1
|
Aggarwal A, Yadav B, Sharma N, Kaur R, Rishi V. Disruption of histone acetylation homeostasis triggers cognitive dysfunction in experimental diabetes. Neurochem Int 2023; 170:105592. [PMID: 37598859 DOI: 10.1016/j.neuint.2023.105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Epigenetic mechanisms related to diabetes-afflicted CNS complications are largely unknown. The present study investigated the role of histone acetylation mechanisms triggering cognitive dysfunction in the Type 1 and 2 diabetic mice model. Dynamic changes in diabetic parameters like fasting blood glucose levels, glucose tolerance test, and insulin levels were observed after the induction of diabetes. Cognitive performance was significantly diminished in T1D and T2D mice examined by the Morris water maze, novel object recognition test, and Y Maze as compared to controls. Histone profiling revealed a significant reduction in H3K9/14 and H4K12 acetylation in the cortex and hippocampus of T1D and T2D mice vs Controls. While histone deacetylase (HDAC) activity was significantly elevated in brain regions of T1D and T2D mice, the histone acetyltransferase (HAT) activity remain unchanged. Significantly increased HDAC 2, HDAC 3 protein and mRNA expression observed in T1D and T2D brain regions may corroborate for increased HDAC activity. No significant change was observed in protein and mRNA expression of HDAC 1, 5, 6, and 7 in diabetic brains. Reduced H3K9/14 and H4K12 acetylation paralleled transcriptional repression of memory-related markers BDNF, SYP, and PSD-95 in the cortex and hippocampus of T1D and T2D. Pharmacological inhibition of HDAC activity by Trichostatin A enhanced the cognitive changes observed in T1D and T2D by ameliorating BDNF, SYP, Psd-95. The present study provides a better insight into molecular mechanisms related to diabetes-dependent memory changes that can help to generate new advances for therapeutics to be developed in this area.
Collapse
Affiliation(s)
- Aanchal Aggarwal
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India.
| | - Binduma Yadav
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India; Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Nishtha Sharma
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India
| | - Raminder Kaur
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India; Department of Biotechnology, Sector-25, BMS Block I, Panjab University, Chandigarh, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, Knowledge City, Sector-81, SAS Nagar, Punjab, India.
| |
Collapse
|
2
|
Wang K, Jiang Z, Yu X, Shao Y, Liu H, Wu S, Kong L, Wang Z. Comparative efficacy and safety of traditional Chinese patent medicine for cognitive dysfunction in diabetic cognitive dysfunction: A protocol for systematic review and Bayesian network meta-analysis. Medicine (Baltimore) 2022; 101:e28946. [PMID: 35451386 PMCID: PMC8913128 DOI: 10.1097/md.0000000000028946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND More and more studies have shown that cognitive dysfunction is one of the main complications of diabetes. The disorder of glucose and lipid metabolism seriously damages brain function and accelerates the conversion to dementia. At present, there are no drugs that can directly treat diabetic cognitive dysfunction. All drugs for the treatment of this disease achieve the purpose of treatment through strict control of blood sugar levels. This method has great limitations. Traditional Chinese patent medicines (TCPMs) work through multiple targets and multiple pathways, which can not only effectively correct the state of glucose and lipid metabolism disorders, but also significantly improve cognitive ability, but there is a lack of systematic evaluation of their effectiveness and safety. We use the method of network meta-analysis to systematically and comprehensively compare the effectiveness and safety of different Chinese patent medicines. METHODS We will comprehensively search the following databases, including Web of Science, PubMed, The Cochrane Library, EMBASE, China National Knowledge Infrastructure, Chinese Scientific Journals Database, Wanfang database and China BioMedical Literature. We will include all randomized controlled trials that meet the inclusion criteria, starting from the establishment of the database until September 2021. Two researchers will independently screen the literature based on inclusion criteria. While extracting data, we also assess the risk of bias in the included studies. All the data and evidence obtained will be evaluated by the method of Bayesian network meta-analysis. RESULTS This study will evaluate the effectiveness and safety of various TCPMs for diabetic cognitive dysfunction. CONCLUSION The results of this study will provide valuable references for the clinical application of TCPMs, and assist clinicians in formulating more reasonable diagnosis and treatment strategies. ETHICS AND DISSEMINATION This study does not require ethical approval. INTERNATIONAL PLATFORM OF REGISTERED SYSTEMATIC REVIEW AND METAANALYSIS PROTOCOLS REGISTRATION NUMBER INPLASY202190008.
Collapse
Affiliation(s)
- Kai Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Zhenyuan Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xiaowen Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuze Shao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Hailiang Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Susu Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Linghui Kong
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Zhonglin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Ma T, Wang YY, Lu Y, Feng L, Yang YT, Li GH, Li C, Chu Y, Wang W, Zhang H. Inhibition of Piezo1/Ca 2+/calpain signaling in the rat basal forebrain reverses sleep deprivation-induced fear memory impairments. Behav Brain Res 2022; 417:113594. [PMID: 34560129 DOI: 10.1016/j.bbr.2021.113594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 01/21/2023]
Abstract
In this study, we tested the hypothesis that the Piezo1/Ca2+/calpain pathway of the basal forebrain (BF) modulates impaired fear conditioning caused by sleep deprivation. Adult male Wistar rats were subjected to 6 h of total sleep deprivation using the gentle handling protocol. Step-down inhibitory avoidance tests revealed that sleep deprivation induced substantial short- and long-term fear memory impairment in rats, which was accompanied by increased Piezo1 protein expression (P < 0.01) and increased cleavage of full-length tropomyocin receptor kinase B (TrkB-FL) (P < 0.01) in the BF area. Microinjection of the Piezo1 activator Yoda1 into the BF mimicked these sleep deprivation-induced phenomena; TrkB-FL cleavage was increased (P < 0.01) and short- and long-term fear memory was impaired (both P < 0.01) by Yoda1. Inhibition of Piezo1 by GsMTx4 in the BF area reduced TrkB-FL degradation (P < 0.01) and partially reversed short- and long-term fear memory impairments in sleep-deprived rats (both P < 0.01). Inhibition of calpain activation, downstream of Piezo1 signaling, also improved short- and long-term fear memory impairments (P = 0.038, P = 0.011) and reduced TrkB degradation (P < 0.01) in sleep-deprived rats. Moreover, sleep deprivation induced a lower pain threshold than the rest control, which was partly reversed by microinjection of GsMTx4 or PD151746. Neither sleep deprivation nor the abovementioned drugs affected locomotion and sedation. Taken together, these results indicate that BF Piezo1/Ca2+/calpain signaling plays a role in sleep deprivation-induced TrkB signaling disruption and fear memory impairments in rats.
Collapse
Affiliation(s)
- Tao Ma
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Ying-Ying Wang
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan Lu
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Long Feng
- Department of Anesthesiology, PLA general hospital of Hainan Hospital, Hainan 572013, China
| | - Yi-Tian Yang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Guan-Hua Li
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Chi Li
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Yang Chu
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Wei Wang
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China.
| | - Hao Zhang
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China.
| |
Collapse
|
4
|
Ho JK, Nation DA. Cognitive benefits of angiotensin IV and angiotensin-(1-7): A systematic review of experimental studies. Neurosci Biobehav Rev 2018; 92:209-225. [PMID: 29733881 PMCID: PMC8916541 DOI: 10.1016/j.neubiorev.2018.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/23/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To explore effects of the brain renin-angiotensin system (RAS) on cognition. DESIGN Systematic review of experimental (non-human) studies assessing cognitive effects of RAS peptides angiotensin-(3-8) [Ang IV] and angiotensin-(1-7) [Ang-(1-7)] and their receptors, the Ang IV receptor (AT4R) and the Mas receptor. RESULTS Of 450 articles identified, 32 met inclusion criteria. Seven of 11 studies of normal animals found Ang IV had beneficial effects on tests of passive or conditioned avoidance and object recognition. In models of cognitive deficit, eight of nine studies found Ang IV and its analogs (Nle1-Ang IV, dihexa, LVV-hemorphin-7) improved performance on spatial working memory and passive avoidance tasks. Two of three studies examining Ang-(1-7) found it benefited memory. Mas receptor removal was associated with reduced fear memory in one study. CONCLUSION Studies of cognitive impairment show salutary effects of acute administration of Ang IV and its analogs, as well as AT4R activation. Brain RAS peptides appear most effective administered intracerebroventricularly, close to the time of learning acquisition or retention testing. Ang-(1-7) shows anti-dementia qualities.
Collapse
Affiliation(s)
- Jean K Ho
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Xu Y, Zhou H, Zhu Q. The Impact of Microbiota-Gut-Brain Axis on Diabetic Cognition Impairment. Front Aging Neurosci 2017; 9:106. [PMID: 28496408 PMCID: PMC5406474 DOI: 10.3389/fnagi.2017.00106] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/31/2017] [Indexed: 12/11/2022] Open
Abstract
Progressive cognitive dysfunction is a central characteristic of diabetic encephalopathy (DE). With an aging population, the incidence of DE is rising and it has become a major threat that seriously affects public health. Studies within this decade have indicated the important role of risk factors such as oxidative stress and inflammation on the development of cognitive impairment. With the recognition of the two-way communication between gut and brain, recent investigation suggests that “microbiota-gut-brain axis” also plays a pivotal role in modulating both cognition function and endocrine stability. This review aims to systemically elucidate the underlying impact of diabetes on cognitive impairment.
Collapse
Affiliation(s)
- Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau
| | - Quan Zhu
- Faculty of Chinese Medicine, Macau University of Science and TechnologyTaipa, Macau.,State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology)Taipa, Macau.,Laboratory for Bioassay and Molecular Pharmacology of Chinese Medicines, Macau Institute for Applied Research in Medicine and HealthTaipa, Macau.,Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney DiseasesGuangzhou, China
| |
Collapse
|
7
|
Braszko JJ. Indispensable role of the voltage-gated calcium channels in the procognitive effects of angiotensin IV. Brain Res Bull 2017; 130:118-124. [DOI: 10.1016/j.brainresbull.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/03/2017] [Indexed: 02/01/2023]
|
8
|
Zhou X, Zhu Q, Han X, Chen R, Liu Y, Fan H, Yin X. Quantitative-profiling of neurotransmitter abnormalities in the disease progression of experimental diabetic encephalopathy rat. Can J Physiol Pharmacol 2015; 93:1007-13. [PMID: 26426748 DOI: 10.1139/cjpp-2015-0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Diabetic encephalopathy (DE) is one of the most prevalent chronic complications of diabetes mellitus (DM), with neither effective prevention nor proven therapeutic regimen. This study aims to uncover the potential dysregulation pattern of the neurotransmitters in a rat model of streptozotocin (STZ)-induced experimental DE. For that purpose, male Sprague–Dawley (SD) rats were treated with a single intraperitoneal injection of STZ. Cognitive performance was detected with the Morris water maze (MWM) test. Serum, cerebrospinal fluid (CSF), and brain tissues were collected to measure the levels of neurotransmitters. Compared with the control rats, the acetylcholine (ACh) levels in serum, CSF, hippocampus, and cortex were all significantly down-regulated as early as 6 weeks in the STZ treatment group. In contrast, the glutamate (Glu) levels were decreased in CSF and the hippocampus, but unaffected in the serum and cortex of STZ-treated rats. As for γ-aminobutyric acid (GABA), it was down-regulated in serum, but up-regulated in CSF, hippocampus, and the cortex in the STZ-treated group. The mRNA expressions of neurotransmitter-related rate limiting enzymes (including AChE, GAD1, and GAD2) and pro-inflammatory cytokines (including IL-1β and TNF-α) were all increased in the DE rats. Our data suggest that DM induces isoform-dependent and tissue-specific neurotransmitter abnormalities, and that neuroinflammation may underlay the nervous system dysfunction observed in the progression of DE.
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Qiuxiang Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Xiaowen Han
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Renguo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Yaowu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Huaihai West Road 99, 221004 Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, 209 Tongshan Road, 221004 Xuzhou, China
| |
Collapse
|