1
|
Wang X, Yang G, Lai Y, Li Y, Liu X. Exploring the hub Genes and Potential Mechanisms of Complement system-related Genes in Parkinson Disease: Based on Transcriptome Sequencing and Mendelian Randomization. J Mol Neurosci 2024; 74:95. [PMID: 39373800 DOI: 10.1007/s12031-024-02272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
An accurate diagnosis of Parkinson's disease (PD) remains challenging and the exact cause of the disease is unclean. The aims are to identify hub genes associated with the complement system in PD and to explore their underlying molecular mechanisms. Initially, differentially expressed genes (DEGs) and key module genes related to PD were mined through differential expression analysis and WGCNA. Then, differentially expressed CSRGs (DE-CSRGs) were obtained by intersecting the DEGs, key module genes and CSRGs. Subsequently, MR analysis was executed to identify genes causally associated with PD. Based on genes with significant MR results, the expression level and diagnostic performance verification were achieved to yield hub genes. Functional enrichment and immune infiltration analyses were accomplished to insight into the pathogenesis of PD. qRT-PCR was employed to evaluate the expression levels of hub genes. After MR analysis and related verification, CD93, CTSS, PRKCD and TLR2 were finally identified as hub genes. Enrichment analysis indicated that the main enriched pathways for hub genes. Immune infiltration analysis found that the hub genes showed significant correlation with a variety of immune cells (such as myeloid-derived suppressor cell and macrophage). In the qRT-PCR results, the expression levels of CTSS, PRKCD and TLR2 were consistent with those we obtained from public databases. Hence, we mined four hub genes associated with complement system in PD which provided novel perspectives for the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Gaoming Yang
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Yali Lai
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Yuanyuan Li
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China
| | - Xindong Liu
- Department of Neurology, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 hospital), Chengdu, 610000, China.
| |
Collapse
|
2
|
Tian J, Zuo C, Shi J, Ma D, Shi C. Peripheral immune cell traits and Parkinson's disease: A Mendelian randomization study. PLoS One 2024; 19:e0299026. [PMID: 38442099 PMCID: PMC10914262 DOI: 10.1371/journal.pone.0299026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The peripheral immune system is altered in Parkinson's disease (PD), but the causal relationship between the two remains controversial. In this study, we aimed to estimate the causal relationship between peripheral immune features and PD using a two-sample Mendelian randomization (MR) approach. METHODS Genome-wide association study (GWAS) data of peripheral blood immune signatures from European populations were used for exposure and PD summary statistics were used as results. We conducted a two-sample MR study using the inverse-variance weighted (IVW), MR-Egger, and weighted median methods to evaluate the causal association between these factors. MR-Egger and MR-PRESSO were used for sensitivity analysis to test and correct horizontal pleiotropy. RESULTS A total of 731 immune traits were analyzed for association with PD using three MR methods. After adjustment for FDR, we observed four peripheral immunological features associated with PD using the IVW method, including expression of CX3CR1 on monocytes [OR: 0.85, 95% CI: (0.81, 0.91), P = 6.56E-07] and CX3CR1 on CD14+CD16+ monocytes [OR: 0.87, 95% CI: (0.82, 0.93), P = 9.95E-06]. CONCLUSIONS Our study further revealed the important role of monocytes in PD and indicated that CX3CR1 expression on monocytes is associated with a reduced risk of PD.
Collapse
Affiliation(s)
- Jie Tian
- Zheng Zhou Railway Vocational and Technical College, Zhengzhou, Henan, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Song Z, Li W, Han Y, Xu Y, Ding H, Wang Y. Association of immune cell traits with Parkinson's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1340110. [PMID: 38455666 PMCID: PMC10917892 DOI: 10.3389/fnagi.2024.1340110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Background Immunity and neuroinflammation play crucial roles in the pathogenesis of Parkinson's disease (PD). Nonetheless, prior investigations into the correlation between immune inflammation and PD have produced varying results. Identifying specific immune cell phenotypes that are truly associated with PD is challenging, and the causal relationship between immune cells and PD remains elusive. Methods This study conducted a comprehensive two-sample Mendelian randomization (MR) analysis, employing five distinct analytical approaches, to clarify the causal connection between immune cell characteristics and the risk of PD. Utilizing GWAS data, we investigated the causal relationship between 731 immune cell traits and PD. These immune cell phenotypes encompass absolute cell (AC) counts, median fluorescence intensity (MFI), and relative cell (RC) counts for B cells, cDCs, mature stage T cells, monocytes, myeloid cells, TBNK (T cells, B cells, and natural killer cells), and Tregs, as well as the logistic parameter (MP) for cDCs and TBNK. Results The inverse variance weighted (IVW) analysis indicated that Myeloid DCs (p = 0.004), HVEM expression on CD45RA- CD4+ T cells (p = 0.007), CD62L- CD86+ Myeloid DCs (p = 0.015), and HLA DR expression on monocytes (p = 0.019) were associated with a reduced risk of PD. CD14+ CD16+ monocytes (p = 0.005), HLA DR+ NK cells within CD3- lymphocytes (p = 0.023), and CD28 expression on activated & secreting Tregs (p = 0.032) were associated with an increased risk of PD. Conclusion This study establishes a causal link between immune cell phenotype and the pathogenesis of PD, identifying several specific immune cell characteristics associated with PD. This could inspire researchers to delve into the pathogenesis of PD at the cellular subtype level, and aid in the identification of potential pharmacological protein targets for PD.
Collapse
Affiliation(s)
- Zhiwei Song
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Wangyu Li
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yupeng Han
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiya Xu
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Haiqi Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yinzhou Wang
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Colleselli K, Stierschneider A, Wiesner C. An Update on Toll-like Receptor 2, Its Function and Dimerization in Pro- and Anti-Inflammatory Processes. Int J Mol Sci 2023; 24:12464. [PMID: 37569837 PMCID: PMC10419760 DOI: 10.3390/ijms241512464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
While a certain level of inflammation is critical for humans to survive infection and injury, a prolonged inflammatory response can have fatal consequences. Pattern recognition Toll-like receptors (TLRs) are key players in the initiation of an inflammatory process. TLR2 is one of the most studied pattern recognition receptors (PRRs) and is known to form heterodimers with either TLR1, TLR4, TLR6, and TLR10, allowing it to recognize a wide range of pathogens. Although a large number of studies have been conducted over the past decades, there are still many unanswered questions regarding TLR2 mechanisms in health and disease. In this review, we provide an up-to-date overview of TLR2, including its homo- and heterodimers. Furthermore, we will discuss the pro- and anti-inflammatory properties of TLR2 and recent findings in prominent TLR2-associated infectious and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
5
|
A Monoclonal Anti-HMGB1 Antibody Attenuates Neurodegeneration in an Experimental Animal Model of Glaucoma. Int J Mol Sci 2022; 23:ijms23084107. [PMID: 35456925 PMCID: PMC9028318 DOI: 10.3390/ijms23084107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a crucial process for the loss of retinal ganglion cells (RGC), a major characteristic of glaucoma. High expression of high-mobility group box protein 1 (HMGB1) plays a detrimental role in inflammatory processes and is elevated in the retinas of glaucoma patients. Therefore, this study aimed to investigate the effects of the intravitreal injection of an anti-HMGB1 monoclonal antibody (anti-HMGB1 Ab) in an experimental animal model of glaucoma. Two groups of Spraque Dawley rats received episcleral vein occlusion to chronically elevate intraocular pressure (IOP): (1) the IgG group, intravitreal injection of an unspecific IgG as a control, n = 5, and (2) the HMGB1 group, intravitreal injection of an anti-HMGB1 Ab, n = 6. IOP, retinal nerve fiber layer thickness (RNFLT), and the retinal flash response were monitored longitudinally. Post-mortem examinations included immunohistochemistry, microarray, and mass spectrometric analysis. RNFLT was significantly increased in the HMGB1 group compared with the IgG group (p < 0.001). RGC density showed improved neuronal cell survival in the retina in HMGB1 compared with the IgG group (p < 0.01). Mass spectrometric proteomic analysis of retinal tissue showed an increased abundance of RNA metabolism-associated heterogeneous nuclear ribonucleoproteins (hnRNPs), such as hnRNP U, D, and H2, in animals injected with the anti-HMGB1 Ab, indicating that the application of the antibody may cause increased gene expression. Microarray analysis showed a significantly decreased expression of C-X-C motif chemokine ligand 8 (CXCL8, p < 0.05) and connective tissue growth factor (CTGF, p < 0.01) in the HMGB1 group. Thus, these data suggest that intravitreal injection of anti-HMGB1 Ab reduced HMGB1-dependent inflammatory signaling and mediated RGC neuroprotection.
Collapse
|
6
|
Tian Y, Huang B, Li J, Tian X, Zeng X. Identification of the Association Between Toll-Like Receptors and T-Cell Activation in Takayasu’s Arteritis. Front Immunol 2022; 12:792901. [PMID: 35126357 PMCID: PMC8812403 DOI: 10.3389/fimmu.2021.792901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
To explore the relationships between Toll-like receptors (TLRs) and the activation and differentiation of T-cells in Takayasu’s arteritis (TAK), using real-time fluorescence quantitative polymerase chain reaction, mRNA abundance of 29 target genes in peripheral blood mononuclear cells (PBMCs) were detected from 27 TAK patients and 10 healthy controls. Compared with the healthy control group, the untreated TAK group and the treated TAK group had an increased mRNA level of TLR2 and TLR4. A sample-to-sample matrix revealed that 80% of healthy controls could be separated from the TAK patients. Correlation analysis showed that the inactive-treated TAK group exhibited a unique pattern of inverse correlations between the TLRs gene clusters (including TLR1/2/4/6/8, BCL6, TIGIT, NR4A1, etc) and the gene cluster associated with T-cell activation and differentiation (including TCR, CD28, T-bet, GATA3, FOXP3, CCL5, etc). The dynamic gene co-expression network indicated the TAK groups had more active communication between TLRs and T-cell activation than healthy controls. BCL6, CCL5, FOXP3, GATA3, CD28, T-bet, TIGIT, IκBα, and NR4A1 were likely to have a close functional relation with TLRs at the inactive stage. The co-expression of TLR4 and TLR6 could serve as a biomarker of disease activity in treated TAK (the area under curve/sensitivity/specificity, 0.919/100%/90.9%). The largest gene co-expression cluster of the inactive-treated TAK group was associated with TLR signaling pathways, while the largest gene co-expression cluster of the active-treated TAK group was associated with the activation and differentiation of T-cells. The miRNA sequencing of the plasma exosomes combining miRDB, DIANA-TarBase, and miRTarBase databases suggested that the miR-548 family miR-584, miR-3613, and miR-335 might play an important role in the cross-talk between TLRs and T-cells at the inactive stage. This study found a novel relation between TLRs and T-cell in the pathogenesis of autoimmune diseases, proposed a new concept of TLR-co-expression signature which might distinguish different disease activity of TAK, and highlighted the miRNA of exosomes in TLR signaling pathway in TAK.
Collapse
Affiliation(s)
- Yixiao Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Biqing Huang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Jing Li, ; Xiaofeng Zeng,
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (PUMCH), Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
- *Correspondence: Jing Li, ; Xiaofeng Zeng,
| |
Collapse
|