citrus sinensis (L.) Osbeck) during adipocyte differentiation of 3T3-L1 preadipocytes. Nat Prod Res 2019; 35:2660-2667. [DOI: 10.1080/14786419.2019.1660337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Tomasello
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | | | - Alfonsina La Mantia
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Claudia Di Giacomo
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Marcella Renis
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug Science, Biochemistry Section, University of Catania, Catania, Italy
| |
Collapse
|
22
|
Betula etnensis Raf. (Betulaceae) Extract Induced HO-1 Expression and Ferroptosis Cell Death in Human Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20112723. [PMID: 31163602 PMCID: PMC6600233 DOI: 10.3390/ijms20112723] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Betula etnensis Raf. (Birch Etna) belonging to the Betulaceae family grows on the eastern slope of Etna. Many bioactive compounds present in Betula species are considered promising anticancer agents. In this study, we evaluated the effects of B. etnensis Raf. bark methanolic extract on a human colon cancer cell line (CaCo2). In order to elucidate the mechanisms of action of the extract, cellular redox status, cell cycle, and heme oxygenase-1 (HO-1) expression in ferroptosis induction were evaluated. Cell viability and proliferation were tested by tetrazolium (MTT) assayand cell cycle analysis, while cell death was evaluated by annexin V test and lactic dehydrogenase (LDH) release. Cellular redox status was assessed by measuring thiol groups (RSH) content, reactive oxygen species (ROS) production, lipid hydroperoxide (LOOH) levels and (γ-glutamylcysteine synthetase) γ-GCS and HO-1 expressions. The extract significantly reduced cell viability of CaCo2, inducing necrotic cell death in a concentration-depending manner. In addition, an increase in ROS levels and a decrease of RSH content without modulation in γ-GCS expression were detected, with an augmentation in LOOH levels and drastic increase in HO-1 expression. These results suggest that the B. etnensis Raf. extract promotes an oxidative cellular microenvironment resulting in CaCo2 cell death by ferroptosis mediated by HO-1 hyper-expression.
Collapse
|
23
|
Di Mauro MD, Tomasello B, Giardina RC, Dattilo S, Mazzei V, Sinatra F, Caruso M, D'Antona N, Renis M. Sugar and mineral enriched fraction from olive mill wastewater for promising cosmeceutical application: characterization, in vitro and in vivo studies. Food Funct 2018; 8:4713-4722. [PMID: 29165474 DOI: 10.1039/c7fo01363a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, agro-food by-products represent a potential low-cost source of biologically active ingredients which have been paid significant attention as nutraceuticals, medicine, food and cosmetics. In a previous study we evaluated the total sugars, metals and polyphenols of olive mill wastewater (OMWW) from a Cerasuola olive cultivar. In the present work we selectively recovered a sugar and mineral enriched fraction (SMEF) from Cerasuola OMWW by a green adsorption/desorption process. The SMEF was mainly found to be composed of monosaccharides and potassium by HPLC-ELSD and ICP-MS. The in vitro cytotoxicity on human fibroblasts, at different concentrations of the fraction, was investigated by MTT and comet assays. In addition, intracellular reactive oxygen species (ROS) production, apoptosis and cell morphological changes were examined. The physical stability of a formulation containing the SMEF (1% w/w) and its in vivo skin effects were also assessed.Our results highlighted that the SMEF showed a toxic effect at higher concentrations (i.e. cell viability reduction, DNA fragmentation and morphological alterations) well correlated with high ROS levels. Conversely, at low concentrations (0.5% and 1% w/w), no significant changes were observed. For the first time, through stability studies and in vivo tests, we also demonstrated that the SMEF formulation is stable and safe for topical application, since skin hydration improvement without negative effects was observed after 7 days of its use. Therefore, the SMEF has great potential to be used for cosmeceutical applications.
Collapse
Affiliation(s)
- Maria Domenica Di Mauro
- Department of Drug Sciences, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tian J, Luo Y, Chen W, Yang S, Wang H, Cui J, Lu Z, Lin Y, Bi Y. MeHg Suppressed Neuronal Potency of Hippocampal NSCs Contributing to the Puberal Spatial Memory Deficits. Biol Trace Elem Res 2016; 172:424-436. [PMID: 26743863 DOI: 10.1007/s12011-015-0609-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
Hippocampal neurogenesis-related structural damage, particularly that leading to defective adult cognitive function, is considered an important risk factor for neurodegenerative and psychiatric diseases. Normal differentiation of neurons and glial cells during development is crucial in neurogenesis, which is particularly sensitive to the environmental toxicant methylmercury (MeHg). However, the exact effects of MeHg on hippocampal neural stem cell (hNSC) differentiation during puberty remain unknown. This study investigates whether MeHg exposure induces changes in hippocampal neurogenesis and whether these changes underlie cognitive defects in puberty. A rat model of methylmercury chloride (MeHgCl) exposure (0.4 mg/kg/day, PND 5-PND 33, 28 days) was established, and the Morris water maze was used to assess cognitive function. Primary hNSCs from hippocampal tissues of E16-day Sprague-Dawley rats were purified, identified, and cloned. hNSC proliferation and differentiation and the growth and morphology of newly generated neurons were observed by MTT and immunofluorescence assays. MeHg exposure induced defects in spatial learning and memory accompanied by a decrease in number of doublecortin (DCX)-positive cells in the dentate gyrus (DG). DCX is a surrogate marker for newly generated neurons. Proliferation and differentiation of hNSCs significantly decreased in the MeHg-treated groups. MeHg attenuated microtubule-associated protein-2 (MAP-2) expression in neurons and enhanced the glial fibrillary acidic protein (GFAP)-positive cell differentiation of hNSCs, thereby inducing degenerative changes in a dose-dependent manner. Moreover, MeHg induced deficits in hippocampus-dependent spatial learning and memory during adolescence as a consequence of decreased generation of DG neurons. Our findings suggested that MeHg exposure could be a potential risk factor for psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianying Tian
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
- Basic Medical School, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China.
| | - Yougen Luo
- The Research Center of Neurodegenerative Diseases and Aging, Medical College of Jinggangshan University, Ji'an, Jiangxi, 343000, China
| | - Weiwei Chen
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Shengsen Yang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Hao Wang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Jing Cui
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Zhiyan Lu
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yuanye Lin
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yongyi Bi
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
| |
Collapse
|
25
|
Yang T, Xu Z, Liu W, Xu B, Deng Y. Protective effects of Alpha-lipoic acid on MeHg-induced oxidative damage and intracellular Ca2+dyshomeostasis in primary cultured neurons. Free Radic Res 2016; 50:542-56. [DOI: 10.3109/10715762.2016.1152362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|