1
|
Hu M, Bai C, Zhao H, Wu J, Luan X. Research Progress on the Role of the Interleukin Family in the Pathogenesis of Cerebral Palsy in Children. J Integr Neurosci 2024; 23:213. [PMID: 39735959 DOI: 10.31083/j.jin2312213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 12/31/2024] Open
Abstract
Cerebral palsy (CP), a common neurological disorder in children, remains a significant research focus. The interleukin (IL) family, pivotal mediators in inflammatory responses, shows increased expression in various neuroinflammatory diseases, markedly influencing their onset and progression. Elevated IL levels in the brains of children with CP, in contrast to healthy peers, reflect similar elevations in neurological conditions linked to CP, indicating a strong association between CP and the IL family. Anti-inflammatory therapies, particularly those targeting ILs, have shown effectiveness in animal models, diverging from traditional CP management methods. This shift suggests IL modulation as a promising therapeutic strategy in pediatric CP. This review consolidates recent findings on the IL family's role in CP, illuminating their evolving relationship.
Collapse
Affiliation(s)
- Mingbo Hu
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Chao Bai
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Hong Zhao
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Junjie Wu
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| | - Xinping Luan
- Cerebral Palsy Center in Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, 830063 Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Chowdhury MRH, Oladun C, Ariyasingha NM, Samoilenko A, Bawardi T, Burueva DB, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Gelovani JG, Koptyug IV, Goodson BM, Chekmenev EY. Rapid lung ventilation MRI using parahydrogen-induced polarization of propane gas. Analyst 2024. [PMID: 39530397 PMCID: PMC11563306 DOI: 10.1039/d4an01029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Proton-hyperpolarized contrast agents are attractive because they can be imaged on virtually any clinical MRI scanner, which is typically equipped to scan only protons rather than heteronuclei (i.e., anything besides protons, e.g., 13C, 15N, 129Xe, 23Na, etc.). Even though the lifetime of the proton spin hyperpolarization is only a few seconds, it is sufficient for inhalation and scanning of proton-hyperpolarized gas media. We demonstrate the utility of producing hyperpolarized propane gas via heterogeneous parahydrogen-induced polarization for the purpose of ventilation imaging in an excised rabbit lung model. The magnetization of protons in hyperpolarized propane gas is similar to that of tissue water protons, making it possible to rapidly perform lung ventilation imaging with a 0.35 T clinical MRI scanner. Here, we demonstrate the feasibility of rapid (2 s) lung ventilation MRI in excised rabbit lungs using hyperpolarized propane gas with a 1 × 1 mm2 pixel size using a 50 mm slice thickness, and a 1.7 × 1.7 mm2 pixel size using a 9 mm slice thickness.
Collapse
Affiliation(s)
- Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Clementinah Oladun
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Tarek Bawardi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Dudari B Burueva
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Oleg G Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Kehuan Luo
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
- United Arab Emirates University, Al Ain, United Arab Emirates
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| |
Collapse
|
3
|
Yuan Z, Wang X, Qin B, Hu R, Miao R, Zhou Y, Wang L, Liu T. Targeting NQO1 induces ferroptosis and triggers anti-tumor immunity in immunotherapy-resistant KEAP1-deficient cancers. Drug Resist Updat 2024; 77:101160. [PMID: 39490240 DOI: 10.1016/j.drup.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Immunotherapy has revolutionized cancer treatment, yet the efficacy of immunotherapeutic approaches remains limited. Resistance to ferroptosis is one of the reasons for the poor therapeutic outcomes in tumors with Kelch-like ECH-associated protein 1 (KEAP1) mutations. However, the specific mechanisms by which KEAP1-mutant tumors resist immunotherapy are not fully understood. In this study, we showed that the loss of function in KEAP1 results in resistance to ferroptosis. We identified NAD(P)H Quinone Dehydrogenase 1 (NQO1) as a transcriptional target of nuclear factor erythroid 2-related factor 2 (NRF2) and revealed that inducing NQO1-mediated ferroptosis in KEAP1-deficient tumors triggers an antitumor immune cascade. Additionally, it was found that NQO1 protein levels could serve as a candidate biomarker for predicting sensitivity to immunotherapy in clinical tumor patients. We validated these findings in several preclinical tumor models. Overall, KEAP1 mutations define a unique disease phenotype, and targeting its key downstream molecule NQO1 offers new hope for patients with resistance to immunotherapy.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Boyu Qin
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rulong Hu
- Department of Otolaryngology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Miao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Yang Zhou
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Wang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tong Liu
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
4
|
Jia L, Peng J, Chen H, Liu Z, Gong J, Sun N, Zhang Q, Li L. TPTEP1 impedes the reprogramming of fatty acid metabolism in triple negative breast cancer via miR-1343-3p/SIRT3 axis. Int J Biol Macromol 2024; 280:135792. [PMID: 39304052 DOI: 10.1016/j.ijbiomac.2024.135792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Recently, the important role of fatty acid (FA) metabolism in cancers has been highlighted. Sirtuin 3 (SIRT3) is determined as an important regulator in the FA metabolism of cancer cells. We are going to verify whether and how lncRNA transmembrane phosphatase with tensin homology pseudogene 1 (TPTEP1) and SIRT3 may exert certain impact on the FA metabolism in triple-negative breast cancer (TNBC). Firstly, TPTEP1 was verified to be with low expression in TNBC cells. Moreover, down-regulation of TPTEP1 was caused by YY1 transcription factor. Functional assays determined the effects of TPTEP1 on the process of TNBC. The results disclosed that TPTEP1 up-regulation significantly repressed cell proliferation, migration, invasion, EMT and the reprogramming of FA metabolism in TNBC. Mechanism experiments detected the regulatory mechanism between TPTEP1 and SIRT3, which turned out that TPTEP1 positively regulated SIRT3 to affect FOXO3a and inhibit the Wnt/β-catenin pathway via sponging miR-1343-3p. All in all, TPTEP1 functioned as a tumor suppressor to regulate TNBC progression via the miR-1343-3p/SIRT3/FOXO3a/Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Junning Peng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Hongying Chen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Zhenyu Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Jiaxin Gong
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Nan Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Liru Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
5
|
Ariyasingha NM, Samoilenko A, Chowdhury MRH, Nantogma S, Oladun C, Birchall JR, Bawardi T, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Koptyug IV, Goodson BM, Chekmenev EY. Developing Hyperpolarized Butane Gas for Ventilation Lung Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:698-710. [PMID: 39483636 PMCID: PMC11523004 DOI: 10.1021/cbmi.4c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/03/2024]
Abstract
NMR hyperpolarization dramatically improves the detection sensitivity of magnetic resonance through the increase in nuclear spin polarization. Because of the sensitivity increase by several orders of magnitude, additional applications have been unlocked, including imaging of gases in physiologically relevant conditions. Hyperpolarized 129Xe gas recently received FDA approval as the first inhalable gaseous MRI contrast agent for clinical functional lung imaging of a wide range of pulmonary diseases. However, production and utilization of hyperpolarized 129Xe gas faces a number of translational challenges including the high cost and complexity of contrast agent production and imaging using proton-only (i.e., conventional) clinical MRI scanners, which are typically not suited to scan 129Xe nuclei. As a solution to circumvent the translational challenges of hyperpolarized 129Xe, we have recently demonstrated the feasibility of a simple and cheap process for production of proton-hyperpolarized propane gas contrast agent using ultralow-cost disposable production equipment and demonstrated the feasibility of lung ventilation imaging using hyperpolarized propane gas in excised pig lungs. However, previous pilot studies have concluded that the hyperpolarized state of propane gas decays very fast with an exponential decay T 1 constant of ∼0.8 s at 1 bar (physiologically relevant pressure); moreover, the previously reported production rates were too slow for potential clinical utilization. Here, we investigate the feasibility of high-capacity production of hyperpolarized butane gas via heterogeneous parahydrogen-induced polarization using Rh nanoparticle-based catalyst utilizing butene gas as a precursor for parahydrogen pairwise addition. We demonstrate a remarkable result: the lifetime of the hyperpolarized state can be nearly doubled compared to that of propane (T 1 of ∼1.6 s and long-lived spin-state T S of ∼3.8 s at clinically relevant 1 bar pressure). Moreover, we demonstrate a production speed of up to 0.7 standard liters of hyperpolarized gas per second. These two synergistic developments pave the way to biomedical utilization of proton-hyperpolarized gas media for ventilation imaging. Indeed, here we demonstrate the feasibility of phantom imaging of hyperpolarized butane gas in Tedlar bags and also the feasibility of subsecond 2D ventilation gas imaging in excised rabbit lungs with 1.6 × 1.6 mm2 in-plane resolution using a clinical MRI scanner. The demonstrated results have the potential to revolutionize functional pulmonary imaging with a simple and inexpensive on-demand production of proton-hyperpolarized gas contrast media, followed by visualization on virtually any MRI scanner, including emerging bedside low-field MRI scanner technology.
Collapse
Affiliation(s)
- Nuwandi M. Ariyasingha
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Shiraz Nantogma
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Clementinah Oladun
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Jonathan R. Birchall
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Tarek Bawardi
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M. Kovtunova
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov
Institute of Catalysis SB RAS, 5 Acad, Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I. Bukhtiyarov
- Boreskov
Institute of Catalysis SB RAS, 5 Acad, Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Zhongjie Shi
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Kehuan Luo
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Sidhartha Tan
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- School
of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
6
|
Li F, Zhang HK, Jiang HX, Zhang XY, Chen QX. TUG1 exacerbates cerebral ischemia-reperfusion injury through miR-340-5p-mediated PTEN. J Mol Histol 2024; 55:699-707. [PMID: 39017855 DOI: 10.1007/s10735-024-10224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/07/2024] [Indexed: 07/18/2024]
Abstract
Long non-coding RNAs (LncRNAs) play a substantial role in the process of cerebral ischemia-reperfusion injury (CIRI). The present work aimed to determine the probable mechanism by which LncRNA TUG1 exacerbates CIRI via the miR-340-5p/phosphatase and tensin homolog (PTEN) pathway. After developing a middle cerebral artery occlusion/reperfusion (MCAO/R) model, pcDNA-TUG1 together with miR-340-5p agomir were administrated in vivo. Furthermore, the neurologic defects in rats were assessed by a modified neurological severity score. Moreover, 2,3,5-Triphenyl-2 H-tetrazolium chloride stain-step was performed to determine the brain's infarct size. In addition, western blotting, immunohistochemistry, and qRT-PCR experiments were utilized for gauging the proteomic/genomic expression-profiles. Luciferase reporter assay validated correlations across TUG1, miR-340-5p, together with PTEN. The results indicated relatively reduced miR-340-5p levels in MCAO/R models, while upregulated TUG1 levels. The pcDNA-TUG1-treated rats indicated increasing neurological dysfunction, whereas the miR-340-5p agomir-treated rats showed improvement. Furthermore, miR-340-5p was determined to be the expected and confirmed TUG1 target. All things considered, the findings suggested that PTEN can serve as the target of miR-340-5p. In addition, TUG1 served as a miR-340-5p ceRNA, which promotes PTEN modulation. Furthermore, TUG1 overexpression decreased miR-340-5p's capacity to fend against CIRI. Conclusively, this work proved that in CIRI, targeting the TUG1/miR-340-5p/PTEN regulatory axis is a viable approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui-Kai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong-Xiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin-Yuan Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
7
|
Ambwani G, Shi Z, Luo K, Jeong JW, Tan S. Distinguishing Laterality in Brain Injury in Rabbit Fetal Magnetic Resonance Imaging Using Novel Volume Rendering Techniques. Dev Neurosci 2024:1-13. [PMID: 38710171 PMCID: PMC11538374 DOI: 10.1159/000539212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
INTRODUCTION Our laboratory has been exploring the MRI detection of fetal brain injury, which previously provided a prognostic biomarker for newborn hypertonia in an animal model of cerebral palsy (CP). The biomarker relies on distinct patterns of diffusion-weighted imaging-defined apparent diffusion coefficient (ADC) in fetal brains during uterine hypoxia-ischemia (H-I). Despite the challenges posed by small brains and tissue acquisition, our objective was to differentiate between left and right brain ADC changes. METHODS A novel aspect involved utilizing three-dimensional rendering techniques to refine ADC measurements within spheroids encompassing fetal brain tissue. 25-day gestation age of rabbit fetuses underwent global hypoxia due to maternal uterine ischemia. RESULTS Successful differentiation of left and right brain regions was achieved in 28% of the fetal brains. Ordinal analysis revealed predominantly higher ADC on the left side compared to the right at baseline and across the entire time series. During H-I and reperfusion-reoxygenation, the right side exhibited a favored percentage change. Among these fetal brains, 73% exhibited the ADC pattern predictive of hypertonia. No significant differences between left and right sides were observed in patterns predicting hypertonia, except for one timepoint during H-I. This study also highlights a balance between left-sided and right-sided alterations within the population. CONCLUSION This study emphasizes the importance of investigating laterality and asymmetric hemispheric lesions for early diagnosis of brain injury, leading to CP. The technological limitations in obtaining a clear picture of the entire fetal brain for every fetus mirror the challenges encountered in human studies.
Collapse
Affiliation(s)
- Gaurav Ambwani
- University of St. Andrews School of Medicine, St. Andrews, UK
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
| | - Kehuan Luo
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI USA
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
8
|
Ariyasingha NM, Chowdhury MRH, Samoilenko A, Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Koptyug IV, Goodson BM, Chekmenev EY. Toward Lung Ventilation Imaging Using Hyperpolarized Diethyl Ether Gas Contrast Agent. Chemistry 2024; 30:e202304071. [PMID: 38381807 PMCID: PMC11065616 DOI: 10.1002/chem.202304071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Hyperpolarized 129Xe gas was FDA-approved as an inhalable contrast agent for magnetic resonance imaging of a wide range of pulmonary diseases in December 2022. Despite the remarkable success in clinical research settings, the widespread clinical translation of HP 129Xe gas faces two critical challenges: the high cost of the relatively low-throughput hyperpolarization equipment and the lack of 129Xe imaging capability on clinical MRI scanners, which have narrow-bandwidth electronics designed only for proton (1H) imaging. To solve this translational grand challenge of gaseous hyperpolarized MRI contrast agents, here we demonstrate the utility of batch-mode production of proton-hyperpolarized diethyl ether gas via heterogeneous pairwise addition of parahydrogen to ethyl vinyl ether. An approximately 0.1-liter bolus of hyperpolarized diethyl ether gas was produced in 1 second and injected in excised rabbit lungs. Lung ventilation imaging was performed using sub-second 2D MRI with up to 2×2 mm2 in-plane resolution using a clinical 0.35 T MRI scanner without any modifications. This feasibility demonstration paves the way for the use of inhalable diethyl ether as a gaseous contrast agent for pulmonary MRI applications using any clinical MRI scanner.
Collapse
Affiliation(s)
- Nuwandi M Ariyasingha
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Anna Samoilenko
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya Street, Novosibirsk, 630090, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya Street, Novosibirsk, 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya Street, Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr, Novosibirsk, 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr, Novosibirsk, 630090, Russia
| | - Zhongjie Shi
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Kehuan Luo
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Sidhartha Tan
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya Street, Novosibirsk, 630090, Russia
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL-62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Department of Pediatrics, Wayne State University, Detroit, MI-48202, USA
| |
Collapse
|
9
|
Shi Z, Sharif N, Luo K, Tan S. Development of A New Scoring System in Higher Animals for Testing Cognitive Function in the Newborn Period: Effect of Prenatal Hypoxia-Ischemia. Dev Neurosci 2024:000538607. [PMID: 38547848 PMCID: PMC11436483 DOI: 10.1159/000538607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/26/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Enhanced models for assessing cognitive function in the neonatal period are imperative in higher animals. Postnatal motor deficits, characteristic of cerebral palsy, emerge in newborn kits within our prenatal-rabbit model of hypoxia-ischemia (HI). In humans, prenatal HI leads to intellectual disability and cerebral palsy. In a study examining cognitive function in newborn rabbits, we explored several questions. Is there a distinction between conditioned and unconditioned kits? Can the kits discern the human face or the lab coat? Do motorically-normal kits, born after prenatal HI, exhibit cognitive deficits? Methods The conditioning protocol was randomly assigned to kits from each litter. For conditioning, the same human, wearing a lab coat, fed the rabbit kits for 9 days before the cognitive test. The 6-arm radial maze was chosen for its simplicity and ease of use. Normally appearing kits, born after uterine ischemia at 79% or 92% term in New Zealand White rabbits, were compared to Naïve kits. On postpartum day 22/23 or 29/30, the 6-arm maze helped determine if the kits recognized the original feeder from bystander (Test-1) or the lab coat on bystander (Test-2). The use of masks of feeder/bystander (Test-3) assessed confounding cues. A weighted score was devised to address variability in entry to maze arms, time, and repeated-trial learning. Results In conditioned kits, both Naïve and HI kits exhibited a significant preference for the face of the feeder, but not the lab coat. Cognitive deficits were minimal in normal-appearing HI kits. Conclusion The weighted score system was amenable to statistical manipulation.
Collapse
|
10
|
Wang F, Cheng XY, Zhang YT, Bai QR, Zhang XQ, Sun XC, Ma QH, Zhao XF, Liu CF. Transplantation of human neural stem cell prevents symptomatic motor behavior disability in a rat model of Parkinson's disease. Open Life Sci 2024; 19:20220834. [PMID: 38465343 PMCID: PMC10921471 DOI: 10.1515/biol-2022-0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/12/2024] Open
Abstract
Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.
Collapse
Affiliation(s)
- Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
| | - Yu-Ting Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200333, China
| | - Xiao-Qi Zhang
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Xi-Cai Sun
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiong-Fei Zhao
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| |
Collapse
|
11
|
REEDICH EJ, GENRY L, STEELE P, AVILA EMENA, DOWALIBY L, DROBYSHEVSKY A, MANUEL M, QUINLAN KA. Spinal motoneurons respond aberrantly to serotonin in a rabbit model of cerebral palsy. J Physiol 2023; 601:4271-4289. [PMID: 37584461 PMCID: PMC10543617 DOI: 10.1113/jp284803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Cerebral palsy (CP) is caused by a variety of factors that damage the developing central nervous system. Impaired motor control, including muscle stiffness and spasticity, is the hallmark of spastic CP. Rabbits that experience hypoxic-ischaemic (HI) injury in utero (at 70%-83% gestation) are born with muscle stiffness, hyperreflexia and, as recently discovered, increased 5-HT in the spinal cord. To determine whether serotonergic modulation of spinal motoneurons (MNs) contributes to motor deficits, we performed ex vivo whole cell patch clamp in neonatal rabbit spinal cord slices at postnatal day (P) 0-5. HI MNs responded to the application of α-methyl 5-HT (a 5-HT1 /5-HT2 receptor agonist) and citalopram (a selective 5-HT reuptake inhibitor) with increased amplitude and hyperpolarization of persistent inward currents and hyperpolarized threshold voltage for action potentials, whereas control MNs did not exhibit any of these responses. Although 5-HT similarly modulated MN properties of HI motor-unaffected and motor-affected kits, it affected sag/hyperpolarization-activated cation current (Ih ) and spike frequency adaptation only in HI motor-affected MNs. To further explore the differential sensitivity of MNs to 5-HT, we performed immunostaining for inhibitory 5-HT1A receptors in lumbar spinal MNs at P5. Fewer HI MNs expressed the 5-HT1A receptor compared to age-matched control MNs. This suggests that HI MNs may lack a normal mechanism of central fatigue, mediated by 5-HT1A receptors. Altered expression of other 5-HT receptors (including 5-HT2 ) likely also contributes to the robust increase in HI MN excitability. In summary, by directly exciting MNs, the increased concentration of spinal 5-HT in HI-affected rabbits can cause MN hyperexcitability, muscle stiffness and spasticity characteristic of CP. Therapeutic strategies that target serotonergic neuromodulation may be beneficial to individuals with CP. KEY POINTS: We used whole cell patch clamp electrophysiology to test the responsivity of spinal motoneurons (MNs) from neonatal control and hypoxia-ischaemia (HI) rabbits to 5-HT, which is elevated in the spinal cord after prenatal HI injury. HI rabbit MNs showed a more robust excitatory response to 5-HT than control rabbit MNs, including hyperpolarization of the persistent inward current and threshold voltage for action potentials. Although most MN properties of HI motor-unaffected and motor-affected kits responded similarly to 5-HT, 5-HT caused larger sag/hyperpolarization-activated cation current (Ih ) and altered repetitive firing patterns only in HI motor-affected MNs. Immunostaining revealed that fewer lumbar MNs expressed inhibitory 5-HT1A receptors in HI rabbits compared to controls, which could account for the more robust excitatory response of HI MNs to 5-HT. These results suggest that elevated 5-HT after prenatal HI injury could trigger a cascade of events that lead to muscle stiffness and altered motor unit development.
Collapse
Affiliation(s)
- E. J. REEDICH
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - L.T. GENRY
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - P.R. STEELE
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - E. MENA AVILA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - L. DOWALIBY
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | | - M. MANUEL
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - K. A. QUINLAN
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
12
|
REEDICH EJ, GENRY L, STEELE P, AVILA EMENA, DOWALIBY L, DROBYSHEVSKY A, MANUEL M, QUINLAN KA. Spinal motoneurons respond aberrantly to serotonin in a rabbit model of cerebral palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535691. [PMID: 37066318 PMCID: PMC10104065 DOI: 10.1101/2023.04.05.535691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Cerebral palsy (CP) is caused by a variety of factors that damage the developing central nervous system. Impaired motor control, including muscle stiffness and spasticity, is the hallmark of spastic CP. Rabbits that experience hypoxic-ischemic (HI) injury in utero (at 70-80% gestation) are born with muscle stiffness, hyperreflexia, and, as recently discovered, increased serotonin (5-HT) in the spinal cord. To determine whether serotonergic modulation of spinal motoneurons (MNs) contributes to motor deficits, we performed ex vivo whole cell patch clamp in neonatal rabbit spinal cord slices at postnatal day (P) 0-5. HI MNs responded to application of α-methyl 5-HT (a 5-HT 1 /5-HT 2 receptor agonist) and citalopram (a selective 5-HT reuptake inhibitor) with hyperpolarization of persistent inward currents and threshold voltage for action potentials, reduced maximum firing rate, and an altered pattern of spike frequency adaptation while control MNs did not exhibit any of these responses. To further explore the differential sensitivity of MNs to 5-HT, we performed immunohistochemistry for inhibitory 5-HT 1A receptors in lumbar spinal MNs at P5. Fewer HI MNs expressed the 5-HT 1A receptor compared to age-matched controls. This suggests many HI MNs lack a normal mechanism of central fatigue mediated by 5-HT 1A receptors. Other 5-HT receptors (including 5-HT 2 ) are likely responsible for the robust increase in HI MN excitability. In summary, by directly exciting MNs, the increased concentration of spinal 5-HT in HI rabbits can cause MN hyperexcitability, muscle stiffness, and spasticity characteristic of CP. Therapeutic strategies that target serotonergic neuromodulation may be beneficial to individuals with CP. Key points After prenatal hypoxia-ischemia (HI), neonatal rabbits that show hypertonia are known to have higher levels of spinal serotoninWe tested responsivity of spinal motoneurons (MNs) in neonatal control and HI rabbits to serotonin using whole cell patch clampMNs from HI rabbits showed a more robust excitatory response to serotonin than control MNs, including hyperpolarization of the persistent inward current and threshold for action potentials, larger post-inhibitory rebound, and less spike frequency adaptation Based on immunohistochemistry of lumbar MNs, fewer HI MNs express inhibitory 5HT 1A receptors than control MNs, which could account for the more robust excitatory response of HI MNs. These results suggest that after HI injury, the increased serotonin could trigger a cascade of events leading to muscle stiffness and altered motor unit development.
Collapse
Affiliation(s)
- E. J. REEDICH
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - L.T. GENRY
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - P.R. STEELE
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - E. MENA AVILA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - L. DOWALIBY
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | | - M. MANUEL
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - K. A. QUINLAN
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
13
|
Tan S, Shi Z. Commentary to the in-focus issue "Perinatal brain injury leading to later neurodevelopmental disorders: Early detection and treatment options". J Neurosci Res 2022; 100:2109-2111. [PMID: 36177726 PMCID: PMC9838809 DOI: 10.1002/jnr.25130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023]
Affiliation(s)
- Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
14
|
Targeted Perioperative Nursing Combined with Propofol and Fentanyl for Gynecological Laparoscopic Surgery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1257260. [PMID: 36285163 PMCID: PMC9588366 DOI: 10.1155/2022/1257260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Objective The aim of this study is to investigate the clinical effects of targeted perioperative nursing combined with propofol and fentanyl in gynecological laparoscopic surgery. Methods Patients who were admitted to our hospital for gynecological laparoscopic surgeries from October 1, 2019 to November 30, 2021 were included in this retrospective study. Patients in group A received routine propofol and fentanyl. Patients in group B received targeted perioperative nursing on the basis of interventions in group A. The anesthetic effects, clinical indicators, mental health status, and adverse reactions were compared between the two groups. Results A total of 84 qualified patients were retrieved. The total effective anesthesia rate, extubation time, operation time, consciousness recovery time, intraoperative blood loss, hospital stay, SAS score, SDS score, health status indicators, and adverse events in group B were all significantly better than those in group A (P < 0.05 for all comparisons). Conclusion Combined intervention (propofol + fentanyl + targeted perioperative care) for gynecological laparoscopic surgery patients has a significant anesthesia effect, which can effectively improve the patient's clinical indicators and mental health status and can also reduce the occurrence of adverse events. It has good safety and can be widely used in clinical practice.
Collapse
|
15
|
Wang T, Liang F, Wang Y, Huo Q, Wang B. Clinical Study on Blood Pressure Variability, Montreal Cognitive Assessment and Arteriosclerosis Index in Patients with Cerebral Small Vessel Disease Treated with Integrated Traditional Chinese and Western Medicine by Invigorating Kidney and Removing Blood Stasis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5661303. [PMID: 36276873 PMCID: PMC9584690 DOI: 10.1155/2022/5661303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Objective To explore the clinical improvement in blood pressure variability, Montreal Cognitive Assessment, and angiosclerosis index in patients with cerebral small vessel disease treated with integrated traditional Chinese and Western medicine. Methods A randomized controlled study of patients with cerebral small vessel disease who were treated in our hospital from November 1, 2018, to January 31, 2022. The enrolled patients were randomized into 2 groups according to the random numbers: an observation group treated with integrated traditional Chinese and Western medicine and a control group treated with Western medicine only. Blood pressure variability, Montreal Cognitive Assessment (MoCA), and angiosclerosis index were compared between the two groups. Results There were 71 qualified cases in the observation group and 58 qualified cases in the control group. Before treatment, the indicators between the two groups were comparable (P > 0.05). After treatment, the mean values of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were significantly decreased (P < 0.05); the decrease of 24hSBP-coefficient of variation (CV), daytime SBP (dSBP)-CV, 24hSBP-standard deviation (SD), and dSBP-SD in the observation group was significantly better than that in the control group; the MoCA scores of the observation group were significantly higher than those of the control group ((P < 0.05); the ABI and PWV were significantly different between the two groups (P < 0.05); TC, TG, HDL-C, and LDL-C in observation group decreased after treatment, and HDL-C increased significantly (P < 0.05). Conclusion Integrative traditional Chinese and Western medicine treatment can further reduce the blood pressure variability, especially systolic blood pressure; improve the MoCA score and cognitive function, increase the ankle-brachial index, reduce pulse wave velocity and the degree of arteriosclerosis; and improve lipid metabolism a comprehensive intervention role.
Collapse
Affiliation(s)
- Tianzhan Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Fang Liang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuxin Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qingping Huo
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Bing Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
16
|
Early Identification of High-Risk Factors for Upper Gastrointestinal Bleeding. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5641394. [PMID: 36276848 PMCID: PMC9584689 DOI: 10.1155/2022/5641394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Objective To identify simple and accurate pre-endoscopy risk factors for early identification of high-risk upper gastrointestinal bleeding. Methods Patients who were admitted to Suzhou Hospital of Integrated Traditional Chinese and Western Medicine from January 1, 2016, to December 31, 2019, due to upper gastrointestinal bleeding were retrieved, and the detailed clinical data of the above patients were collected. Patients with a definite diagnosis of bleeding from esophageal/and gastric varices were assigned to the high-risk group. Patients with bleeding not caused by varices were divided into a high-risk and a low-risk group according to the Forrest grading and scoring standard (high-risk group Forrest Ia-IIb, low-risk group Forrest IIc-III). Univariate analysis, t-test, chi-square test, binary logistic regression, ROC curve (Receiver-operating characteristic curve), etc. were employed for analysis in order to identify some simple and accurate risk factors for high-risk upper digestion tract bleeding before endoscopy. Results A total of 916 patients were collected. Three risk factors among the screened risk factors (1) hemoglobin ≤ 85 g/L, (2) vomiting red blood, and (3) “red bloody stool” were analyzed by ROC curve analysis. The specificities of each factor were 78.4%, 94.5%, and 96.7%, respectively, and the sensitivities were 71.8%, 55.9%, and 23.1%, respectively. We also derived a risk prediction scoring system for the three factors that meet the high risk such as (1) hemoglobin ≤ 83 g/L, (2)vomiting red blood, and (3) “red bloody stool.” The area under the ROC curve (AUROC), sensitivity, and specificity were 0.877, 0.904, and 0.746. Conclusion Hemoglobin ≤ 85 g/L, vomiting red blood, and red bloody stool were included in a simple scoring standard for predicting high-risk UGIB patients before endoscopy. The new risk prediction scoring system requires only three indicators and has the advantages of high accuracy, short time-consuming, and easy application.
Collapse
|
17
|
Carbetocin Controls Intraoperative Blood Loss and Thickness of Myometrium in Scar Uterus Cases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5477432. [PMID: 36248432 PMCID: PMC9553459 DOI: 10.1155/2022/5477432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Objective To study the effect of carbetocin on intraoperative blood loss and thickness of myometrium during cesarean section with the scarred uterus at term pregnancy. Methods Pregnant women with full-term gestational scar uterus who underwent cesarean section from March 1, 2021, to April 30, 2022, were retrospectively collected and divided into a reference group (using oxytocin) or a study group (using carbetocin). The clinical data of the two groups were retrospectively analyzed, and the operation time, intraoperative blood loss, hospital stay, uterine contraction effect, changes in the myometrium, and complications were compared between the two groups. Results A total of 103 pregnant women were retrieved. There were 44 cases in the reference group and 59 cases in the study group. There were significant differences in operation time, intraoperative bleeding, hospital stay, postoperative adverse events, uterine fundus wall thickness, anterior wall thickness, posterior wall thickness, and uterine contraction effect between the two groups (p=0.0001, 0.005, 0.006, 0.001, 0.0004, 0.003, 0.001, and 0.005, respectively). There were no significant differences in estradiol (E2), luteinizing hormone (LH), or follicle-stimulating hormone (FSH) between the two groups before the surgery (p=0.596, 0.840, and 0.940, respectively), but there were significant differences after the surgery (p=0.011, 0.001, and 0.005, respectively). Conclusion The use of carbetocin in the cesarean section of a full-term scar uterus is significantly effective in shortening the operation time, reducing the amount of intraoperative blood loss, and promoting the recovery of the uterus.
Collapse
|
18
|
Reedich EJ, Genry LT, Singer MA, Cavarsan CF, Mena Avila E, Boudreau DM, Brennan MC, Garrett AM, Dowaliby L, Detloff MR, Quinlan KA. Enhanced nociceptive behavior and expansion of associated primary afferents in a rabbit model of cerebral palsy. J Neurosci Res 2022; 100:1951-1966. [PMID: 35839339 PMCID: PMC9388620 DOI: 10.1002/jnr.25108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/07/2022]
Abstract
Spastic cerebral palsy (CP) is a movement disorder marked by hypertonia and hyperreflexia; the most prevalent comorbidity is pain. Since spinal nociceptive afferents contribute to both the sensation of painful stimuli as well as reflex circuits involved in movement, we investigated the relationship between prenatal hypoxia-ischemia (HI) injury which can cause CP, and possible changes in spinal nociceptive circuitry. To do this, we examined nociceptive afferents and mechanical and thermal sensitivity of New Zealand White rabbit kits after prenatal HI or a sham surgical procedure. As described previously, a range of motor deficits similar to spastic CP was observed in kits born naturally after HI (40 min at ~70%-80% gestation). We found that HI caused an expansion of peptidergic afferents (marked by expression of calcitonin gene-related peptide) in both the superficial and deep dorsal horn at postnatal day (P)5. Non-peptidergic nociceptive afferent arborization (labeled by isolectin B4) was unaltered in HI kits, but overlap of the two populations (peptidergic and non-peptidergic nociceptors) was increased by HI. Density of glial fibrillary acidic protein was unchanged within spinal cord white matter regions important in nociceptive transmission at P5. We found that mechanical and thermal nociception was enhanced in HI kits even in the absence of motor deficits. These findings suggest that prenatal HI injury impacts spinal sensory pathways in addition to the more well-established disruptions to descending motor circuits. In conclusion, changes to spinal nociceptive circuitry could disrupt spinal reflexes and contribute to pain experienced by individuals with CP.
Collapse
Affiliation(s)
- Emily J Reedich
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Landon T Genry
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, Rhode Island, USA
| | - Meredith A Singer
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Clarissa Fantin Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Elvia Mena Avila
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Daphne M Boudreau
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Michael C Brennan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Alyssa M Garrett
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
- Rhode Island Institutional Development Award (IDeA) Network for Biomedical Research Excellence (INBRE) Summer Undergraduate Research Fellowship (SURF) Program, University of Rhode Island, Kingston, Rhode Island, USA
| | - Lisa Dowaliby
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Megan R Detloff
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
19
|
miR-28-5p's Targeting of GAGE12I Inhibits Proliferation, Migration, and Invasion of Gastric Cancer in Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6946051. [PMID: 36212971 PMCID: PMC9546678 DOI: 10.1155/2022/6946051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
GAGE12I is a tumor metastasis-promoting factor, which can induce gastric cancer cells to invade and migrate. We investigated the effect of miR-28-5p targeting GAGE12I on proliferation, invasion, and migration of human gastric cancer cell lines SGC-7901, AGS, and MGC-803. The expression levels of miR-28-5p and GAGE12I were detected by real-time PCR and western blot, respectively. Cell proliferation, migration, and invasion were measured by MTT and Transwell chamber. The interaction between miR-28-5p and GAGE12I was investigated by bioinformatics analysis and luciferase assay. Results showed that the expression of miR-28-5p in human gastric cancer cell lines was lower than that in normal gastric epithelial cells (P < 0.05). Overexpression of miR-28-5p suppressed cell proliferation, invasion, and migration (P < 0.05). GAGE12I was confirmed as a target of miR-28-5p. Cell proliferation, invasion, and migration were decreased in cells transfected with shGAGE12I compared with those of the scrambled group (P < 0.05). Collectively, miR-28-5p negatively regulated GAGE12I and reduced the proliferation, invasion, and migration of gastric cancer cells.
Collapse
|
20
|
A Retrospective Study of Chemotherapy and 3D-Image-Guided Afterloading Intracavitary Radiotherapy in Locally Advanced Cervical Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9578436. [PMID: 36213841 PMCID: PMC9546676 DOI: 10.1155/2022/9578436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022]
Abstract
Aim To investigate the value of neoadjuvant chemotherapy combined with 3D-image-guided afterloading intracavitary radiotherapy in locally advanced cervical cancer (LACC). Methods Patients with cervical cancer admitted to our hospital from January 1, 2020 to January 1, 2021 were retrieved and analyzed. Cases treated with neoadjuvant chemotherapy and 3D-image-guided afterloading intracavitary radiotherapy were assigned into the observation group (OG), while cases with neoadjuvant chemotherapy alone were assigned into the control group (CG). The short-term effects were determined by RECIST 1.1. Total effective rate (TR) = complete remission (CR) + partial remission (PR). The serum levels of squamous epithelial cell carcinoma antigen (SCC-Ag), glycoantigen 125 (CA125), carcinoembryonic antigen (CEA), and vascular endothelial growth factor (VEGF) were assessed. In view of the difference between tumor markers and diameters before and after treatment, the correlation between them was analyzed by Pearson test. The adverse events were compared, and the amount of operative bleeding and operation time were evaluated. Cox regression analysis was conducted to assess the influencing factors of 1-year disease-free survival time. Results Sixty-seven patients were retrieved, including 30 cases in the OG and 37 cases in the CG. There were no significant differences in age, pathological type, tumor size, FIGO stage, past medical history, or smoking history between the two groups (P > 0.05). The TR of patients in the OG was higher than that in the CG (P < 0.05). The SCC-Ag, CA125, CEA, and VEGF levels in the OG decreased markedly after treatment (P < 0.001). The difference in SCC-Ag, CA125, CEA, and VEGF was positively correlated with the difference in tumor diameter before and after treatment (P < 0.05). The incidence of adverse events revealed no obvious difference between the OG and CG (P > 0.05). Cox regression analysis showed that FIGO stage and treatment regimens were independent prognostic factors for 1-year disease-free survival (P < 0.05). Conclusion Neoadjuvant chemotherapy combined with 3D-image-guided afterloading intracavitary radiotherapy can improve the TR rate and 1-year disease-free survival of LACC patients without increasing the incidence of adverse events.
Collapse
|
21
|
Clinical Application of Multi-Index Combined Risk Assessment in Early Pregnancy for Screening of Preeclampsia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5089442. [PMID: 36204119 PMCID: PMC9532090 DOI: 10.1155/2022/5089442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Objective To explore the predictive value of single-index screening or multi-index combined screening for preeclampsia. Methods From January 1, 2019, to December 31, 2021, pregnant women with a singleton pregnancy who had been regularly checked in each center since the first trimester (between 11 and 14 weeks of gestation) were retrieved from multiple participating centers. The risk calculation software LifeCycle 7.0 was used to calculate the risk values before 32 weeks, 34 weeks, and 37 weeks of gestation, and through a receiver operating characteristic (ROC) curve analysis, the predictive values of pregnancy-associated protein A (PAPP-A), the placental growth factor (PLGF), the mean arterial pressure (MAP), the uterine artery pulsatility index (UTPI), or a combined multi-index were calculated for preeclampsia. Results Finally, 22 pregnant women developed preeclampsia, and the area under the ROC curve of the PAPP-A + PLGF + MAP + UTPI combined screening program was greater than that of other screening programs before 37 weeks of gestation (AUC = 0.975, 0.946, or 0.840 for <32 weeks, <34 weeks, or <37 weeks, respectively). At 32 weeks, the Youden index was at its maximum. Conclusion PAPP-A + PLGF + MAP + UTPI combined screening is the optimal screening mode for preeclampsia screening before 37 weeks of gestation, and the combined prediction using multiple indicators in early pregnancy is more suitable for predicting the risk of early-onset preeclampsia.
Collapse
|
22
|
Zhang Y, Zhang Y, Pan J. Efficacy Evaluation of High-Volume Hemofiltration in Patients with Severe Acute Respiratory Distress Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9488047. [PMID: 36193149 PMCID: PMC9526665 DOI: 10.1155/2022/9488047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 12/25/2022]
Abstract
Objective To investigate the efficacy of high-volume hemofiltration (HVHF) in the treatment of severe acute respiratory distress syndrome (ARDS) caused by sepsis and its effect on serum levels of miR-126, miR-184, and MAP1-LC3. Methods From July 1, 2015 to December 31, 2021, patients with severe ARDS caused by sepsis who were admitted to our hospital were retrospectively analyzed. Patients who received conventional treatment were summarized into the control group, and those who received HVHF were summarized into the study group. The treatment effects of the two groups were compared. Results Ninety-five qualified patients were retrieved, with 42 patients in the control group and 53 patients in the study group. After treatment, the levels of IL-6, IL-10, TNF-α, miR-126, miR-184, and MAP1-LC3 were significantly lower in the study group (P < 0.05 for all), whereas PEF, FRC, TEF25%, heart rate, mean arterial pressure, and blood oxygen were significantly higher in the study group (P < 0.05 for all). Conclusion HVHF has a good clinical effect on improving patients with severe ARDS caused by sepsis and can improve the pulmonary function of patients.
Collapse
Affiliation(s)
- Yonglei Zhang
- Department of Emergency Intensive Care, Yantaishan Hospital, Yantai, China
| | - Yan Zhang
- Department of Emergency Intensive Care, Yantaishan Hospital, Yantai, China
| | - Jiming Pan
- Department of Emergency Intensive Care, Yantaishan Hospital, Yantai, China
| |
Collapse
|
23
|
Elevated Plasma Interleukin-35 as a Prognostic Indicator in Localized Clear Cell Renal Cell Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6886590. [PMID: 36124013 PMCID: PMC9482474 DOI: 10.1155/2022/6886590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022]
Abstract
Purpose The aim of the study is to investigate the prognostic value of plasma interleukin-35 in the surgical treatment of patients with clear cell renal cell carcinoma (ccRCC). Material and Methods. Plasma IL-35 levels were measured in patients with ccRCC. The cut-off value of IL-35 was determined by the receiver operating characteristic (ROC) analysis and the area under the curve (AUC). The effects of the IL-35 and other clinicopathological characteristics on overall survival (OS) and progression-free survival (PFS) were evaluated using the univariate and multivariate logistic regression analysis. Result Sixty-four ccRCC patients admitted to the urology department at the First Affiliated Hospital of Soochow University were selected, of whom 50 were diagnosed with localized ccRCC. Plasma interleukin-35 levels were significantly higher in patients with ccRCC than that in healthy controls. The cut-off value of IL-35 was 99.7 pg/mL. Multivariate analysis selected by univariate analyses demonstrated that the preoperative IL-35 was an independent prognostic factor for 5-year OS (OR: 1.02, 95% CI: 1.01 to 1.04, p < 0.0001) and 5-year PFS (OR: 1.02, 95% CI: 1.00 to 1.03, p=0.011) in all patients with localized ccRCC. Conclusion Current results indicate that preoperative IL-35 is an independent prognostic marker for OS and RFS in patients with localized ccRCC after surgery.
Collapse
|
24
|
Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 2022; 10:937. [PMID: 35625674 PMCID: PMC9138693 DOI: 10.3390/biomedicines10050937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | | | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|