1
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Kuang X, Zhao W, Wang Q, Sun Z, Xu F, Geng R, Li B, Zheng T, Zheng Q. RNA-seq analysis highlights DNA replication and DNA repair associated with early-onset hearing loss in the cochlea of DBA/2J mice. Life Sci 2024; 337:122350. [PMID: 38103727 DOI: 10.1016/j.lfs.2023.122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
AIMS Age-related hearing loss (ARHL) is a significant health concern, and DBA/2J (D2) and C57BL/6 (B6) mouse strains serve as valuable models for its study. B6 mice, harboring a homozygous ahl allele in Cdh23, manifest high-frequency hearing loss at 3 months. In contrast, D2 mice, carrying the R109H variant of the Fascin-2 gene (Fscn2), experience early-onset hearing loss by 3 weeks. Yet, the underlying molecular mechanisms driving early-onset hearing loss in D2 mice remain elusive. This study aimed to identify novel genes and regulatory pathways as therapeutic targets for early deafness. MAIN METHODS This study employs RNA-sequencing (RNA-seq) to analyze cochlear mRNA expression at two different ages in D2 and B6 mice, respectively. The differentially expressed genes (DEGs) are uniquely associated with D2 mice by Venn diagram analysis. A protein-protein interaction (PPI) network is further constructed, followed by module analysis utilizing MCODE. Enrichment analysis of GO and KEGG pathways revealed biological functions and molecular pathways. The PPI network and VarElect analysis are conducted for genes within these pathways, facilitating the identification of pivotal genes based on scoring criteria. Subsequently, five genes are meticulously selected and validated through qRT-PCR. KEY FINDINGS Notably, 1181 DEGs are uniquely associated with D2 mice by Venn diagram analysis. GO and KEGG pathway enrichment analyses shed light on distinctive pathways in D2 mice, encompassing DNA replication, mismatch repair, base excision repair, and nucleotide excision repair, which are associated with apoptosis. Five genes involved in these pathways were finally selected and validated by qRT-PCR. Their down-regulation with age is consistent with RNA-seq result. SIGNIFICANCE Our study underscores the potential implication of down-regulated genes associated with DNA replication and DNA damage repair in the early-onset hearing loss observed in D2 mice.
Collapse
Affiliation(s)
- Xiaojing Kuang
- School of Basic Medicine, Qingdao University, 266000 Qingdao, Shandong, China
| | - Wenben Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Qin Wang
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Zehua Sun
- Department of Radiology, Qindao University Medical College Affiliated Yantai Yuhuangding Hospital, 264000 Yantai, Shandong, China
| | - Fuyi Xu
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, 266000 Qingdao, Shandong, China; Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, 264000 Yantai, Shandong, China.
| |
Collapse
|
3
|
Castelli V, d'Angelo M, Zazzeroni F, Vecchiotti D, Alesse E, Capece D, Brandolini L, Cattani F, Aramini A, Allegretti M, Cimini A. Intranasal delivery of NGF rescues hearing impairment in aged SAMP8 mice. Cell Death Dis 2023; 14:605. [PMID: 37704645 PMCID: PMC10499813 DOI: 10.1038/s41419-023-06100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Hearing loss impacts the quality of life and affects communication resulting in social isolation and reduced well-being. Despite its impact on society and economy, no therapies for age-related hearing loss are available so far. Loss of mechanosensory hair cells of the cochlea is a common event of hearing loss in humans. Studies performed in birds demonstrating that they can be replaced following the proliferation and transdifferentiation of supporting cells, strongly pointed out on HCs regeneration as the main focus of research aimed at hearing regeneration. Neurotrophins are growth factors involved in neuronal survival, development, differentiation, and plasticity. NGF has been involved in the interplay between auditory receptors and efferent innervation in the cochlea during development. During embryo development, both NGF and its receptors are highly expressed in the inner ears. It has been reported that NGF is implicated in the differentiation of auditory gangliar and hair cells. Thus, it has been proposed that NGF administration can decrease neuronal damage and prevent hearing loss. The main obstacle to the development of hearing impairment therapy is that efficient means of delivery for selected drugs to the cochlea are missing. Herein, in this study NGF was administered by the intranasal route. The first part of the study was focused on a biodistribution study, which showed the effective delivery in the cochlea; while the second part was focused on analyzing the potential therapeutic effect of NGF in senescence-accelerated prone strain 8 mice. Interestingly, intranasal administration of NGF resulted protective in counteracting hearing impairment in SAMP8 mice, ameliorating hearing performances (analyzed by auditory brainstem responses and distortion product otoacoustic emission) and hair cells morphology (analyzed by microscopy analysis). The results obtained were encouraging indicating that the neurotrophin NGF was efficiently delivered to the inner ear and that it was effective in counteracting hearing loss.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Franca Cattani
- Dompé Farmaceutici Spa, Via Campo di Pile 1, L'Aquila, Italy
| | - Andrea Aramini
- Dompé Farmaceutici Spa, Via Campo di Pile 1, L'Aquila, Italy
| | | | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Liang Z, Gao M, Jia H, Han W, Zheng Y, Zhao Y, Yang H. Analysis of Clinical Efficacy and Influencing Factors of Nerve Growth Factor (NGF) Treatment for Sudden Sensorineural Hearing Loss. EAR, NOSE & THROAT JOURNAL 2023:1455613231181711. [PMID: 37381663 DOI: 10.1177/01455613231181711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Objective: This study aims to examine the clinical efficacy and prognostic factors associated with nerve growth factor (NGF) treatment for sudden sensorineural hearing loss (SSHL). Materials and methods: A retrospective analysis was conducted on the clinical data of 101 patients with moderate or more severe SSHL who underwent secondary treatment at Sun Yat-sen Memorial Hospital of Sun Yat-sen University between January 2019 and July 2020. Prior to treatment, all patients were assessed using Pure Tone Audiometry (PTA), auditory brainstem response, otoacoustic emission, temporal bone computed tomography, or inner ear magnetic resonance imaging. Fifty-seven patients received conventional systemic treatment and served as the control group, while 44 patients received NGF in conjunction with conventional systemic treatment, forming the experimental group. PTA results were compared between the two groups before treatment and at 1 week, 2 weeks, and 1 month post-treatment. Additionally, the impact of age, sex, affected side, hypertension, and other factors on patient prognosis was analyzed. Results: Both groups demonstrated significant PTA improvements following treatment, with a statistically significant difference (P < .05). The hearing recovery effective rate in the control group was 42.1%, while that of the experimental group reached 70.5%, with a statistically significant difference between the groups (P < .05). Most patients experienced notable hearing improvements 1 week after treatment, with some patients still showing progress 2 weeks post-treatment. Multifactor analysis revealed that hypertension and onset days were associated with treatment outcomes. Conclusion: Secondary treatment remains clinically significant for patients with SSHL who have not achieved a satisfactory response or show no clear improvement following initial treatment. The presence of hypertension and delayed treatment are negative factors related to treatment efficacy.
Collapse
Affiliation(s)
- Zhengrong Liang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Otolaryngology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, Guangdong, China
| | - Haiying Jia
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wenjing Han
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, Guangdong, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, Guangdong, China
| | - Yunfeng Zhao
- Department of Otolaryngology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ma P, Wang S, Geng R, Gong Y, Li M, Xie D, Dong Y, Zheng T, Li B, Zhao T, Zheng Q. MiR-29a-deficiency causes thickening of the basilar membrane and age-related hearing loss by upregulating collagen IV and laminin. Front Cell Neurosci 2023; 17:1191740. [PMID: 37275774 PMCID: PMC10232818 DOI: 10.3389/fncel.2023.1191740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory degenerative disease and can significantly impact the quality of life in elderly people. A previous study using GeneChip miRNA microarray assays showed that the expression of miR-29a changes with age, however, its role in hearing loss is still unclear. In this study, we characterized the cochlear phenotype of miR-29a knockout (miR-29a-/-) mice and found that miR-29a-deficient mice had a rapid progressive elevation of the hearing threshold from 2 to 5 months of age compared with littermate controls as measured by the auditory brainstem response. Stereocilia degeneration, hair cell loss and abnormal stria vascularis (SV) were observed in miR-29a-/- mice at 4 months of age. Transcriptome sequencing results showed elevated extracellular matrix (ECM) gene expression in miR-29a-/- mice. Both Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the key differences were closely related to ECM. Further examination with a transmission electron microscope showed thickening of the basilar membrane in the cochlea of miR-29a-/- mice. Five Col4a genes (Col4a1-a5) and two laminin genes (Lamb2 and Lamc1) were validated as miR-29a direct targets by dual luciferase assays and miR-29a inhibition assays with a miR-29a inhibitor. Consistent with the target gene validation results, the expression of these genes was significantly increased in the cochlea of miR-29a-/- mice, as shown by RT-PCR and Western blot. These findings suggest that miR-29a plays an important role in maintaining cochlear structure and function by regulating the expression of collagen and laminin and that the disturbance of its expression could be a cause of progressive hearing loss.
Collapse
Affiliation(s)
- Peng Ma
- School of Basic Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yongfeng Gong
- School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Mulan Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Yaning Dong
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Department of Hearing and Speech Rehabilitation, School of Special Education, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
6
|
Hong BN, Shin SW, Nam YH, Shim JH, Kim NW, Kim MC, Nuankaew W, Kwak JH, Kang TH. Amelioration of Sensorineural Hearing Loss through Regulation of Trpv1, Cacna1h, and Ngf Gene Expression by a Combination of Cuscutae Semen and Rehmanniae Radix Preparata. Nutrients 2023; 15:nu15071773. [PMID: 37049613 PMCID: PMC10097224 DOI: 10.3390/nu15071773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is a common condition that results from the loss of function of hair cells, which are responsible for converting sound into electrical signals within the cochlea and auditory nerve. Despite the prevalence of SNHL, a universally effective treatment has yet to be approved. To address this absence, the present study aimed to investigate the potential therapeutic effects of TS, a combination of Cuscutae Semen and Rehmanniae Radix Preparata. To this end, both in vitro and in vivo experiments were performed to evaluate the efficacy of TS with respect to SNHL. The results showed that TS was able to protect against ototoxic neomycin-induced damage in both HEI-OC1 cells and otic hair cells in zebrafish. Furthermore, in images obtained using scanning electron microscopy (SEM), an increase in the number of kinocilia, which was prompted by the TS treatment, was observed in the zebrafish larvae. In a noise-induced hearing loss (NIHL) mouse model, TS improved hearing thresholds as determined by the auditory brainstem response (ABR) test. Additionally, TS was found to regulate several genes related to hearing loss, including Trpv1, Cacna1h, and Ngf, as determined by quantitative real-time polymerase chain reaction (RT-PCR) analysis. In conclusion, the findings of this study suggest that TS holds promise as a potential treatment for sensorineural hearing loss. Further research is necessary to confirm these results and evaluate the safety and efficacy of TS in a clinical setting.
Collapse
Affiliation(s)
- Bin Na Hong
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-do, Republic of Korea
| | - Sung Woo Shin
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
| | - Youn Hee Nam
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-do, Republic of Korea
| | - Ji Heon Shim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-do, Republic of Korea
| | - Na Woo Kim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
- Invivotec Co., Ltd., Seongnam 13449, Gyeonggi-do, Republic of Korea
| | - Min Cheol Kim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
| | - Wanlapa Nuankaew
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Bieniussa L, Kahraman B, Skornicka J, Schulte A, Voelker J, Jablonka S, Hagen R, Rak K. Pegylated Insulin-Like Growth Factor 1 attenuates Hair Cell Loss and promotes Presynaptic Maintenance of Medial Olivocochlear Cholinergic Fibers in the Cochlea of the Progressive Motor Neuropathy Mouse. Front Neurol 2022; 13:885026. [PMID: 35720065 PMCID: PMC9203726 DOI: 10.3389/fneur.2022.885026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of “efferent auditory neuropathy.” Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Baran Kahraman
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Skornicka
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Schulte
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Kristen Rak
| |
Collapse
|
8
|
Li JT, Dong SQ, Qian T, Yang WB, Chen XJ. Mouse Nerve Growth Factor Injection and Progression Rate in Patients With Amyotrophic Lateral Sclerosis: An Observational Study. Front Neurol 2022; 13:829569. [PMID: 35250834 PMCID: PMC8891443 DOI: 10.3389/fneur.2022.829569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease with no curative treatment up to now. This study aims to analyze ALS progression of patients treated with mouse nerve growth factor (mNGF), as well as the effects, side effects, and adverse events of the therapy. Materials and Methods A retrospective, observational study was performed including 94 patients with ALS from July 2020 to July 2021. Thirty-two of them were treated with at least one course of mNGF on a regular riluzole use, and the rest 62 were treated with riluzole only. The declining rates of body mass index (BMI) and ALS Functional Rating Scale-Revised (ALSFRS-R) scores were compared between the two groups to indicate ALS progression. Results No significant differences in ALS progression indicated by the declining rates of BMI and ALSFRS-R score were observed between the two cohorts. ALS progression before and after the first treatment course of mNGF also showed no discernible difference. However, we noticed a moderate 62.7 and 25.1% reduction in the declining rate of BMI and ALSFRS-R motor subscore when comparing mNGF + riluzole treatment to riluzole only. The mNGF treatment was overall safe and well-tolerated, and a rare case of diarrhea was reported after mNGF injection. Conclusions Our study revealed that mNGF treatment was overall safe and well-tolerated in patients of ALS. Application of mNGF combined with regular riluzole treatment had no significant clinical effects on delaying ALS progression. Prospective cohort studies and randomized clinical trials based on larger cohorts and longer follow-up times are needed to make a more convincing conclusion.
Collapse
Affiliation(s)
- Jia-Tong Li
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Si-Qi Dong
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Ting Qian
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Bo Yang
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Xiang-Jun Chen
- Department of Neurology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- *Correspondence: Xiang-Jun Chen ; orcid.org/0000-0002-8108-9013
| |
Collapse
|
9
|
Ding W, Liu R, Shan R. Effect of gangliosides combined with mouse NGF on the expression of serum HIF-1α, NSE, and sICAM-1 levels in neonates with HIE. Am J Transl Res 2021; 13:10570-10577. [PMID: 34650728 PMCID: PMC8507039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE This study was intended to evaluate the effects of gangliosides combined with mouse nerve growth factor (NGF) on the expression of serum hypoxia-inducible factor-1α (HIF-1α), neuron-specific enolase (NSE), and soluble intercellular adhesion molecule-1 (sICAM-1) levels in neonates with ischemic-hypoxic encephalopathy (HIE). METHODS One hundred and thirty neonates with HIE admitted to our hospital from May 2017 to April 2019 were grouped into two groups according to the protocol of a randomized controlled trial, with 65 cases in each group. The control group received ganglioside treatment, while the combined group was treated with ganglioside + NGF for 2 weeks. RESULTS The total effective rate of treatment was higher in the combined group (90.77%) than in the control group (76.92%). The recovery time of sucking, consciousness, muscle tone and primitive reflexes was shorter in the combined group than in the control group, and the incidence of neurological sequelae was lower after 1 year in the combined group (4.62%) than in the control group (15.38%) (P < 0.05). CONCLUSION Gangliosides combined with NGF can promote the recovery of muscle tone and reduce neurological sequelae, which may possibly be achieved by repairing damaged neuronal cells, enhancing antioxidant enzyme activity, and promoting the regression of inflammation.
Collapse
Affiliation(s)
- Wenling Ding
- Qingdao UniversityQingdao City, Shandong Province, China
- Department of Neonatology, Weifang Hospital of Traditional Chinese MedicineWeifang City, Shandong Province, China
| | - Renchang Liu
- Department of Gastroenterology, Weifang Hospital of Traditional Chinese MedicineWeifang City, Shandong Province, China
| | - Ruobing Shan
- Neonatal Intensive Care Unit, Qingdao Women and Children’s HospitalQingdao City, Shandong Province, China
| |
Collapse
|
10
|
袁 金, 吴 德, 王 文, 段 军, 许 晓, 唐 久. A prospective randomized controlled study on mouse nerve growth factor in the treatment of global developmental delay in children. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:786-790. [PMID: 34511166 PMCID: PMC8428910 DOI: 10.7499/j.issn.1008-8830.2106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To study the clinical effect of mouse nerve growth factor (mNGF) in the treatment of children with global developmental delay (GDD). METHODS A prospective clinical trial was conducted in 60 children with GDD who were treated in the First Affiliated Hospital of Anhui Medical University between July 2016 and July 2017. These children were randomly divided into two groups: conventional rehabilitation treatment and mNGF treatment group (n=30 each). The children in the conventional rehabilitation treatment group were given neurodevelopmental therapy, and those in the mNGF treatment group were given mNGF treatment in addition to the treatment in the control group. The evaluation results of the Gesell Developmental Scale were compared between the two groups before and after treatment. RESULTS Before treatment and after 1.5 months of treatment, there was no significant difference in the developmental quotient (DQ) of each functional area of the Gesell Developmental Scale between the mNGF treatment and conventional rehabilitation treatment groups (P>0.05). After 3 months of treatment, the mNGF treatment group had significantly higher DQs of gross motor, fine motor, and personal-social interaction than the conventional rehabilitation treatment group (P˂0.05). The incidence rate of transient injection site pain after injection of mNGF was 7% (2/30), and there was no epilepsy or other serious adverse reactions. CONCLUSIONS In children with GDD, routine rehabilitation training combined with mNGF therapy can significantly improve their cognitive, motor, and social abilities.
Collapse
|
11
|
Stabenau KA, Zimmermann MT, Mathison A, Zeighami A, Samuels TL, Chun RH, Papsin BC, McCormick ME, Johnston N, Kerschner JE. RNA Sequencing and Pathways Analyses of Middle Ear Epithelia From Patients With Otitis Media. Laryngoscope 2021; 131:2590-2597. [PMID: 33844317 DOI: 10.1002/lary.29551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Otitis media (OM) is the most common pediatric diagnosis in the United States. However, our understanding of the molecular pathogenesis of OM remains relatively poor. Investigation of molecular pathways involved in OM may improve the understanding of this disease process and elucidate novel therapeutic targets. In this study, RNA sequencing (RNA-Seq) was used to discern cellular changes associated with OME compared to healthy middle ear epithelium (MEE). STUDY DESIGN Ex vivo case-control translational. METHODS Middle ear epithelia was collected from five pediatric patients diagnosed with OME undergoing tympanostomy tube placement and five otherwise healthy pediatric patients undergoing cochlear implantation. Specimens underwent RNA-Seq and pathways analyses. RESULTS A total of 1,292 genes exhibited differential expression in MEE from OME patients compared to controls including genes involved in inflammation, immune response to bacterial OM pathogens, mucociliary clearance, regulation of proliferation and transformation, and auditory cell differentiation. Top networks identified in OME were organismal injury and abnormalities, cell morphology, and auditory disease. Top Ingenuity canonical pathways identified were axonal guidance signaling, which contains genes associated with auditory development and disease and nicotine degradation II and III pathways. Associated upstream regulators included β-estradiol, dexamethasone, and G-protein-coupled estrogen receptor-1 (GPER1), which are associated with otoprotection or inflammation during insult. CONCLUSIONS RNA-Seq demonstrates differential gene expression in MEE from patients with OME compared to healthy controls with important implications for infection susceptibility, hearing loss, and a role for tobacco exposure in the development and/or severity of OME in pediatric patients. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Kaleigh A Stabenau
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Angela Mathison
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Atefeh Zeighami
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Tina L Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Robert H Chun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael E McCormick
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| |
Collapse
|
12
|
Szepesy J, Humli V, Farkas J, Miklya I, Tímár J, Tábi T, Gáborján A, Polony G, Szirmai Á, Tamás L, Köles L, Vizi ES, Zelles T. Chronic Oral Selegiline Treatment Mitigates Age-Related Hearing Loss in BALB/c Mice. Int J Mol Sci 2021; 22:2853. [PMID: 33799684 PMCID: PMC7999597 DOI: 10.3390/ijms22062853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15-45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.
Collapse
MESH Headings
- Administration, Oral
- Aging/physiology
- Animals
- Antiparkinson Agents/administration & dosage
- Antiparkinson Agents/pharmacology
- Auditory Threshold/drug effects
- Auditory Threshold/physiology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/physiopathology
- Humans
- Male
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Protective Agents/administration & dosage
- Protective Agents/pharmacology
- Selegiline/administration & dosage
- Selegiline/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Mice
Collapse
Affiliation(s)
- Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Viktória Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - János Farkas
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Ildikó Miklya
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Júlia Tímár
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, H-1089 Budapest, Hungary;
| | - Anita Gáborján
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gábor Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Ágnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - Elek Sylvester Vizi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (V.H.); (J.F.); (I.M.); (J.T.); (L.K.); (E.S.V.)
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| |
Collapse
|
13
|
An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice. Neural Plast 2020; 2020:8889264. [PMID: 32587610 PMCID: PMC7298343 DOI: 10.1155/2020/8889264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Inbred mouse models are widely used to study age-related hearing loss (AHL). Many genes associated with AHL have been mapped in a variety of strains. However, little is known about gene variants that have the converse function—protective genes that confer strong resistance to hearing loss. Previously, we reported that C57BL/6J (B6) and DBA/2J (D2) strains share a common hearing loss allele in Cdh23. The cadherin 23 (Cdh23) gene is a key contributor to early-onset hearing loss in humans. In this study, we tested hearing across a large family of 54 BXD strains generated from B6 to D2 crosses. Five of 54 strains maintain the normal threshold (20 dB SPL) even at 2 years old—an age at which both parental strains are essentially deaf. Further analyses revealed an age-related hearing protection (ahp) locus on chromosome 16 (Chr 16) at 57~76 Mb with a maximum LOD of 5.7. A small number of BXD strains at 2 years with good hearing correspond roughly to the percentage of humans who have good hearing at 90 years old. Further studies to define candidate genes in the ahp locus and related molecular mechanisms involved in age-related resilience or resistance to AHL are warranted.
Collapse
|
14
|
Hwang JH, Chen CC, Lee LY, Chiang HT, Wang MF, Chan YC. Hericium erinaceus enhances neurotrophic factors and prevents cochlear cell apoptosis in senescence accelerated mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
15
|
Radotić V, Bedalov A, Drviš P, Braeken D, Kovačić D. Guided growth with aligned neurites in adult spiral ganglion neurons cultured in vitro on silicon micro-pillar substrates. J Neural Eng 2019; 16:066037. [PMID: 31189144 DOI: 10.1088/1741-2552/ab2968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Assessment of the relationship between the topographical organization of silicon micro-pillar surfaces (MPS) on guidance and neural alignment of adult spiral ganglion neurons (SGN) and use of the otosurgical approach as an alternative for the extraction and isolation of SGNs from adult guinea pigs. APPROACH SGNs from adult guinea pigs were isolated using conventional and otosurgical approach for in vitro cell culturing on MPS of various micro-pillar widths (1-5.6 µm) and spacing (0.6-15 µm). Cell cultures were compared morphologically with neuronal cultures on control glass coverslips. MAIN RESULTS We found enhanced SGN in vitro cultures in MPS areas with small and intermediate inter-pillar spacing (from 0.6 µm to 3.2 µm) as well as in MPS areas with wider pillars (from 1.8 µm to 4 µm) compared to MPS flat zones and control glass coverslips. Scanning electron microscopy (SEM) images highlighted how neurites of SGNs follow straight lines by growing on top and between micro-pillars. Only micro-pillars with small and intermediate pillar spacings favor neurite alignment along preferred angles (30°, 90°, and 150°), while pillars with wider spacing produced less aligned neurites. We found propensity of adult SGNs grown on MPSs to attain more bipolar and multipolar morphologies. Additionally, we observed reduced interaction between neuronal and glial cells compared to control glass coverslips. Finally, we found that the otosurgical approach was more beneficial for SGN survival on glass coverslips and MPS flat surfaces than the conventional method. SIGNIFICANCE MPS with specific architecture supports the guided growth of adult SGNs in vitro and controls adult SGN development and behavior.
Collapse
Affiliation(s)
- Viktorija Radotić
- Faculty of Science, Department of Physics, Laboratory for Biophysics and Medical Neuroelectronics, University of Split, R.Boškovića 33, HR-21000 Split, Croatia. The Center of Research Excellence for Science and Technology Integrating Mediterranean region (STIM), University of Split, Poljička 35, HR-21000 Split, Croatia
| | | | | | | | | |
Collapse
|
16
|
Naz S, Friedman TB. Growth factor and receptor malfunctions associated with human genetic deafness. Clin Genet 2019; 97:138-155. [PMID: 31506927 DOI: 10.1111/cge.13641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
A variety of different signaling pathways are necessary for development and maintenance of the human auditory system. Normal hearing allows for the detection of soft sounds within the frequency range of 20 to 20 000 Hz, but more importantly to perceive the human voice frequency band of 250 to 6000 Hz. Loss of hearing is common, and is a clinically heterogeneous disorder that can be caused by environmental factors such as exposure to loud noise, infections and ototoxic drugs. In addition, variants of hundreds of genes have been reported to disrupt processes required for hearing. Noncoding regulatory variants and variants of additional genes necessary for hearing remain to be discovered as many individuals with inherited deafness are without a genetic diagnosis, despite the advent of whole exome sequencing. Here, we discuss in detail some of these deafness-causing variants of genes encoding a ligand or its receptor. Spotlighted in this review are three growth factor-receptor-pairs EDN3/EDNRB, HGF/MET and JAG/NOTCH, which individually are necessary for normal hearing. We also offer our perspective on unanswered questions, future challenges and potential opportunities for treatments emerging from molecular genetic and mechanistic studies of deafness due to these causes.
Collapse
Affiliation(s)
- Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|