1
|
Aukema RJ, Petrie GN, Matarasso AK, Baglot SL, Molina LA, Füzesi T, Kadhim S, Nastase AS, Rodriguez Reyes I, Bains JS, Morena M, Bruchas MR, Hill MN. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacology 2024; 49:1989-1999. [PMID: 39117904 PMCID: PMC11480132 DOI: 10.1038/s41386-024-01927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Avi K Matarasso
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sandra Kadhim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Itzel Rodriguez Reyes
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
- Neuropsychopharmacology Unit, European Center for Brain Research, Santa Lucia Foundation, Rome, 00143, Italy
| | - Michael R Bruchas
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
2
|
Yu J, Zhang Y, Clements K, Chen N, Griffith LC. Genetically-encoded markers for confocal visualization of single dense core vesicles. RESEARCH SQUARE 2024:rs.3.rs-5021271. [PMID: 39502772 PMCID: PMC11537351 DOI: 10.21203/rs.3.rs-5021271/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Neuronal dense core vesicles (DCVs) store and release a diverse array of neuromodulators, trophic factors and bioamines. The analysis of single DCVs has largely been possible only using electron microscopy, which makes understanding cargo segregation and DCV heterogeneity difficult. To address these limitations, we developed genetically-encoded markers for DCVs that can be used in combination with standard immunohistochemistry and expansion microscopy, to enable single-vesicle resolution with confocal microscopy.
Collapse
Affiliation(s)
- Junwei Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- These authors contributed equally
| | - Yunpeng Zhang
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Current Address: Gempharmatech Co., Ltd., Nanjing 210000, China
- These authors contributed equally
| | - Kelsey Clements
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Nannan Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Leslie C. Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
3
|
Yu J, Zhang Y, Clements K, Chen N, Griffith LC. Genetically-encoded markers for confocal visualization of single dense core vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617131. [PMID: 39416146 PMCID: PMC11482792 DOI: 10.1101/2024.10.07.617131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neuronal dense core vesicles (DCVs) store and release a diverse array of neuromodulators, trophic factors and bioamines. The analysis of single DCVs has largely been possible only using electron microscopy, which makes understanding cargo segregation and DCV heterogeneity difficult. To address these limitations, we developed genetically-encoded markers for DCVs that can be used in combination with standard immunohistochemistry and expansion microscopy, to enable single-vesicle resolution with confocal microscopy.
Collapse
Affiliation(s)
- Junwei Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- These authors contributed equally
| | - Yunpeng Zhang
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
- Current Address: Gempharmatech Co., Ltd., Nanjing 210000, China
- These authors contributed equally
| | - Kelsey Clements
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| | - Nannan Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Leslie C. Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
4
|
Vásquez CE, Knak Guerra KT, Renner J, Rasia-Filho AA. Morphological heterogeneity of neurons in the human central amygdaloid nucleus. J Neurosci Res 2024; 102:e25319. [PMID: 38629777 DOI: 10.1002/jnr.25319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
The central amygdaloid nucleus (CeA) has an ancient phylogenetic development and functions relevant for animal survival. Local cells receive intrinsic amygdaloidal information that codes emotional stimuli of fear, integrate them, and send cortical and subcortical output projections that prompt rapid visceral and social behavior responses. We aimed to describe the morphology of the neurons that compose the human CeA (N = 8 adult men). Cells within CeA coronal borders were identified using the thionine staining and were further analyzed using the "single-section" Golgi method followed by open-source software procedures for two-dimensional and three-dimensional image reconstructions. Our results evidenced varied neuronal cell body features, number and thickness of primary shafts, dendritic branching patterns, and density and shape of dendritic spines. Based on these criteria, we propose the existence of 12 morphologically different spiny neurons in the human CeA and discuss the variability in the dendritic architecture within cellular types, including likely interneurons. Some dendritic shafts were long and straight, displayed few collaterals, and had planar radiation within the coronal neuropil volume. Most of the sampled neurons showed a few to moderate density of small stubby/wide spines. Long spines (thin and mushroom) were observed occasionally. These novel data address the synaptic processing and plasticity in the human CeA. Our morphological description can be combined with further transcriptomic, immunohistochemical, and electrophysiological/connectional approaches. It serves also to investigate how neurons are altered in neurological and psychiatric disorders with hindered emotional perception, in anxiety, following atrophy in schizophrenia, and along different stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Carlos E Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Alberto A Rasia-Filho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
5
|
McDonald AJ. Functional neuroanatomy of basal forebrain projections to the basolateral amygdala: Transmitters, receptors, and neuronal subpopulations. J Neurosci Res 2024; 102:e25318. [PMID: 38491847 PMCID: PMC10948038 DOI: 10.1002/jnr.25318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/20/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
The projections of the basal forebrain (BF) to the hippocampus and neocortex have been extensively studied and shown to be important for higher cognitive functions, including attention, learning, and memory. Much less is known about the BF projections to the basolateral nuclear complex of the amygdala (BNC), although the cholinergic innervation of this region by the BF is actually far more robust than that of cortical areas. This review will focus on light and electron microscopic tract-tracing and immunohistochemical (IHC) studies, many of which were published in the last decade, that have analyzed the relationship of BF inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of BF-BNC circuitry. The results indicate that BF inputs to the BNC mainly target the basolateral nucleus of the BNC (BL) and arise from cholinergic, GABAergic, and perhaps glutamatergic BF neurons. Cholinergic inputs mainly target dendrites and spines of pyramidal neurons (PNs) that express muscarinic receptors (MRs). MRs are also expressed by cholinergic axons, as well as cortical and thalamic axons that synapse with PN dendrites and spines. BF GABAergic axons to the BL also express MRs and mainly target BL interneurons that contain parvalbumin. It is suggested that BF-BL circuitry could be very important for generating rhythmic oscillations known to be critical for emotional learning. BF cholinergic inputs to the BNC might also contribute to memory formation by activating M1 receptors located on PN dendritic shafts and spines that also express NMDA receptors.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|