1
|
Özyurt MG, Bayir E, DoĞan Ş, ÖztÜrk Ş, Şendemİr A. Coculture model of blood-brain barrier on electrospun nanofibers. ACTA ACUST UNITED AC 2020; 44:121-132. [PMID: 32922120 PMCID: PMC7478137 DOI: 10.3906/biy-1908-42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The blood–brain barrier (BBB) is a control mechanism that limits the diffusion of many substances to the central nervous system (CNS). In this study, we designed an in-vitro 3-dimensional BBB system to obtain a fast and reliable model to mimic drug delivery characteristics of the CNS. A support membrane of polycaprolactone nanofiber surfaces was prepared using electrospinning. After confirming the fiber morphology and size, endothelial cells (HUVEC) and glial cells were cultured on either side of this membrane. The model’s similarity to in vivo physiology was tested with a home-designed transmembrane resistance (TR) device, with positive and negative control molecules. Finally, 2 doses of methotrexate (MTX), a chemotherapy agent, were applied to the model, and its permeability through the model was determined indirectly by a vitality test on the MCF-7 cell line. Nicotine, the positive control, completed its penetration through the model almost instantly, while albumin, the negative control, was blocked significantly even after 2 days. MTX reached a deadly threshold 24 h after application. The TR value of the model was promising, being around 260 ohm.cm2. The provided model proposes a disposable and reliable tool for investigating drug permeability through the BBB and has the potential to reduce the number of animal experiments.
Collapse
Affiliation(s)
- Mustafa Görkem Özyurt
- School of Medicine, Koç University, İstanbul Turkey.,Graduate School of Sciences and Engineering, Koç University, İstanbul Turkey
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, İzmir Turkey
| | - Şule DoĞan
- Department of Polymer Science and Technology, İstanbul Technical University, İstanbul Turkey
| | - Şükrü ÖztÜrk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara Turkey
| | - Aylin Şendemİr
- Bioengineering Department, Faculty of Engineering, Ege University, İzmir Turkey.,Department of Biomedical Technologies, Graduate School of Natural and Applied Sciences, Ege University, İzmir Turkey
| |
Collapse
|
2
|
Greco A, Maggini L, De Cola L, De Marco R, Gentilucci L. Diagnostic Implementation of Fast and Selective Integrin-Mediated Adhesion of Cancer Cells on Functionalized Zeolite L Monolayers. Bioconjug Chem 2015; 26:1873-8. [DOI: 10.1021/acs.bioconjchem.5b00350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arianna Greco
- Department
of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Laura Maggini
- Institut
de science et d’ingénierie supramoléculaires
(ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Institut für Nanotechnologie (INT), Karlsruhe Institute of Technology (KIT) - Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institut
de science et d’ingénierie supramoléculaires
(ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Institut für Nanotechnologie (INT), Karlsruhe Institute of Technology (KIT) - Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rossella De Marco
- Department
of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department
of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
3
|
Hummerich R, Schloss P. Serotonin--more than a neurotransmitter: transglutaminase-mediated serotonylation of C6 glioma cells and fibronectin. Neurochem Int 2010; 57:67-75. [PMID: 20451572 DOI: 10.1016/j.neuint.2010.04.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/23/2010] [Accepted: 04/28/2010] [Indexed: 01/11/2023]
Abstract
In the central nervous system serotonin plays important roles as a neurotransmitter as well as during neuronal development and in synaptogenesis. Outside the central nervous system, serotonin is covalently transamidated to procoagulant proteins involved in blood clotting. This process is mediated by transglutaminases and named "serotonylation". Serotonylated proteins then tightly bind to specific serotonin binding sites on fibrinogen and thrombospondin to form stable extracellular multivalent complexes needed for thrombus formation. Here, we have investigated whether transglutaminases can also covalently incorporate extracellular serotonin to neural proteins and whether this might affect extracellular protein expression. Our data reveal that recombinant transglutaminase specifically transamidates [(3)H]-serotonin to cell-surface proteins from C6 glioma cells and the extracellular matrix protein fibronectin. Serotonylation of [(3)H]-serotonin was inhibited by the transglutaminase inhibitor cystamine and unlabelled serotonin. Transglutaminase-mediated transamidation of unlabelled serotonin to C6 cells induced an aggregation of extracellular protein matrices adjacent to and between single cells. Transglutaminase also transamidated the autofluorescent serotonin analogue 5,7-dihydroxytryptamine and monodansylcadaverine (MDC) into living C6 glioma cells. Electrophoretic separation of MDC-labelled C6 cells identified several distinct fluorescent proteins one of which was fibronectin.
Collapse
Affiliation(s)
- René Hummerich
- Biochemical Laboratory, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, 68159 Mannheim, Germany
| | | |
Collapse
|
4
|
Mendes de Aguiar CBN, Lobão-Soares B, Alvarez-Silva M, Trentin AG. Glycosaminoglycans modulate C6 glioma cell adhesion to extracellular matrix components and alter cell proliferation and cell migration. BMC Cell Biol 2005; 6:31. [PMID: 16111491 PMCID: PMC1201133 DOI: 10.1186/1471-2121-6-31] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 08/19/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adhesion to extracellular matrix (ECM) components has been implicated in the proliferative and invasive properties of tumor cells. We investigated the ability of C6 glioma cells to attach to ECM components in vitro and described the regulatory role of glycosaminoglycans (GAGs) on their adhesion to the substrate, proliferation and migration. RESULTS ECM proteins (type IV collagen, laminin and fibronectin) stimulate rat C6 glioma cell line adhesion in vitro, in a dose-dependent manner. The higher adhesion values were achieved with type IV collagen. Exogenous heparin or chondroitin sulfate impaired, in a dose-dependent manner the attachment of C6 glioma cell line to laminin and fibronectin, but not to type IV collagen. Dextran sulfate did not affect C6 adhesion to any ECM protein analyzed, indicating a specific role of GAGs in mediating glioma adhesion to laminin and fibronectin. GAGs and dextran sulfate did not induce C6 glioma detachment from any tested substrate suggesting specific effect in the initial step of cell adhesion. Furthermore, heparin and chondroitin sulfate impaired C6 cells proliferation on fibronectin, but not on type IV collagen or laminin. In contrast, both GAGs stimulate the glioma migration on laminin without effect on type IV collagen or fibronectin. CONCLUSION The results suggest that GAGs and proteoglycans regulate glioma cell adhesion to ECM proteins in specific manner leading to cell proliferation or cell migration, according to the ECM composition, thus modulating tumor cell properties.
Collapse
Affiliation(s)
| | - Bruno Lobão-Soares
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Faculdade de Medicina de Ribeirão Preto, Hospital das Clinicas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcio Alvarez-Silva
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Andréa Gonçalves Trentin
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
5
|
Folsom T, Sakaguchi D. Disruption of actin-myosin interactions results in the inhibition of focal adhesion assembly inXenopus XR1 glial cells. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199905)26:3<245::aid-glia6>3.0.co;2-v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Abstract
We have studied the role of actin fiber assembly on calcium signaling in astrocytes. We found that (1) after astrocytes have been placed in culture, it takes several hours for organization of the definitive actin cytoskeleton. Actin organization and the number of cells engaged in calcium signaling increased in parallel. (2) Disruption of the actin cytoskeleton attenuated the calcium wave propagation; cytochalasin D treatment reduced the number of astrocytes engaged in calcium signaling. (3) Propagation of calcium waves depends on cytoskeletal function; inhibition of myosin light chain kinase suppressed wave activity. (4) Astrocytic calcium signaling is mediated by release of ATP and purinergic receptor stimulation, because agents that interfere with this cascade attenuated or reduced calcium signaling. Because purinergic receptors are fully functional shortly after plating and not affected by cytochalasin D, these observations indicate that cytoskeleton organization is a prerequisite for interastrocytic calcium signaling mediated by release of ATP.
Collapse
|
7
|
|
8
|
Sakaguchi DS, Radke K. Beta 1 integrins regulate axon outgrowth and glial cell spreading on a glial-derived extracellular matrix during development and regeneration. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 97:235-50. [PMID: 8997508 DOI: 10.1016/s0165-3806(96)00142-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study we have investigated functional roles for beta 1 integrin receptors in regulating axon outgrowth, and glial cell adhesion and spreading in the Xenopus retina. The XR1 glial cell line, isolated from Xenopus retinal neuroepithelium, deposits a proteinaceous extracellular matrix (ECM) with potent neurite outgrowth promoting activity. To investigate a potential role of the integrins as cellular receptors for these glial cell-derived ECM components, embryonic and regenerating retinal explants were cultured in the presence of polyclonal antibodies directed against the beta 1 integrin receptor complex. The IgGs and Fabs of the anti-beta 1 integrin antibody strongly inhibited ganglion cell axon outgrowth on the glial cell-derived ECM, although axons grew freely across the surfaces of glial cells surrounding the explants. The antibodies also inhibited outgrowth on purified laminin containing substrates in a dose-dependent fashion. In addition, the anti-beta 1 antibodies were effective at inhibiting the spreading of glial cells that migrated out from the embryonic explants, and also inhibited attachment and spreading of Xenopus XR1 glial cells on ECM substrates. These results show that the beta 1 integrins play important functional roles in axon outgrowth during development and regeneration, and also serve in regulating retinal glial cell attachment and spreading in vitro, and thus are likely to play similar roles in vivo.
Collapse
Affiliation(s)
- D S Sakaguchi
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA.
| | | |
Collapse
|
9
|
Abstract
Invading glioma cells seem to follow distinct anatomic structures within the central nervous system. Tumor cell dissemination may occur along structures, such as the basement membranes of blood vessels or the glial limitans externa, that contain extracellular matrix (ECM) proteins. Frequently, invasive glioma cells are also found to migrate along myelinated fiber tracts of white matter. This behavior is most likely a consequence of using constitutive extracellular ligands expressed along the pathways of preferred dissemination. The extracellular space in anatomic structures, such as blood vessel basement membranes or between myelinated axons, is profoundly different, thus suggesting that glioma cells may be able to use a multiplicity of matrix ligands, possibly activating separate mechanisms for invasion. In addition, enzymatic modification of the extracellular space or deposition of ECM by the tumor cells may also create a more permissive environment for tumor spread into the adjacent brain. Tumor cell invasion is defined as translocation of neoplastic cells through host cellular and ECM barriers. This process has been studied in other cancers, in which a cascade of events has been described that involves receptor-mediated matrix adhesion, degradation of matrix by tumor-secreted metalloproteinases, and, subsequently, active cell locomotion into the newly created space. Although some of these mechanisms may play an important role in glioma invasion, there are some significant differences that are mainly the result of the profoundly different composition of the extracellular environment within the brain. This review focuses on the composition of central nervous system ECM and the recent evidence for the use by glioma cells of multiple invasion mechanisms in response to this unique environment.
Collapse
Affiliation(s)
- A Giese
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | | |
Collapse
|
10
|
Chintala SK, Sawaya R, Gokaslan ZL, Rao JS. Modulation of matrix metalloprotease-2 and invasion in human glioma cells by alpha 3 beta 1 integrin. Cancer Lett 1996; 103:201-8. [PMID: 8635158 DOI: 10.1016/0304-3835(96)04215-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have investigated the effect of integrin antibodies to a well-characterized alpha 5 beta 1 (fibronectin receptor) and to a multi-specific alpha 3 beta 1 (laminin, collagen, and fibronectin receptor), on the expression of matrix metalloproteases and the invasion ability of two human glioblastoma cell lines, SNB19 and U251. Cell adhesion assays indicated that both cell lines adhere to fibronectin, type IV collagen and laminin. Adhesion of cells to fibronectin was inhibited by a RGD peptide. Cells treated with anti-alpha 3 beta 1 or anti-alpha 5 beta 1 antibodies expressed increased levels of MMP-2. An in vitro matrigel assay also showed that the alpha 3 beta 1 antibody-treated cells had greater invasive ability than the controls. Immunofluorescence data showed that glioma cells treated with either anti-alpha 3 beta 1 or anti-alpha 5 beta 1 antibodies expressed diminished alpha 3 beta-1 and alpha 5 beta 1 integrins relative to the controls. The data show that treatment of cells with alpha 3 beta 1 antibody diminishes the integrin expression on the cell surface and increases the MMP-2 activity and invasiveness.
Collapse
Affiliation(s)
- S K Chintala
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
11
|
Malek-Hedayat S, Rome LH. Expression of a beta 1-related integrin by oligodendroglia in primary culture: evidence for a functional role in myelination. J Biophys Biochem Cytol 1994; 124:1039-46. [PMID: 7510711 PMCID: PMC2119971 DOI: 10.1083/jcb.124.6.1039] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have investigated the expression of integrins by rat oligodendroglia grown in primary culture and the functional role of these proteins in myelinogenesis. Immunochemical analysis, using antibodies to a number of alpha and beta integrin subunits, revealed that oligodendrocytes express only one detectable integrin receptor complex (alpha OL beta OL). This complex is immunoprecipitated by a polyclonal anti-human beta 1 integrin subunit antibody. In contrast, astrocytes, the other major glial cell type in brain, express multiple integrins including alpha 1 beta 1, alpha 3 beta 1, and alpha 5 beta 1 complexes that are immunologically and electrophoretically indistinguishable from integrins expressed by rat fibroblasts. The beta subunit of the oligodendrocyte integrin (beta OL) and rat fibroblast beta 1 have different electrophoretic mobilities in SDS-PAGE. However, the two beta subunits appear to be highly related based on immunological cross-reactivity and one-dimensional peptide mapping. After removal of N-linked carbohydrate chains, beta OL and beta 1 comigrated in SDS-PAGE and peptide maps of the two deglycosylated subunits were identical, suggesting differential glycosylation of beta 1 and beta OL accounts entirely for their size differences. The oligodendrocyte alpha subunit, alpha OL, was not immunoprecipitated by antibodies against well characterized alpha chains which are known to associate with beta 1 (alpha 3, alpha 4, and alpha 5). However, an antibody to alpha 8, a more recently identified integrin subunit, did precipitate two integrin subunits with electrophoretic mobilities in SDS-PAGE identical to alpha OL and beta OL. Functional studies indicated that disruption of oligodendrocyte adhesion to a glial-derived matrix by an RGD-containing synthetic peptide resulted in a substantial decrease in the level of mRNAs for several myelin components including myelin basic protein (MBP), proteolipid protein (PLP), and cyclic nucleotide phosphodiesterase (CNP). These results suggest that integrin-mediated adhesion of oligodendrocytes may trigger signal(s) that induce the expression of myelin genes and thus influence oligodendrocyte differentiation.
Collapse
Affiliation(s)
- S Malek-Hedayat
- Department of Biological Chemistry, UCLA School of Medicine 90024-1737
| | | |
Collapse
|