1
|
Green TRF, Carey SD, Mannino G, Craig JA, Rowe RK, Zielinski MR. Sleep, inflammation, and hemodynamics in rodent models of traumatic brain injury. Front Neurosci 2024; 18:1361014. [PMID: 38426017 PMCID: PMC10903352 DOI: 10.3389/fnins.2024.1361014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Traumatic brain injury (TBI) can induce dysregulation of sleep. Sleep disturbances include hypersomnia and hyposomnia, sleep fragmentation, difficulty falling asleep, and altered electroencephalograms. TBI results in inflammation and altered hemodynamics, such as changes in blood brain barrier permeability and cerebral blood flow. Both inflammation and altered hemodynamics, which are known sleep regulators, contribute to sleep impairments post-TBI. TBIs are heterogenous in cause and biomechanics, which leads to different molecular and symptomatic outcomes. Animal models of TBI have been developed to model the heterogeneity of TBIs observed in the clinic. This review discusses the intricate relationship between sleep, inflammation, and hemodynamics in pre-clinical rodent models of TBI.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Sean D. Carey
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| | - Grant Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John A. Craig
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Zielinski
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| |
Collapse
|
2
|
Howell SN, Griesbach GS. Sex Differences in Sleep Architecture After Traumatic Brain Injury: Potential Implications on Short-Term Episodic Memory and Recovery. Neurotrauma Rep 2024; 5:3-12. [PMID: 38249321 PMCID: PMC10797171 DOI: 10.1089/neur.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Sleep-wake disturbances (SWDs) are common after TBI and often extend into the chronic phase of recovery. Such disturbances in sleep can lead to deficits in executive functioning, attention, and memory consolidation, which may ultimately impact the recovery process. We examined whether SWDs post-TBI were associated with morbidity during the post-acute period. Particular attention was placed on the impact of sleep architecture on learning and memory. Because women are more likely to report SWDs, we examined sex as a biological variable. We also examined subjective quality of life, depression, and disability levels. Data were retrospectively analyzed for 57 TBI patients who underwent an overnight polysomnography. Medical records were reviewed to determine cognitive and functional status during the period of the sleep evaluation. Consideration was given to medications, owing to the fact that a high number of these are likely to have secondary influences on sleep characteristics. Women showed higher levels of disability and reported more depression and lower quality of life. A sex-dependent disruption in sleep architecture was observed, with women having lower percent time in REM sleep. An association between percent time in REM and better episodic memory scores was found. Melatonin utilization had a positive impact on REM duration. Improvements in understanding the impact of sleep-wake disturbances on post-TBI outcome will aid in defining targeted interventions for this population. Findings from this study support the hypothesis that decreases in REM sleep may contribute to chronic disability and underlie the importance of considering sex differences when addressing sleep.
Collapse
Affiliation(s)
| | - Grace S. Griesbach
- Centre for Neuro Skills, Bakersfield, California, USA
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Yu F, Iacono D, Perl DP, Lai C, Gill J, Le TQ, Lee P, Sukumar G, Armstrong RC. Neuronal tau pathology worsens late-phase white matter degeneration after traumatic brain injury in transgenic mice. Acta Neuropathol 2023; 146:585-610. [PMID: 37578550 PMCID: PMC10499978 DOI: 10.1007/s00401-023-02622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Traumatic brain injury (TBI) causes diffuse axonal injury which can produce chronic white matter pathology and subsequent post-traumatic neurodegeneration with poor patient outcomes. Tau modulates axon cytoskeletal functions and undergoes phosphorylation and mis-localization in neurodegenerative disorders. The effects of tau pathology on neurodegeneration after TBI are unclear. We used mice with neuronal expression of human mutant tau to examine effects of pathological tau on white matter pathology after TBI. Adult male and female hTau.P301S (Tg2541) transgenic and wild-type (Wt) mice received either moderate single TBI (s-TBI) or repetitive mild TBI (r-mTBI; once daily × 5), or sham procedures. Acutely, s-TBI produced more extensive axon damage in the corpus callosum (CC) as compared to r-mTBI. After s-TBI, significant CC thinning was present at 6 weeks and 4 months post-injury in Wt and transgenic mice, with homozygous tau expression producing additional pathology of late demyelination. In contrast, r-mTBI did not produce significant CC thinning except at the chronic time point of 4 months in homozygous mice, which exhibited significant CC atrophy (- 29.7%) with increased microgliosis. Serum neurofilament light quantification detected traumatic axonal injury at 1 day post-TBI in Wt and homozygous mice. At 4 months, high tau and neurofilament in homozygous mice implicated tau in chronic axon pathology. These findings did not have sex differences detected. Conclusions: Neuronal tau pathology differentially exacerbated CC pathology based on injury severity and chronicity. Ongoing CC atrophy from s-TBI became accompanied by late demyelination. Pathological tau significantly worsened CC atrophy during the chronic phase after r-mTBI.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Diego Iacono
- Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Tuan Q Le
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Patricia Lee
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA.
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
4
|
Brand J, McDonald SJ, Gawryluk JR, Christie BR, Shultz SR. Stress and traumatic brain injury: An inherent bi-directional relationship with temporal and synergistic complexities. Neurosci Biobehav Rev 2023; 151:105242. [PMID: 37225064 DOI: 10.1016/j.neubiorev.2023.105242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Traumatic brain injury (TBI) and stress are prevalent worldwide and can both result in life-altering health problems. While stress often occurs in the absence of TBI, TBI inherently involves some element of stress. Furthermore, because there is pathophysiological overlap between stress and TBI, it is likely that stress influences TBI outcomes. However, there are temporal complexities in this relationship (e.g., when the stress occurs) that have been understudied despite their potential importance. This paper begins by introducing TBI and stress and highlighting some of their possible synergistic mechanisms including inflammation, excitotoxicity, oxidative stress, hypothalamic-pituitary-adrenal axis dysregulation, and autonomic nervous system dysfunction. We next describe different temporal scenarios involving TBI and stress and review the available literature on this topic. In doing so we find initial evidence that in some contexts stress is a highly influential factor in TBI pathophysiology and recovery, and vice versa. We also identify important knowledge gaps and suggest future research avenues that will increase our understanding of this inherent bidirectional relationship and could one day result in improved patient care.
Collapse
Affiliation(s)
- Justin Brand
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Sandy R Shultz
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Neuroscience, Monash University, Melbourne, Victoria, Australia; Faculty of Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada.
| |
Collapse
|