1
|
Perrone S, Beretta V, Tataranno ML, Tan S, Shi Z, Scarpa E, Dell'Orto V, Ravenda S, Petrolini C, Brambilla MM, Palanza P, Gitto E, Nonnis-Marzano F. Olfactory testing in infants with perinatal asphyxia: Enhancing encephalopathy risk stratification for future health outcomes. Neurosci Biobehav Rev 2025; 169:106029. [PMID: 39875082 DOI: 10.1016/j.neubiorev.2025.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Perinatal asphyxia (PA) is a leading cause of neonatal morbidity and mortality, often resulting in long-term neurodevelopmental challenges. Despite advancements in perinatal care, predicting long-term outcomes remains difficult. Early diagnosis is essential for timely interventions to reduce brain injury, with tools such as Magnetic Resonance Imaging, brain ultrasound, and emerging biomarkers playing a possible key role. Olfaction, one of the earliest senses to develop, may provide valuable insights into long-term neurodevelopmental outcomes following PA due to its intricate neural connections with regions responsible for memory, emotion, and homeostasis. Newborns demonstrate early olfactory abilities, such as recognizing maternal odors, which are vital for bonding, feeding, and emotional regulation. These responses are processed by a network of brain regions, including the olfactory bulb (OB), piriform cortex, amygdala, and orbitofrontal cortex. Hypoxic injury to these regions, particularly the OB, may disrupt olfactory processing in infants with PA, potentially affecting their cognitive and social development. Investigating the relationship between olfactory system development and perinatal brain injury could lead to innovative diagnostic and therapeutic approaches. Further research, including clinical and animal studies, is necessary to fully explore the potential of olfactory assessments in predicting outcomes after PA. This educational review explores and discusses the potential of olfaction as a predictor of long-term outcomes and a tool for risk stratification following PA, opening new pathways for interventions and improved care.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy.
| | - Virginia Beretta
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, the Netherlands
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Elena Scarpa
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Valentina Dell'Orto
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Sebastiano Ravenda
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, Parma 43125, Italy
| | - Chiara Petrolini
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Maria Maddalena Brambilla
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma 43121, Italy
| | - Paola Palanza
- Unit of Behavioral Biology, Department of Neuroscience, University of Parma, Viale delle Scienze 11/A, Parma 43125, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina 98125, Italy
| | - Francesco Nonnis-Marzano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, Parma 43125, Italy
| |
Collapse
|
2
|
Chen Y, Liu H, Zhang L, Zeng H, Jiang L, Qin Q, Li D, Lu G. Glutamate molecular structure and protein affect the inhibition of breast cancer cell metastasis: Cell-derived exosomes inhibitory effects through the MAPK signaling pathway. Int J Biol Macromol 2025; 300:140264. [PMID: 39863225 DOI: 10.1016/j.ijbiomac.2025.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The aim of this study was to investigate the inhibitory effect of glutamate molecular structure and protein on breast cancer cell metastasis and the potential inhibitory mechanism of cell-derived exosomes via MAPK signaling pathway. Breast cancer cell lines with high metastatic potential were selected by in vitro cell culture technique. The effects of specific inhibitors of glutamic acid on the proliferation and metastasis of breast cancer cells were studied. Changes in protein expression profiles were analyzed by proteomics techniques to identify key proteins associated with breast cancer metastasis. Breast cancer cells were treated with inhibitors of the MAPK signaling pathway to evaluate their effect on cell metastasis and compare with exosome treatment. The results showed that the specific inhibitors of glutamate molecular structure could significantly inhibit the proliferation and metastasis of breast cancer cells. Proteomic analysis revealed several down-regulated proteins that are closely related to breast cancer metastasis.
Collapse
Affiliation(s)
- Yongcheng Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, and Key Laboratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi Province, PR China
| | - Huan Liu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, and Key Laboratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi Province, PR China
| | - Lang Zhang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, and Key Laboratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi Province, PR China
| | - Huifang Zeng
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, and Key Laboratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi Province, PR China
| | - LiHe Jiang
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiangan Hospital of Xiamen University, Xiamen 361101, Fujian, PR China
| | - Qinghong Qin
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, Guangxi Province, PR China.
| | - Dequan Li
- Department of Breast Surgery, Wuming Hospital of Guangxi Medical University, No.26 Yongning Road, Wuming District, Nanning 530199, Guangxi Province, PR China.
| | - Guanming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, and Key Laboratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi Province, PR China; Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-17176, Sweden.
| |
Collapse
|
3
|
Hu M, Bai C, Zhao H, Wu J, Luan X. Research Progress on the Role of the Interleukin Family in the Pathogenesis of Cerebral Palsy in Children. J Integr Neurosci 2024; 23:213. [PMID: 39735959 DOI: 10.31083/j.jin2312213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 12/31/2024] Open
Abstract
Cerebral palsy (CP), a common neurological disorder in children, remains a significant research focus. The interleukin (IL) family, pivotal mediators in inflammatory responses, shows increased expression in various neuroinflammatory diseases, markedly influencing their onset and progression. Elevated IL levels in the brains of children with CP, in contrast to healthy peers, reflect similar elevations in neurological conditions linked to CP, indicating a strong association between CP and the IL family. Anti-inflammatory therapies, particularly those targeting ILs, have shown effectiveness in animal models, diverging from traditional CP management methods. This shift suggests IL modulation as a promising therapeutic strategy in pediatric CP. This review consolidates recent findings on the IL family's role in CP, illuminating their evolving relationship.
Collapse
Affiliation(s)
- Mingbo Hu
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Chao Bai
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Hong Zhao
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Junjie Wu
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Xinping Luan
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Yang S, He K, Zhang W, Wang K, Liu Z, Zhang L, Liu S, Zhang X, Wang Y, Yang Y, Zhao X, Yu Y, Wu H. Proteomic study of cerebrospinal fluid in adult tethered cord syndrome: Chemical structure and function of apolipoprotein B. Int J Biol Macromol 2024; 283:137534. [PMID: 39547612 DOI: 10.1016/j.ijbiomac.2024.137534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Adult tethered cord syndrome (ATCS) has a hidden onset and delayed clinical symptoms. The purpose of this study is to identify hub proteins in the cerebrospinal fluid of ATCS patients through bioinformatics analysis, and to find significant heterogeneity in these proteins between ATCS patients and non ATCS patients (control group). Firstly, differential genes were screened based on proteomic results. Compared with the control group, 18 differentially expressed proteins were upregulated and 18 differentially expressed proteins were downregulated in the cerebrospinal fluid of ATCS patients. Then, GO, KEGG, and GESA functional enrichment analysis showed that ATCS patients were active in biological processes such as coagulation, inflammatory response, and regulation of humoral immune response, suggesting the possibility of spinal cord injury. In addition, protein network interaction analysis indicates that APOB, APOC3, FGA, and FGG are defined as hub proteins. The correlation between ATCS patients and immune characteristics was analyzed using the CIBERSORT algorithm, which may have generated a unique immune microenvironment. Finally, Western blotting was used to experimentally validate APOB, APOC3, FGA, and FGG. The results showed that APOB, APOC3, FGA, and FGG were upregulated in the cerebrospinal fluid of ATCS patients and had an important impact on the repair and functional maintenance of spinal cord injury. They can be used as key proteins for early and accurate diagnosis and treatment of spinal cord thrombosis syndrome, and suggest that the spinal cord of ATCS patients may be damaged, which can serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Song Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Department of Neurosurgery, Beijing Xuanwu Hospital, Xiongan 070001, China
| | - Kun He
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Weikang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lei Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shaocheng Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiangyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yaobin Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuhua Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xingyu Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
5
|
Chowdhury MRH, Oladun C, Ariyasingha NM, Samoilenko A, Bawardi T, Burueva DB, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Gelovani JG, Koptyug IV, Goodson BM, Chekmenev EY. Rapid lung ventilation MRI using parahydrogen-induced polarization of propane gas. Analyst 2024. [PMID: 39530397 PMCID: PMC11563306 DOI: 10.1039/d4an01029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Proton-hyperpolarized contrast agents are attractive because they can be imaged on virtually any clinical MRI scanner, which is typically equipped to scan only protons rather than heteronuclei (i.e., anything besides protons, e.g., 13C, 15N, 129Xe, 23Na, etc.). Even though the lifetime of the proton spin hyperpolarization is only a few seconds, it is sufficient for inhalation and scanning of proton-hyperpolarized gas media. We demonstrate the utility of producing hyperpolarized propane gas via heterogeneous parahydrogen-induced polarization for the purpose of ventilation imaging in an excised rabbit lung model. The magnetization of protons in hyperpolarized propane gas is similar to that of tissue water protons, making it possible to rapidly perform lung ventilation imaging with a 0.35 T clinical MRI scanner. Here, we demonstrate the feasibility of rapid (2 s) lung ventilation MRI in excised rabbit lungs using hyperpolarized propane gas with a 1 × 1 mm2 pixel size using a 50 mm slice thickness, and a 1.7 × 1.7 mm2 pixel size using a 9 mm slice thickness.
Collapse
Affiliation(s)
- Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Clementinah Oladun
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Tarek Bawardi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Dudari B Burueva
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Oleg G Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Kehuan Luo
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
- United Arab Emirates University, Al Ain, United Arab Emirates
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| |
Collapse
|
6
|
Huang K, Shi Y, Lin J, Qin C, Qin C, Lu X, Lan C. Mechanism research of Tollip negative feedback regulation in TLR4 signaling pathways based on spinal tuberculosis: Detection of Tollip and NF-κB expression levels. Int J Biol Macromol 2024; 281:136458. [PMID: 39389477 DOI: 10.1016/j.ijbiomac.2024.136458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The emergence of drug-resistant mycobacterium tuberculosis (MTB, or TB) strains has led to an increasing incidence of TB. Spinal tuberculosis is the most common extrapulmonary tuberculosis. In the present study, tollip, a negative feedback regulatory factor in TLR4 signaling pathway was chosen based on previous studies on osteoarticular tuberculosis. U937 cells were transfected with recombinant lentivirus containing shRNA (RNA interference, RNAi) or overexpression vector containing Tollip gene and tested in vitro. The expression levels of Tollip and TLR4 were detected by Real-time PCR and immunofluorescence techniques, and the cell morphology and infection effect were observed by DAPI staining. The results suggested that Tollip gene could negatively inhibit the expression of related factors in TLR4 signaling pathway, and thus is a potential biomarker for early diagnosis.
Collapse
Affiliation(s)
- Ke Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Yu Shi
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Jiajie Lin
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Chengyi Qin
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Changshuai Qin
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Xianzhe Lu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China
| | - Changgong Lan
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise 533000, Guangxi Province, China.
| |
Collapse
|
7
|
Jia L, Peng J, Chen H, Liu Z, Gong J, Sun N, Zhang Q, Li L. TPTEP1 impedes the reprogramming of fatty acid metabolism in triple negative breast cancer via miR-1343-3p/SIRT3 axis. Int J Biol Macromol 2024; 280:135792. [PMID: 39304052 DOI: 10.1016/j.ijbiomac.2024.135792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Recently, the important role of fatty acid (FA) metabolism in cancers has been highlighted. Sirtuin 3 (SIRT3) is determined as an important regulator in the FA metabolism of cancer cells. We are going to verify whether and how lncRNA transmembrane phosphatase with tensin homology pseudogene 1 (TPTEP1) and SIRT3 may exert certain impact on the FA metabolism in triple-negative breast cancer (TNBC). Firstly, TPTEP1 was verified to be with low expression in TNBC cells. Moreover, down-regulation of TPTEP1 was caused by YY1 transcription factor. Functional assays determined the effects of TPTEP1 on the process of TNBC. The results disclosed that TPTEP1 up-regulation significantly repressed cell proliferation, migration, invasion, EMT and the reprogramming of FA metabolism in TNBC. Mechanism experiments detected the regulatory mechanism between TPTEP1 and SIRT3, which turned out that TPTEP1 positively regulated SIRT3 to affect FOXO3a and inhibit the Wnt/β-catenin pathway via sponging miR-1343-3p. All in all, TPTEP1 functioned as a tumor suppressor to regulate TNBC progression via the miR-1343-3p/SIRT3/FOXO3a/Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Junning Peng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Hongying Chen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Zhenyu Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Jiaxin Gong
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Nan Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Liru Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
8
|
Song Y, Liu H, Zhao N, Chen J, Zhang X, Zhang H, Wu T, Ruan H, Qu G. Bovine serum albumin-Camptothecin nanoparticles for RNAs packaging to improve the prognosis of Cancer. Int J Biol Macromol 2024; 282:136997. [PMID: 39476892 DOI: 10.1016/j.ijbiomac.2024.136997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
xRNAs have received a lot of attention for their potential in targeted therapy. This study aims to construct nanoparticles using bovine serum albumin (BSA) and Camptothecin to improve the bioavailability and targeting of drugs through RNA packaging, thereby improving the prognosis of cancer patients. The phacoemulsification method was used to synthesize BSA-CPT-NPs, and the single factor orthogonal design method was used to optimize the process. The cytotoxicity of nanoparticles to cancer cells and their effect on intracellular RNA expression were evaluated in vitro. The results showed that the formation of BSA-Camptothecin nanoparticles was uniform, and the drug loading and RNA encapsulation efficiency reached a high level. Cell experiments showed that the nanoparticle significantly inhibited the proliferation of cancer cells and enhanced the anti-tumor effect by regulating the expression of xRNAs. The study confirmed the potential of BSA-Camptothecin nanoparticles packaged by RNA to improve the efficiency and targeting of drug delivery, and future research will focus on further exploring its feasibility in clinical applications for cancer therapy.
Collapse
Affiliation(s)
- Yun Song
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & international Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Hui Liu
- Department of Hainan Key Laboratory for Research and Transformation of Tropical Brain Science, & Department of Anatomy, Hainan Medical University, Haikou, Hainan Province, China
| | - Nannan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University & Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & international Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Xiaoming Zhang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & international Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Hongyang Zhang
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Tao Wu
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China.
| | - Guoxin Qu
- Department of Orthopedic Surgery,The First Affiliated Hospital of Hainan Medical University & Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
9
|
Ambwani G, Shi Z, Luo K, Jeong JW, Tan S. Distinguishing Laterality in Brain Injury in Rabbit Fetal Magnetic Resonance Imaging Using Novel Volume Rendering Techniques. Dev Neurosci 2024:1-13. [PMID: 38710171 PMCID: PMC11538374 DOI: 10.1159/000539212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
INTRODUCTION Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes. METHODS A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia. RESULTS Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population. CONCLUSION This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.
Collapse
Affiliation(s)
- Gaurav Ambwani
- University of St. Andrews School of Medicine, St. Andrews, UK
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
| | - Kehuan Luo
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI USA
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
10
|
Shi Z, Sharif N, Luo K, Tan S. Development of A New Scoring System in Higher Animals for Testing Cognitive Function in the Newborn Period: Effect of Prenatal Hypoxia-Ischemia. Dev Neurosci 2024:000538607. [PMID: 38547848 PMCID: PMC11436483 DOI: 10.1159/000538607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/26/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal-rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the lab coat? Do motorically-normal kits, born after prenatal HI, exhibit cognitive deficits? Methods The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a lab coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to Naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (Test-1) or the lab coat on bystander (Test-2). The use of masks of feeder/bystander (Test-3) assessed confounding cues. A weighted score was devised to address variability in entry to maze arms, time, and repeated-trial learning. Results In conditioned kits, both Naïve and HI kits exhibited a significant preference for the face of the feeder, but not the lab coat. Cognitive deficits were minimal in normal-appearing HI kits. Conclusion The weighted score system was amenable to statistical manipulation.
Collapse
|
11
|
Wang F, Cheng XY, Zhang YT, Bai QR, Zhang XQ, Sun XC, Ma QH, Zhao XF, Liu CF. Transplantation of human neural stem cell prevents symptomatic motor behavior disability in a rat model of Parkinson's disease. Open Life Sci 2024; 19:20220834. [PMID: 38465343 PMCID: PMC10921471 DOI: 10.1515/biol-2022-0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/12/2024] Open
Abstract
Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.
Collapse
Affiliation(s)
- Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
| | - Yu-Ting Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200333, China
| | - Xiao-Qi Zhang
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Xi-Cai Sun
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiong-Fei Zhao
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| |
Collapse
|
12
|
Kelly SB, Tran NT, Polglase GR, Hunt RW, Nold MF, Nold-Petry CA, Olson DM, Chemtob S, Lodygensky GA, Robertson SA, Gunn AJ, Galinsky R. A systematic review of immune-based interventions for perinatal neuroprotection: closing the gap between animal studies and human trials. J Neuroinflammation 2023; 20:241. [PMID: 37864272 PMCID: PMC10588248 DOI: 10.1186/s12974-023-02911-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Rodney W Hunt
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - David M Olson
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada
| | - Sylvain Chemtob
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Gregory A Lodygensky
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Sarah A Robertson
- The University of Adelaide, Robinson Research Institute, North Adelaide, SA, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Tan S, Shi Z. Commentary to the in-focus issue "Perinatal brain injury leading to later neurodevelopmental disorders: Early detection and treatment options". J Neurosci Res 2022; 100:2109-2111. [PMID: 36177726 PMCID: PMC9838809 DOI: 10.1002/jnr.25130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023]
Affiliation(s)
- Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
14
|
Wang T, Liang F, Wang Y, Huo Q, Wang B. Clinical Study on Blood Pressure Variability, Montreal Cognitive Assessment and Arteriosclerosis Index in Patients with Cerebral Small Vessel Disease Treated with Integrated Traditional Chinese and Western Medicine by Invigorating Kidney and Removing Blood Stasis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5661303. [PMID: 36276873 PMCID: PMC9584690 DOI: 10.1155/2022/5661303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Objective To explore the clinical improvement in blood pressure variability, Montreal Cognitive Assessment, and angiosclerosis index in patients with cerebral small vessel disease treated with integrated traditional Chinese and Western medicine. Methods A randomized controlled study of patients with cerebral small vessel disease who were treated in our hospital from November 1, 2018, to January 31, 2022. The enrolled patients were randomized into 2 groups according to the random numbers: an observation group treated with integrated traditional Chinese and Western medicine and a control group treated with Western medicine only. Blood pressure variability, Montreal Cognitive Assessment (MoCA), and angiosclerosis index were compared between the two groups. Results There were 71 qualified cases in the observation group and 58 qualified cases in the control group. Before treatment, the indicators between the two groups were comparable (P > 0.05). After treatment, the mean values of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were significantly decreased (P < 0.05); the decrease of 24hSBP-coefficient of variation (CV), daytime SBP (dSBP)-CV, 24hSBP-standard deviation (SD), and dSBP-SD in the observation group was significantly better than that in the control group; the MoCA scores of the observation group were significantly higher than those of the control group ((P < 0.05); the ABI and PWV were significantly different between the two groups (P < 0.05); TC, TG, HDL-C, and LDL-C in observation group decreased after treatment, and HDL-C increased significantly (P < 0.05). Conclusion Integrative traditional Chinese and Western medicine treatment can further reduce the blood pressure variability, especially systolic blood pressure; improve the MoCA score and cognitive function, increase the ankle-brachial index, reduce pulse wave velocity and the degree of arteriosclerosis; and improve lipid metabolism a comprehensive intervention role.
Collapse
Affiliation(s)
- Tianzhan Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Fang Liang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuxin Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qingping Huo
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Bing Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
15
|
Early Identification of High-Risk Factors for Upper Gastrointestinal Bleeding. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5641394. [PMID: 36276848 PMCID: PMC9584689 DOI: 10.1155/2022/5641394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Objective To identify simple and accurate pre-endoscopy risk factors for early identification of high-risk upper gastrointestinal bleeding. Methods Patients who were admitted to Suzhou Hospital of Integrated Traditional Chinese and Western Medicine from January 1, 2016, to December 31, 2019, due to upper gastrointestinal bleeding were retrieved, and the detailed clinical data of the above patients were collected. Patients with a definite diagnosis of bleeding from esophageal/and gastric varices were assigned to the high-risk group. Patients with bleeding not caused by varices were divided into a high-risk and a low-risk group according to the Forrest grading and scoring standard (high-risk group Forrest Ia-IIb, low-risk group Forrest IIc-III). Univariate analysis, t-test, chi-square test, binary logistic regression, ROC curve (Receiver-operating characteristic curve), etc. were employed for analysis in order to identify some simple and accurate risk factors for high-risk upper digestion tract bleeding before endoscopy. Results A total of 916 patients were collected. Three risk factors among the screened risk factors (1) hemoglobin ≤ 85 g/L, (2) vomiting red blood, and (3) “red bloody stool” were analyzed by ROC curve analysis. The specificities of each factor were 78.4%, 94.5%, and 96.7%, respectively, and the sensitivities were 71.8%, 55.9%, and 23.1%, respectively. We also derived a risk prediction scoring system for the three factors that meet the high risk such as (1) hemoglobin ≤ 83 g/L, (2)vomiting red blood, and (3) “red bloody stool.” The area under the ROC curve (AUROC), sensitivity, and specificity were 0.877, 0.904, and 0.746. Conclusion Hemoglobin ≤ 85 g/L, vomiting red blood, and red bloody stool were included in a simple scoring standard for predicting high-risk UGIB patients before endoscopy. The new risk prediction scoring system requires only three indicators and has the advantages of high accuracy, short time-consuming, and easy application.
Collapse
|
16
|
The Number of Intraoperative Intestinal Venous Circulating Tumor Cells Is a Prognostic Factor for Colorectal Cancer Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4162354. [PMID: 36193123 PMCID: PMC9525778 DOI: 10.1155/2022/4162354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Purpose To assess the association between intestinal venous blood (IVB) circulating tumor cells (CTCs) and clinicopathological parameters in stage I-III colorectal cancer (CRC) patients. Methods Participants were retrospectively retrieved, who were admitted to our hospital or took annual physical exams between December 1, 2015 and December 31, 2018. A negative enrichment-immunofluorescence in situ hybridization (NE-imFISH) technique was used to isolate and identify CTCs. Receiver operating characteristic (ROC) curves and Youden index values were used to determine the critical CTC cutoff value for the diagnosis of CRC. Kaplan-Meier and log-rank methods were used to conduct survival analyses, and multivariate Cox regression analyses were employed for multivariate corrections to comprehensively evaluate the value of CTCs in the diagnosis of CRC. Relationships between IVB CTCs, clinicopathological parameters, and prognosis were then analyzed based upon patient postoperative follow-up data. Results In total, we retrieved 282 patients including 48 healthy controls, 72 patients with benign colorectal tumors, and 162 CRC patients. CRC patients exhibited significantly higher numbers of CTCs relative to control patients or those with benign disease. CTC numbers in CRC patient peripheral blood (PB) and IVB were closely associated with tumor node metastasis (TNM) staging (P < 0.01), carbohydrate antigen-125 (CA-125) levels (P < 0.001), and KRAS (Kirsten rat sarcoma virus oncogene) mutation status (P < 0.001). The disease-free survival (DFS) of patients in the CTC-negative group was significantly longer than that of patients in the CTC-positive group (24.60 ± 13.31 months vs. 18.70 ± 10.19 months, P < 0.05), with the same being true with respect to their overall survival (OS) (30.60 ± 12.44 months vs. 35.25 ± 11.57 months, P < 0.05). A multivariate analysis revealed that the detection ≥2 CTCs/3.2 ml was independently associated with poorer DFS and OS. CTC counts were independently predictive of CRC patients TNM staging, CA-125, and KRAS mutation status in both univariate and multivariate Cox proportional hazards regression analyses. Conclusion CTCs are valuable biomarkers that can be monitored to predict CRC patient disease progression.
Collapse
|
17
|
Elevated Plasma Interleukin-35 as a Prognostic Indicator in Localized Clear Cell Renal Cell Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6886590. [PMID: 36124013 PMCID: PMC9482474 DOI: 10.1155/2022/6886590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Purpose The aim of the study is to investigate the prognostic value of plasma interleukin-35 in the surgical treatment of patients with clear cell renal cell carcinoma (ccRCC). Material and Methods. Plasma IL-35 levels were measured in patients with ccRCC. The cut-off value of IL-35 was determined by the receiver operating characteristic (ROC) analysis and the area under the curve (AUC). The effects of the IL-35 and other clinicopathological characteristics on overall survival (OS) and progression-free survival (PFS) were evaluated using the univariate and multivariate logistic regression analysis. Result Sixty-four ccRCC patients admitted to the urology department at the First Affiliated Hospital of Soochow University were selected, of whom 50 were diagnosed with localized ccRCC. Plasma interleukin-35 levels were significantly higher in patients with ccRCC than that in healthy controls. The cut-off value of IL-35 was 99.7 pg/mL. Multivariate analysis selected by univariate analyses demonstrated that the preoperative IL-35 was an independent prognostic factor for 5-year OS (OR: 1.02, 95% CI: 1.01 to 1.04, p < 0.0001) and 5-year PFS (OR: 1.02, 95% CI: 1.00 to 1.03, p=0.011) in all patients with localized ccRCC. Conclusion Current results indicate that preoperative IL-35 is an independent prognostic marker for OS and RFS in patients with localized ccRCC after surgery.
Collapse
|
18
|
Biomarker und Neuromonitoring zur Entwicklungsprognose nach perinataler Hirnschädigung. Monatsschr Kinderheilkd 2022; 170:688-703. [PMID: 35909417 PMCID: PMC9309449 DOI: 10.1007/s00112-022-01542-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Das sich entwickelnde Gehirn ist in der Perinatalperiode besonders empfindlich für eine Vielzahl von Insulten, wie z. B. Extremfrühgeburtlichkeit und perinatale Asphyxie. Ihre Komplikationen können zu lebenslangen neurokognitiven, sensorischen und psychosozialen Einschränkungen führen; deren Vorhersage bleibt eine Herausforderung. Eine Schlüsselfunktion kommt der möglichst exakten Identifikation von Hirnläsionen und funktionellen Störungen zu. Die Prädiktion stützt sich auf frühe diagnostische Verfahren und die klinische Erfassung der Meilensteine der Entwicklung. Zur klinischen Diagnostik und zum Neuromonitoring in der Neonatal- und frühen Säuglingsperiode stehen bildgebende Verfahren zur Verfügung. Hierzu zählen zerebrale Sonographie, MRT am errechneten Termin, amplitudenintegriertes (a)EEG und/oder klassisches EEG, Nah-Infrarot-Spektroskopie, General Movements Assessment und die frühe klinische Nachuntersuchung z. B. mithilfe der Hammersmith Neonatal/Infant Neurological Examination. Innovative Biomarker und -muster (Omics) sowie (epi)genetische Prädispositionen sind Gegenstand wissenschaftlicher Untersuchungen. Neben der Erfassung klinischer Risiken kommt psychosozialen Faktoren im Umfeld des Kindes eine entscheidende Rolle zu. Eine möglichst akkurate Prognose ist mit hohem Aufwand verbunden, jedoch zur gezielten Beratung der Familien und der Einleitung von frühen Interventionen, insbesondere vor dem Hintergrund der hohen Plastizität des sich entwickelnden Gehirns, von großer Bedeutung. Diese Übersichtsarbeit fokussiert die Charakterisierung der oben genannten Verfahren und ihrer Kombinationsmöglichkeiten. Zudem wird ein Ausblick gegeben, wie innovative Techniken in Zukunft die Prädiktion der Entwicklung und Nachsorge dieser Kinder vereinfachen können.
Collapse
|