1
|
Maissen-Abgottspon S, Steiner L, Muri R, Wijesinghe D, Jann K, Morishima Y, Hochuli M, Kreis R, Trepp R, Everts R. Effect of a four-week oral Phe administration on neural activation and cerebral blood flow in adults with early-treated phenylketonuria. Neuroimage Clin 2024; 43:103654. [PMID: 39146838 PMCID: PMC11367652 DOI: 10.1016/j.nicl.2024.103654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Phenylketonuria (PKU) is a rare inborn error of metabolism characterized by impaired catabolism of the amino acid phenylalanine (Phe) into tyrosine. Cross-sectional studies suggest slight alterations in cognitive performance and neural activation in adults with early-treated PKU. The influence of high Phe levels on brain function in adulthood, however, remains insufficiently studied. Therefore, we aimed to explore the effect of a four-week period of oral Phe administration - simulating a controlled discontinuation of Phe restriction and raising Phe to an off-diet scenario - on working memory-related neural activation and cerebral blood flow (CBF). METHODS We conducted a randomized, placebo-controlled, double-blind, crossover, non-inferiority trial to assess the effect of a high Phe load on working memory-related neural activation and CBF in early-treated adults with classical PKU. Twenty-seven patients with early-treated classical PKU were included and underwent functional magnetic resonance imaging (fMRI) of the working memory network and arterial spin labeling (ASL) MRI to assess CBF before and after a four-week intervention with Phe and placebo. At each of the four study visits, fMRI working memory task performance (reaction time and accuracy) and plasma Phe, tyrosine, and tryptophan levels were obtained. Additionally, cerebral Phe was determined by 1H-MR spectroscopy. RESULTS Plasma Phe and cerebral Phe were significantly increased after the Phe intervention. However, no significant effect of Phe compared to placebo was found on neural activation and CBF. Regarding fMRI task performance, a significant impact of the Phe intervention on 1-back reaction time was observed with slower reaction times following the Phe intervention, whereas 3-back reaction time and accuracy did not differ following the Phe intervention compared to the placebo intervention. CONCLUSION Results from this present trial simulating a four-week discontinuation of the Phe-restricted diet showed that a high Phe load did not uniformly affect neural markers and cognition in a statistically significant manner. These results further contribute to the discussion on safe Phe levels during adulthood and suggest that a four-week discontinuation of Phe-restricted diet does not demonstrate significant changes in brain function.
Collapse
Affiliation(s)
- Stephanie Maissen-Abgottspon
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Leonie Steiner
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Raphaela Muri
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland; Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Dilmini Wijesinghe
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Kay Jann
- Laboratory of Functional MRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Roland Kreis
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Roman Trepp
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Regula Everts
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Neuropediatrics, Development and Rehabilitation, University Children's Hospital, Inselspital, Bern, Switzerland.
| |
Collapse
|
2
|
Pardo J, Capdevila-Lacasa C, Segura B, Pané A, Montserrat C, de Talló Forga-Visa M, Moreno PJ, Garrabou G, Grau-Junyent JM, Junqué C. Volumetric brain reductions in adult patients with phenylketonuria and their relationship with blood phenylalanine levels. J Neurodev Disord 2024; 16:33. [PMID: 38907189 PMCID: PMC11193301 DOI: 10.1186/s11689-024-09553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Continued dietary treatment since early diagnosis through newborn screening programs usually prevents brain-related complications in phenylketonuria (PKU). However, subtle neurocognitive and brain alterations may be observed in some adult patients despite early treatment. Nevertheless, neuropsychological and neuroimaging studies in the field remain scarce. OBJECTIVES This work aimed to determine possible neuropsychological and structural brain alterations in treated adult patients with PKU. METHODS Thirty-five patients with PKU and 22 healthy controls (HC) underwent neuropsychological assessment and T1-weighted magnetic resonance imaging on a 3 T scanner. FreeSurfer (v.7.1) was used to obtain volumetric measures and SPSS (v27.0.1.0) was used to analyze sociodemographic, neuropsychological, volumetric, and clinical data (p < 0.05). RESULTS Adult patients with PKU showed significantly lower performance than HC in Full Scale IQ (t = 2.67; p = .010) from the WAIS-IV. The PKU group also showed significantly lower volumes than HC in the pallidum (U = 224.000; p = .008), hippocampus (U = 243.000; p = .020), amygdala (U = 200.000; p = .002), and brainstem (t = 3.17; p = .006) as well as in total cerebral white matter volume (U = 175.000; p = .001). Blood phenylalanine (Phe) levels in PKU patients were negatively correlated with the pallidum (r = -0.417; p = .013) and brainstem (r = -0.455, p = .006) volumes. CONCLUSIONS Adult patients with early-treated PKU showed significantly lower global intelligence than HC. Moreover, these patients showed reduced global white matter volume as well as reductions in the volume of several subcortical grey matter structures, which might be related to the existence of underlying neurodevelopmental alterations. Higher blood Phe levels were also negatively correlated with pallidum and brainstem, suggesting a higher vulnerability of these structures to Phe toxicity.
Collapse
Affiliation(s)
- Jèssica Pardo
- Institute of Neurosciences, Medical Psychology Unit, Department of Medicine, University of Barcelona, C/ Casanova 143, Barcelona, Catalonia, 08036, Spain
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain
| | - Clara Capdevila-Lacasa
- Institute of Neurosciences, Medical Psychology Unit, Department of Medicine, University of Barcelona, C/ Casanova 143, Barcelona, Catalonia, 08036, Spain
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain
| | - Bàrbara Segura
- Institute of Neurosciences, Medical Psychology Unit, Department of Medicine, University of Barcelona, C/ Casanova 143, Barcelona, Catalonia, 08036, Spain.
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain.
- Biomedical Research Networking Center On Neurodegenerative Diseases (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.
| | - Adriana Pané
- Biomedical Research Networking Center on Physiopathology of Obesity and Nutrition (CIBEROBN), Barcelona, Catalonia, Spain
- Endocrinology and Nutrition Department, Adult Inherited Metabolic Disorders Unit (UECMA), Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Montserrat
- Endocrinology and Nutrition Department, Adult Inherited Metabolic Disorders Unit (UECMA), Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Maria de Talló Forga-Visa
- Endocrinology and Nutrition Department, Adult Inherited Metabolic Disorders Unit (UECMA), Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| | - Pedro J Moreno
- Internal Medicine Department, Adult Inherited Metabolic Disorders Unit (UECMA), Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Inherited Metabolic Diseases and Muscle Disorders Research, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Glòria Garrabou
- Internal Medicine Department, Adult Inherited Metabolic Disorders Unit (UECMA), Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Inherited Metabolic Diseases and Muscle Disorders Research, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Josep M Grau-Junyent
- Internal Medicine Department, Adult Inherited Metabolic Disorders Unit (UECMA), Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
- Inherited Metabolic Diseases and Muscle Disorders Research, Centre de Recerca Biomèdica CELLEX - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Barcelona, Catalonia, Spain
| | - Carme Junqué
- Institute of Neurosciences, Medical Psychology Unit, Department of Medicine, University of Barcelona, C/ Casanova 143, Barcelona, Catalonia, 08036, Spain
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi I Sunyer (FRCB-IDIBAPS), Barcelona, Catalonia, Spain
- Biomedical Research Networking Center On Neurodegenerative Diseases (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Martínez-Pizarro A, Picó S, López-Márquez A, Rodriguez-López C, Montalvo E, Alvarez M, Castro M, Ramón-Maiques S, Pérez B, Lucas JJ, Richard E, Desviat LR. PAH deficient pathology in humanized c.1066-11G>A phenylketonuria mice. Hum Mol Genet 2024; 33:1074-1089. [PMID: 38520741 PMCID: PMC11153335 DOI: 10.1093/hmg/ddae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
We have generated using CRISPR/Cas9 technology a partially humanized mouse model of the neurometabolic disease phenylketonuria (PKU), carrying the highly prevalent PAH variant c.1066-11G>A. This variant creates an alternative 3' splice site, leading to the inclusion of 9 nucleotides coding for 3 extra amino acids between Q355 and Y356 of the protein. Homozygous Pah c.1066-11A mice, with a partially humanized intron 10 sequence with the variant, accurately recapitulate the splicing defect and present almost undetectable hepatic PAH activity. They exhibit fur hypopigmentation, lower brain and body weight and reduced survival. Blood and brain phenylalanine levels are elevated, along with decreased tyrosine, tryptophan and monoamine neurotransmitter levels. They present behavioral deficits, mainly hypoactivity and diminished social interaction, locomotor deficiencies and an abnormal hind-limb clasping reflex. Changes in the morphology of glial cells, increased GFAP and Iba1 staining signals and decreased myelinization are observed. Hepatic tissue exhibits nearly absent PAH protein, reduced levels of chaperones DNAJC12 and HSP70 and increased autophagy markers LAMP1 and LC3BII, suggesting possible coaggregation of mutant PAH with chaperones and subsequent autophagy processing. This PKU mouse model with a prevalent human variant represents a useful tool for pathophysiology research and for novel therapies development.
Collapse
Affiliation(s)
- Ainhoa Martínez-Pizarro
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
| | - Sara Picó
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Arístides López-Márquez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Claudia Rodriguez-López
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Elena Montalvo
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Mar Alvarez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Margarita Castro
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Santiago Ramón-Maiques
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Biomedicina de Valencia (IBV-CSIC), Jaume Roig, 11, 46010 València, Valencia, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), Pedro Rico, 6, 28029 Madrid, Spain
| |
Collapse
|
4
|
Wada Y, Totsune E, Mikami-Saito Y, Kikuchi A, Miyata T, Kure S. A method for phenylalanine self-monitoring using phenylalanine ammonia-lyase and a pre-existing portable ammonia detection system. Mol Genet Metab Rep 2023; 35:100970. [PMID: 37020603 PMCID: PMC10068251 DOI: 10.1016/j.ymgmr.2023.100970] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Phenylketonuria is an inborn error of phenylalanine metabolism caused by a phenylalanine hydroxylase deficiency. To prevent the occurrence of neurological symptoms and maternal complications resulting from phenylketonuria, patients must adhere to a strict diet therapy, tetrahydrobiopterin supplementation, or pegvaliase injection to maintain blood phenylalanine levels within a recommended range throughout their lives. Therefore, monitoring blood phenylalanine levels is necessary to determine the recent metabolic status of phenylalanine in patients with PKU; however, there are no available instruments for individuals to monitor their own blood phenylalanine levels using whole fingertip blood. We developed a phenylalanine monitoring system (designated as PheCheck) that included a pre-existing portable ammonia detection device and phenylalanine ammonia-lyase, which converts phenylalanine to trans-cinnamic acid and ammonia. This system was able to remove 86.7% ± 0.03% of the ammonia contained in fingertip blood and successfully reduce background ammonia levels. A good correlation was found between the estimated plasma phenylalanine levels detected by PheCheck and plasma phenylalanine levels detected by high-performance liquid chromatography (R2 0.97). The entire PheCheck process for measuring blood phenylalanine takes only 20 min. PheCheck can lay the foundation for home phenylalanine monitoring with high feasibility because all the components are easily accessible. Further studies with a more user-friendly PheCheck optimized for practice are needed to improve blood phenylalanine control, reduce the burden on patients and/or caregivers, and prevent the sequelae associated with phenylketonuria.
Collapse
Affiliation(s)
- Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Corresponding author at: Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Eriko Totsune
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yasuko Mikami-Saito
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Wang MW, Wu CJ, Zhang ZQ. Neurological and imaging phenotypes of adults with untreated phenylketonuria: new cases and literature review. J Neurol 2023:10.1007/s00415-023-11760-9. [PMID: 37162580 DOI: 10.1007/s00415-023-11760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVES Phenylketonuria (PKU) is the most prevalent congenital disease of amino acid metabolism. Neurological manifestations usually complicate PKU in untreated adult patients. This study describes neurological and imaging phenotypes of adult patients with untreated PKU. METHODS We investigated a cohort of 320 unrelated adult patients with suspected genetic leukoencephalopathies using whole-exome sequencing (WES). We analyzed the phenotypic features of adult PKU patients in our cohort and summarized cases reported in the literature. RESULTS We identified 10 patients in our cohort and 12 patients in the literature, who presented with neurological manifestations and were diagnosed with PKU in adulthood. Approximately 60% of these patients had onset of clinical features in adulthood. The most common neurological symptoms of patients presenting in adulthood were cognitive disturbance and spastic paralysis, followed by vision loss, cerebellar ataxia, weakness of limbs, and seizure. This differed from that of patients presenting with PKU features in childhood, who consistently had mental retardation with various neurological complications emerging during a broad age range. Imaging findings were similar between patients presenting with clinical features in childhood compared with adulthood, comprising symmetric periventricular white matter hyperintense on T2-weighted imaging and diffusion-weighted imaging predominantly in the parietal and occipital lobes. Also, normal brain imaging and diffuse leukoencephalopathies were observed in both patient groups. CONCLUSION PKU with clinical features presenting in adulthood is an atypical subtype and should be considered during diagnosis of adults with neurological symptoms and leukoencephalopathy. DWI seems to be most helpful to distinguish patients with PKU. Additionally, we demonstrate that PKU constitutes a part (3.1%) of adult genetic leukoencephalopathies.
Collapse
Affiliation(s)
- Meng-Wen Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Chu-Jun Wu
- Department of Neurology, Beijing Tiantan Hospital, National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4Th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zai-Qiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4Th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
6
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
7
|
Thomas L, Olson A, Romani C. The impact of metabolic control on cognition, neurophysiology, and well-being in PKU: A systematic review and meta-analysis of the within-participant literature. Mol Genet Metab 2023; 138:106969. [PMID: 36599257 DOI: 10.1016/j.ymgme.2022.106969] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Phenylketonuria (PKU) is a metabolic disease where Phenylalanine (Phe) rises much above normal levels. Cross-sectional and correlational studies provide valuable information on the importance of maintaining low blood-Phe to achieve good outcomes, but they may be confounded, at least partially, by differences in participant demographics. Moreover, the effect of Phe at older ages is difficult to ascertain because of strong associations between Phe levels across ages. Within-participant studies avoid confounding issues. We have reviewed these studies. We followed PRISMA guidelines to search the literature for studies reporting the impact of Phe changes within participants. Phe was either increased or decreased through diet relaxation/resumption or through pharmacological interventions. Forty-six separate articles reported, singly or in combination, results on cognition (N = 37), well-being (N = 22) and neurophysiological health (N = 14). For all studies, we established, in a binary way, whether a benefit of lower Phe was or was not demonstrated and compared numbers showing benefit versus a null or negative outcome. We then analyzed whether critical parameters (e.g., length of the study/condition for the change, size of Phe change achieved) influenced presence or absence of benefit. For a subset of studies that reported quantitative cognitive outcomes, we carried out a meta-analysis to estimate the size of change in cognitive performance associated with a change in Phe and its significance. There were significantly more studies with benefits than no benefits, both for cognitive and well-being outcomes, and a trend in this direction for neurophysiological outcomes. The meta-analysis showed a highly significant effect size both overall (0.55) and when studies with adults/adolescents were considered separately (0.57). There was some indication that benefits were easier to demonstrate when differences in Phe were larger and achieved across a longer period, but these effects were not always consistent. These results reinforce results from the literature by demonstrating the importance of lower Phe in children as well as in adolescents and adults, even when confounding factors in group composition are eliminated. The field would benefit from further studies where Phe levels are contrasted within-participants to ascertain how much Phe needs to be changed and for how long to see a difference and which measures demonstrate a difference (e.g., which cognitive tasks).
Collapse
|
8
|
Thau-Zuchman O, Pallier PN, Savelkoul PJM, Kuipers AAM, Verkuyl JM, Michael-Titus AT. High phenylalanine concentrations induce demyelination and microglial activation in mouse cerebellar organotypic slices. Front Neurosci 2022; 16:926023. [PMID: 36248632 PMCID: PMC9559601 DOI: 10.3389/fnins.2022.926023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Phenylketonuria (PKU) is an inborn error of metabolism. Mutations in the enzyme phenylalanine hydroxylase (PAH)-encoding gene lead to a decreased metabolism of the amino acid phenylalanine (Phe). The deficiency in PAH increases Phe levels in blood and brain. Accumulation of Phe can lead to delayed development, psychiatric problems and cognitive impairment. White matter (WM) damage is a neuropathological hallmark of PKU and can be seen even in early detected and treated PKU patients. The mechanisms linking high Phe concentrations to WM abnormalities remain unclear. We tested the effects of high Phe concentrations on myelin in three in vitro models of increasing complexity: two simple cell culture models and one model that preserves local brain tissue architecture, a cerebellar organotypic slice culture prepared from postnatal day (P) 8 CD-1 mice. Various Phe concentrations (0.1–10 mM) and durations of exposure were tested. We found no toxic effect of high Phe in the cell culture models. On the contrary, the treatment promoted the maturation of oligodendrocytes, particularly at the highest, non-physiological Phe concentrations. Exposure of cerebellar organotypic slices to 2.4 mM Phe for 21 days in vitro (DIV), but not 7 or 10 DIV, resulted in a significant decrease in myelin basic protein (MBP), calbindin-stained neurites, and neurites co-stained with MBP. Following exposure to a toxic concentration of Phe, a switch to the control medium for 7 days did not lead to remyelination, while very active remyelination was seen in slices following demyelination with lysolecithin. An enhanced number of microglia, displaying an activated type morphology, was seen after exposure of the slices to 2.4 mM Phe for 10 or 21 DIV. The results suggest that prolonged exposure to high Phe concentrations can induce microglial activation preceding significant disruption of myelin.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Patrick N. Pallier
- Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Patrick N. Pallier,
| | | | | | | | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Lotz-Havla AS, Katzdobler S, Nuscher B, Weiß K, Levin J, Havla J, Maier EM. Serum glial fibrillary acidic protein and neurofilament light chain in patients with early treated phenylketonuria. Front Neurol 2022; 13:1011470. [PMID: 36247773 PMCID: PMC9559705 DOI: 10.3389/fneur.2022.1011470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
To pave the way for healthy aging in early treated phenylketonuria (ETPKU) patients, a better understanding of the neurological course in this population is needed, requiring easy accessible biomarkers to monitor neurological disease progression in large cohorts. The objective of this pilot study was to investigate the potential of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) as blood biomarkers to indicate changes of the central nervous system in ETPKU. In this single-center cross-sectional study, GFAP and NfL concentrations in serum were quantified using the Simoa® multiplex technology in 56 ETPKU patients aged 6–36 years and 16 age matched healthy controls. Correlation analysis and hierarchical linear regression analysis were performed to investigate an association with disease-related biochemical parameters and retinal layers assessed by optical coherence tomography. ETPKU patients did not show significantly higher GFAP concentrations (mean 73 pg/ml) compared to healthy controls (mean 60 pg/ml, p = 0.140). However, individual pediatric and adult ETPKU patients had GFAP concentrations above the healthy control range. In addition, there was a significant association of GFAP concentrations with current plasma tyrosine concentrations (r = −0.482, p = 0.036), a biochemical marker in phenylketonuria, and the retinal inner nuclear layer volume (r = 0.451, p = 0.04). There was no evidence of NfL alterations in our ETPKU cohort. These pilot results encourage multicenter longitudinal studies to further investigate serum GFAP as a complementary tool to better understand and monitor neurological disease progression in ETPKU. Follow-up investigations on aging ETPKU patients are required to elucidate the potential of serum NfL as biomarker.
Collapse
Affiliation(s)
- Amelie S. Lotz-Havla
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Brigitte Nuscher
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Weiß
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Data Integration for Future Medicine (DIFUTURE) Consortium, LMU Munich, Munich, Germany
- *Correspondence: Joachim Havla
| | - Esther M. Maier
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Esther M. Maier
| |
Collapse
|
10
|
Minighin EC, de Sousa RCS, Ramos ALCC, Dias LTS, Labanca RA, de Araújo RLB. Evaluation of the Consumption of Fruits and Vegetables by Phenylketonurics in the Metabolic Control of Phenylalanine: An Integrative Review. J Med Food 2022; 25:487-494. [PMID: 35325557 DOI: 10.1089/jmf.2021.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive disease caused by variants in the gene that encodes phenylalanine hydroxylase (PAH), limiting the metabolism of phenylalanine (Phe). When PAH activity is absent or hindered, Phe is not converted to tyrosine, leading to an accumulation of Phe in the blood, which can cause serious neurological complications. Once PKU is diagnosed, treatment should be started immediately, and the basis for this is dietary restriction of foods with high levels of Phe, associated with the use of protein substitutes and intake of foods with low protein content. This restriction accompanies patients throughout their lives, making their diets unpalatable and monotonous, which represents a major challenge for health professionals and patients, considering that these factors favor food transgression. In this context, the objective of this work was to carry out an integrative review based on evidence regarding the intake of fruits and vegetables, by phenylketonurics, taking into account the greater or lesser tolerance to Phe. Since, some researchers have dedicated themselves to evaluating the biochemical effect of unrestricted consumption of fruits and vegetables at PKU, unifying the information in this regard. It was observed that the intake of vegetable protein by patients with PKU has shown to be promising since the studies indicate that the intake of these proteins does not present adverse effects to the metabolic control of the Phe.
Collapse
Affiliation(s)
- Elaine Carvalho Minighin
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pampulha Campus, Belo Horizonte, Minas Gerais, Brazil
| | - Roberto César Santos de Sousa
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pampulha Campus, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Luiza Coeli Cruz Ramos
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pampulha Campus, Belo Horizonte, Minas Gerais, Brazil
| | - Lorena Thais Souza Dias
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pampulha Campus, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Adriana Labanca
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pampulha Campus, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel Linhares Bello de Araújo
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pampulha Campus, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Borges AC, Broersen K, Leandro P, Fernandes TG. Engineering Organoids for in vitro Modeling of Phenylketonuria. Front Mol Neurosci 2022; 14:787242. [PMID: 35082602 PMCID: PMC8784555 DOI: 10.3389/fnmol.2021.787242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Phenylketonuria is a recessive genetic disorder of amino-acid metabolism, where impaired phenylalanine hydroxylase function leads to the accumulation of neurotoxic phenylalanine levels in the brain. Severe cognitive and neuronal impairment are observed in untreated/late-diagnosed patients, and even early treated ones are not safe from life-long sequelae. Despite the wealth of knowledge acquired from available disease models, the chronic effect of Phenylketonuria in the brain is still poorly understood and the consequences to the aging brain remain an open question. Thus, there is the need for better predictive models, able to recapitulate specific mechanisms of this disease. Human induced pluripotent stem cells (hiPSCs), with their ability to differentiate and self-organize in multiple tissues, might provide a new exciting in vitro platform to model specific PKU-derived neuronal impairment. In this review, we gather what is known about the impact of phenylalanine in the brain of patients and highlight where hiPSC-derived organoids could contribute to the understanding of this disease.
Collapse
Affiliation(s)
- Alice C. Borges
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Paula Leandro
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Tiago G. Fernandes,
| |
Collapse
|
12
|
Lotz-Havla AS, Weiß K, Schiergens K, Regenauer-Vandewiele S, Parhofer KG, Christmann T, Böhm L, Havla J, Maier EM. Optical Coherence Tomography to Assess Neurodegeneration in Phenylalanine Hydroxylase Deficiency. Front Neurol 2021; 12:780624. [PMID: 34956063 PMCID: PMC8703042 DOI: 10.3389/fneur.2021.780624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
In phenylalanine hydroxylase (PAH) deficiency, an easily feasible method to access the progression of neurodegeneration is warranted to contribute to current discussions on treatment indications and targets. The objective of the present study was to investigate whether optical coherence tomography (OCT) measures as markers of neurodegeneration differ between patients with PAH deficiency and healthy controls (HCs) according to phenotype and metabolic control. In this single-center cross-sectional study, 92 patients with different phenotypes of PAH deficiency [PAH deficiency not requiring treatment, early treated phenylketonuria (ETPKU), and late-diagnosed phenylketonuria (PKU)] compared with 76 HCs were examined using spectral-domain OCT. Indices of phenylalanine elevation and variability were correlated with OCT parameters. Late-diagnosed PKU patients showed reduced peripapillary retinal nerve fiber layer (pRNFL) thickness and combined ganglion cell and inner plexiform layer (GCIPL) volume. Adult ETPKU patients were found to have lower GCIPL volume (p = 0.016), which correlated with the indices of phenylalanine control. In pediatric ETPKU patients with poor metabolic control, pRNFL was significantly reduced (p = 0.004). Patients with PAH deficiency not requiring treatment did not exhibit retinal degeneration. Inner nuclear layer (INL) was significantly increased in the pediatric ETPKU patients, driven by those with current poor metabolic control (p = 0.006). Our data provide evidence of retinal neuroaxonal degeneration and INL swelling, depending on the phenotype, current age, and metabolic control. These findings suggest that OCT is suitable to investigate neurodegeneration in PKU and we propose OCT as a sensitive, reliable, safe, low-burden, and low-cost examination for future multicenter studies.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Weiß
- Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Schiergens
- Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Klaus G Parhofer
- Medical Department IV - Grosshadern, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tara Christmann
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Luise Böhm
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,Data Integration for Future Medicine (DIFUTURE) Consortium, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, LMU University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
13
|
Klaassen K, Djordjevic M, Skakic A, Kecman B, Drmanac R, Pavlovic S, Stojiljkovic M. Untreated PKU patients without intellectual disability: SHANK gene family as a candidate modifier. Mol Genet Metab Rep 2021; 29:100822. [PMID: 34900593 PMCID: PMC8639809 DOI: 10.1016/j.ymgmr.2021.100822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/06/2022] Open
Abstract
Phenylketonuria (PKU) is an inborn error of metabolism caused by variants in the phenylalanine hydroxylase (PAH) gene and it is characterized by excessively high levels of phenylalanine in body fluids. PKU is a paradigm for a genetic disease that can be treated and majority of developed countries have a population-based newborn screening. Thus, the combination of early diagnosis and immediate initiation of treatment has resulted in normal intelligence for treated PKU patients. Although PKU is a monogenic disease, decades of research and clinical practice have shown that the correlation between the genotype and corresponding phenotype is not simple at all. Attempts have been made to discover modifier genes for PKU cognitive phenotype but without any success so far. We conducted whole genome sequencing of 4 subjects from unrelated non-consanguineous families who presented with pathogenic mutations in the PAH gene, high blood phenylalanine concentrations and near-normal cognitive development despite no treatment. We used cross sample analysis to select genes common for more than one patient. Thus, the SHANK gene family emerged as the only relevant gene family with variants detected in 3 of 4 analyzed patients. We detected two novel variants, p.Pro1591Ala in SHANK1 and p.Asp18Asn in SHANK2, as well as SHANK2:p.Gly46Ser, SHANK2:p.Pro1388_Phe1389insLeuPro and SHANK3:p.Pro1716Thr variants that were previously described. Computational analysis indicated that the identified variants do not abolish the function of SHANK proteins. However, changes in posttranslational modifications of SHANK proteins could influence functioning of the glutamatergic synapses, cytoskeleton regulation and contribute to maintaining optimal synaptic density and number of dendritic spines. Our findings are linking SHANK gene family and brain plasticity in PKU for the first time. We hypothesize that variant SHANK proteins maintain optimal synaptic density and number of dendritic spines under high concentrations of phenylalanine and could have protective modifying effect on cognitive development of PKU patients.
Collapse
Affiliation(s)
- K Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - M Djordjevic
- Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - A Skakic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - B Kecman
- Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", Belgrade, Serbia
| | - R Drmanac
- Complete Genomics Incorporated, San Jose, California 95134, USA.,MGI, BGI-Shenzhen, Shenzhen 518083, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - S Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - M Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Hong S, Zhu T, Zheng S, Zhan X, Xu F, Gu X, Liang L. Gene expression profiles in the brain of phenylketonuria mouse model reversed by the low phenylalanine diet therapy. Metab Brain Dis 2021; 36:2405-2414. [PMID: 34524592 DOI: 10.1007/s11011-021-00818-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
To gain insight into the potential protective mechanisms of low phenylalanine diet (LPD) in phenylketonuria (PKU), gene expression profiles were studied in the cerebral cortex and hippocampus of a PKU mouse model (BTBR-Pahenu2). PKU mice were fed with low Phe diet (LPD-PKU group) and normal diet (PKU group). Wild-type mice were treated with normal diet (WT group) as control. After 12 weeks, we detected gene expression in the cerebral cortex and hippocampus of the three groups by RNA-sequencing, and then screened the differentially-expressed genes (DEGs) among the groups by bioinformatics analyses. We found that the transcriptional profiles of both cerebral cortex and hippocampus changed markedly between PKU and WT mice. Furthermore, LPD changed the transcriptional profiles of the cerebral cortex and the hippocampus of PKU mice significantly, especially in the cerebral cortex, with overlaps of genes that changed with the disease and altered by LPD treatment. In the cerebral cortex, hundreds of DEGs enriched in a wide spectrum of biological processes, molecular function, and cellular component, including nervous system development, axon development and guidance, calcium ion binding, modulation of chemical synaptic transmission, and regulation of protein kinase activity. In the hippocampus, the overlapping genes were enriched in positive regulation of long term synaptic, negative regulation of excitatory postsynaptic potential, positive regulation of synapse assembly. Our results showed that genes impaired in PKU and then rescued by LPD might indicate the potential protective capability of LPD in the PKU brain.
Collapse
Affiliation(s)
- Sha Hong
- Department of Neonatal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianwen Zhu
- Department of Neonatal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Zheng
- Department of Neonatal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665#, Shanghai, 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665#, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665#, Shanghai, 200092, China.
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665#, Shanghai, 200092, China.
| |
Collapse
|
15
|
Porta F, Giorda S, Ponzone A, Spada M. Tyrosine metabolism in health and disease: slow-release amino acids therapy improves tyrosine homeostasis in phenylketonuria. J Pediatr Endocrinol Metab 2020; 33:1519-1523. [PMID: 33581706 DOI: 10.1515/jpem-2020-0319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/19/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Phenylalanine (Phe) hydroxylase (PAH) deficiency leads to hyperphenylalaninemia (HPA) and tyrosine (Tyr) depletion. We investigated Tyr homeostasis in patients with PAH deficiency and the effect of a slow-release amino acids therapy in phenylketonuria (PKU). METHODS We performed four complementary investigations: (1) Tyr concentrations were monitored in 114 patients (10.6 ± 11.9 years) with PKU on dietary treatment supplemented with traditional amino acid formulations (n=52, 1175 samples) or non-PKU HPA on a free diet (n=62, 430 samples); (2) Tyr metabolism in PKU was quantitatively evaluated in three patients by a simple Tyr oral loading test (100 mg/kg); (3) diurnal and (4) long-term Tyr concentrations were evaluated in 5 and 13 patients with PKU, respectively, who switched from traditional to slow-release amino acids therapy. RESULTS 1) Tyr concentrations in the PKU population were subnormal and significantly lower than in non-PKU HPA (p<0.01); (2) the response to a Tyr loading test in PKU was normal, with basal Tyr concentrations reached within 12 h; (3) the diurnal metabolic profile in patients on slow-release amino acids therapy revealed higher morning fasting and nocturnal Tyr concentrations with respect to traditional therapy (p<0.01); (4) this picture was confirmed at follow-up, with normalization of morning fasting Tyr concentrations in patients on slow-release amino acids therapy (p<0.01) and unchanged Phe control (p=0.19). CONCLUSIONS Slow-release amino acids therapy can improve Tyr homeostasis in PKU. If associated to optimized Phe control, such a metabolic goal may allow long-term clinical benefits in patients with PKU.
Collapse
Affiliation(s)
- Francesco Porta
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Sara Giorda
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Alberto Ponzone
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|