1
|
Huang D, Ma YY. Increased Excitability of Layer 2 Cortical Pyramidal Neurons in the Supplementary Motor Cortex Underlies High Cocaine-Seeking Behaviors. Biol Psychiatry 2023; 94:875-887. [PMID: 37330163 PMCID: PMC10721734 DOI: 10.1016/j.biopsych.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Most efforts in addiction research have focused on the involvement of the medial prefrontal cortex, including the infralimbic, prelimbic, and anterior cingulate cortical areas, in cocaine-seeking behaviors. However, no effective prevention or treatment for drug relapse is available. METHODS We focused instead on the motor cortex, including both the primary and supplementary motor areas (M1 and M2, respectively). Addiction risk was evaluated by testing cocaine seeking after intravenous self-administration (IVSA) of cocaine in Sprague Dawley rats. The causal relationship between the excitability of cortical pyramidal neurons (CPNs) in M1/M2 and addiction risk was explored by ex vivo whole-cell patch clamp recordings and in vivo pharmacological or chemogenetic manipulation. RESULTS Our recordings showed that on withdrawal day 45 (WD45) after IVSA, cocaine, but not saline, increased the excitability of CPNs in the cortical superficial layers (primarily layer 2, denoted L2) but not in layer 5 (L5) in M2. Bilateral microinjection of the GABAA (gamma-aminobutyric acid A) receptor agonist muscimol to the M2 area attenuated cocaine seeking on WD45. More specifically, chemogenetic inhibition of CPN excitability in L2 of M2 (denoted M2-L2) by the DREADD (designer receptor exclusively activated by designer drugs) agonist compound 21 prevented drug seeking on WD45 after cocaine IVSA. This chemogenetic inhibition of M2-L2 CPNs had no effects on sucrose seeking. In addition, neither pharmacological nor chemogenetic inhibition manipulations altered general locomotor activity. CONCLUSIONS Our results indicate that cocaine IVSA induces hyperexcitability in the motor cortex on WD45. Importantly, the increased excitability in M2, particularly in L2, could be a novel target for preventing drug relapse during withdrawal.
Collapse
Affiliation(s)
- Donald Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
2
|
Rodríguez-Durán LF, López-Ibarra DL, Herrera-Xithe G, Bermúdez-Rattoni F, Osorio-Gómez D, Escobar ML. Synergistic photoactivation of VTA-catecholaminergic and BLA-glutamatergic projections induces long-term potentiation in the insular cortex. Neurobiol Learn Mem 2023; 205:107845. [PMID: 37865264 DOI: 10.1016/j.nlm.2023.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The presentation of novel stimuli induces a reliable dopamine release in the insular cortex (IC) from the ventral tegmental area (VTA). The novel stimuli could be associated with motivational and emotional signals induced by cortical glutamate release from the basolateral amygdala (BLA). Dopamine and glutamate are essential for acquiring and maintaining behavioral tasks, including visual and taste recognition memories. In this study, we hypothesize that the simultaneous activation of dopaminergic and glutamatergic projections to the neocortex can underlie synaptic plasticity. High-frequency stimulation of the BLA-IC circuit has demonstrated a reliable long-term potentiation (LTP), a widely acknowledged synaptic plasticity that underlies memory consolidation. Therefore, the concurrent optogenetic stimulation of the insula's glutamatergic and dopaminergic terminal fibers would induce reliable LTP. Our results confirmed that combined photostimulation of the VTA and BLA projections to the IC induces a slow-onset LTP. We also found that optogenetically-induced LTP in the IC relies on both glutamatergic NMDA receptors and dopaminergic D1/D5 receptors, suggesting that the combined effects of these neurotransmitters can trigger synaptic plasticity in the neocortex. Overall, our findings provide compelling evidence supporting the essential role of both dopaminergic and glutamatergic projections in modulating synaptic plasticity within the IC. Furthermore, our results suggest that the synergistic actions of these projections have a pivotal influence on the formation of motivational memories.
Collapse
Affiliation(s)
- Luis F Rodríguez-Durán
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Diana L López-Ibarra
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Gabriela Herrera-Xithe
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Daniel Osorio-Gómez
- Instituto de Fisiología Celular, UNAM, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico.
| | - Martha L Escobar
- Facultad de Psicología, UNAM, División de Investigación y Estudios de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico City, Mexico.
| |
Collapse
|
3
|
Kolatt Chandran S, Yiannakas A, Kayyal H, Salalha R, Cruciani F, Mizrahi L, Khamaisy M, Stern S, Rosenblum K. Intrinsic Excitability in Layer IV-VI Anterior Insula to Basolateral Amygdala Projection Neurons Correlates with the Confidence of Taste Valence Encoding. eNeuro 2023; 10:ENEURO.0302-22.2022. [PMID: 36635250 PMCID: PMC9850927 DOI: 10.1523/eneuro.0302-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022] Open
Abstract
Avoiding potentially harmful, and consuming safe food is crucial for the survival of living organisms. However, the perceived valence of sensory information can change following conflicting experiences. Pleasurability and aversiveness are two crucial parameters defining the perceived valence of a taste and can be impacted by novelty. Importantly, the ability of a given taste to serve as the conditioned stimulus (CS) in conditioned taste aversion (CTA) is dependent on its valence. Activity in anterior insula (aIC) Layer IV-VI pyramidal neurons projecting to the basolateral amygdala (BLA) is correlated with and necessary for CTA learning and retrieval, as well as the expression of neophobia toward novel tastants, but not learning taste familiarity. Yet, the cellular mechanisms underlying the updating of taste valence representation in this specific pathway are poorly understood. Here, using retrograde viral tracing and whole-cell patch-clamp electrophysiology in trained mice, we demonstrate that the intrinsic properties of deep-lying Layer IV-VI, but not superficial Layer I-III aIC-BLA neurons, are differentially modulated by both novelty and valence, reflecting the subjective predictability of taste valence arising from prior experience. These correlative changes in the profile of intrinsic properties of LIV-VI aIC-BLA neurons were detectable following both simple taste experiences, as well as following memory retrieval, extinction learning, and reinstatement.
Collapse
Affiliation(s)
| | - Adonis Yiannakas
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Haneen Kayyal
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Randa Salalha
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Federica Cruciani
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Guo C, Wen D, Zhang Y, Mustaklem R, Mustaklem B, Zhou M, Ma T, Ma YY. Amyloid-β oligomers in the nucleus accumbens decrease motivation via insertion of calcium-permeable AMPA receptors. Mol Psychiatry 2022; 27:2146-2157. [PMID: 35105968 PMCID: PMC9133055 DOI: 10.1038/s41380-022-01459-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
It is essential to identify the neuronal mechanisms of Alzheimer's Disease (AD)-associated neuropsychiatric symptoms, e.g., apathy, before improving the life quality of AD patients. Here, we focused on the nucleus accumbens (NAc), a critical brain region processing motivation, also known to display AD-associated pathological changes in human cases. We found that the synaptic calcium permeable (CP)-AMPA receptors (AMPARs), which are normally absent in the NAc, can be revealed by acute exposure to Aβ oligomers (AβOs), and play a critical role in the emergence of synaptic loss and motivation deficits. Blockade of NAc CP-AMPARs can effectively prevent AβO-induced downsizing and pruning of spines and silencing of excitatory synaptic transmission. We conclude that AβO-triggered synaptic insertion of CP-AMPARs is a key mechanism mediating synaptic degeneration in AD, and preserving synaptic integrity may prevent or delay the onset of AD-associated psychiatric symptoms.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Wen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yihong Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richie Mustaklem
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Basil Mustaklem
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine; Department of Physiology and Pharmacology; Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Wille-Bille A, Marengo L, Godino A, Pautassi RM. Effects of escalating versus fixed ethanol exposure on ∆FosB expression in the mesocorticolimbic pathway in adolescent and adult rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:569-580. [PMID: 34383595 DOI: 10.1080/00952990.2021.1954188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: We have reported induction of ∆FosB in adolescent rats that drank less ethanol than adults yet exhibited a progressive increase in ethanol intake.Objective: To test the hypothesis that an escalating pattern of ethanol exposure is more effective to induce ∆FosB expression [at prelimbic cortex (PrL), nucleus accumbens core and shell, striatum, basolateral amygdala (BLA) and central amygdala (CeC)] than a pattern equated for number of exposures yet employing a fixed ethanol dose.Methods: Adolescent and adult (Exp. 1, n = 48) male and female (n = 24 of each sex) or only adult male (Exp. 2, n = 36) Wistar rats were intermittently intubated with vehicle, escalating (from 0.5 to 2.5 g/kg) or fixed (2.0 g/kg) doses of ethanol, across 18 sessions. ∆FosB induction was assessed using immunohistochemistry. Ethanol intake, anxiety and risk-taking were assessed (in adults only) via two-bottles tests and the multivariate concentric square field.Results: Both patterns heightened ∆FosB levels similarly in adolescents and adults and in males and females. Fixed dosing induced ∆FosB in all areas (p < .05) except the CeC, whereas the escalating pattern induced ∆FosB in the PrL and BLA only (p < .05). Ethanol intake was initially lower in ethanol pre-exposed subjects than in control subjects (p < .05). Rats exposed to the fixed pattern exhibited enhanced risk-taking behavior (p < .05).Conclusions: The results agree with studies showing ethanol-mediated induction of ∆FosB in reward areas and indicate that, following ethanol intubations, this induction is similar in adolescents and adults. The induction of ∆FosB seems not necessarily associated with susceptibility for ethanol intake.
Collapse
Affiliation(s)
- Aranza Wille-Bille
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Leonardo Marengo
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Andrea Godino
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ricardo Marcos Pautassi
- Department of Psychophysiology, Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|