1
|
Forró T, Manu DR, Băjenaru OL, Bălașa R. GFAP as Astrocyte-Derived Extracellular Vesicle Cargo in Acute Ischemic Stroke Patients-A Pilot Study. Int J Mol Sci 2024; 25:5726. [PMID: 38891912 PMCID: PMC11172178 DOI: 10.3390/ijms25115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The utility of serum glial fibrillary acidic protein (GFAP) in acute ischemic stroke (AIS) has been extensively studied in recent years. Here, we aimed to assess its potential role as a cargo protein of extracellular vesicles (EVs) secreted by astrocytes (ADEVs) in response to brain ischemia. Plasma samples from eighteen AIS patients at 24 h (D1), 7 days (D7), and one month (M1) post-symptoms onset, and nine age, sex, and cardiovascular risk factor-matched healthy controls were obtained to isolate EVs using the Exoquick ULTRA EV kit. Subsets of presumed ADEVs were identified further by the expression of the glutamate aspartate transporter (GLAST) as a specific marker of astrocytes with the Basic Exo-Flow Capture kit. Western blotting has tested the presence of GFAP in ADEV cargo. Post-stroke ADEV GFAP levels were elevated at D1 and D7 but not M1 compared to controls (p = 0.007, p = 0.019, and p = 0.344, respectively). Significant differences were highlighted in ADEV GFAP content at the three time points studied (n = 12, p = 0.027) and between D1 and M1 (z = 2.65, p = 0.023). A positive correlation was observed between the modified Rankin Scale (mRS) at D7 and ADEV GFAP at D1 (r = 0.58, p = 0.010) and D7 (r = 0.57, p = 0.013), respectively. ADEV GFAP may dynamically reflect changes during the first month post-ischemia. Profiling ADEVs from peripheral blood could provide a new way to assess the central nervous system pathology.
Collapse
Affiliation(s)
- Timea Forró
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Doina Ramona Manu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Ovidiu-Lucian Băjenaru
- Discipline of Geriatrics and Gerontology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- National Institute of Gerontology and Geriatrics “Ana Aslan”, 11241 Bucharest, Romania
| | - Rodica Bălașa
- 1st Neurology Clinic, County Emergency Clinical Hospital of Targu Mures, 540136 Targu Mures, Romania;
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
2
|
Radu R, Petrescu GED, Gorgan RM, Brehar FM. GFAPδ: A Promising Biomarker and Therapeutic Target in Glioblastoma. Front Oncol 2022; 12:859247. [PMID: 35372061 PMCID: PMC8971704 DOI: 10.3389/fonc.2022.859247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
GFAPδ, the delta isoform of the glial fibrillary acidic protein, is mainly expressed in the subventricular zone of the brain, together with other neural stem cell markers like nestin. The authors of this paper were among the first that described in detail the expression of GFAPδ and its correlation with malignancy and invasiveness in cerebral astrocytoma. Later, several papers confirmed these findings, showing that the alternative splice variant GFAPδ is overexpressed in glioblastoma (CNS WHO grade 4) compared with lower grade gliomas. Other studies suggested that a high GFAPδ/α ratio is associated with a more malignant and invasive behavior of glioma cells. Moreover, the changing of GFAPδ/α ratio affects the expression of high-malignant genes. It is now suggested that discriminating between predominant GFAP isoforms, GFAPδ or GFAPα, is useful for assessing the malignancy state of astrocytoma, and may even contribute to the classification of gliomas. Therefore, the purpose of this paper is to review the literature with emphasize on the role of GFAPδ as a potential biomarker, and as a possible therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Roxana Radu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, Bucharest, Romania
| | - George E. D. Petrescu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, Bucharest, Romania
- *Correspondence: George E. D. Petrescu,
| | - Radu M. Gorgan
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, Bucharest, Romania
| | - Felix M. Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, Bucharest, Romania
| |
Collapse
|
3
|
Kim H, Lee EJ, Lim YM, Kim KK. Glial Fibrillary Acidic Protein in Blood as a Disease Biomarker of Neuromyelitis Optica Spectrum Disorders. Front Neurol 2022; 13:865730. [PMID: 35370870 PMCID: PMC8968934 DOI: 10.3389/fneur.2022.865730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein found in astrocytes in the brain. Damaged astrocytes release GFAP into cerebrospinal fluid and blood. Thus, GFAP levels in these body fluids may reflect the disease state of neuromyelitis optica spectrum disorder (NMOSD), which includes astrocytopathy, characterized by pathogenic antibodies against aquaporin 4 located on astrocytes. Recently, single-molecule array technology that can detect these synaptic proteins in blood, even in the subfemtomolar range, has been developed. Emerging evidence suggests that GFAP protein is a strong biomarker candidate for NMOSD. This mini-review provides basic information about GFAP protein and innovative clinical data that show the potential clinical value of blood GFAP levels as a biomarker for NMOSD.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
van Asperen JV, Robe PA, Hol EM. GFAP Alternative Splicing and the Relevance for Disease – A Focus on Diffuse Gliomas. ASN Neuro 2022; 14:17590914221102065. [PMID: 35673702 PMCID: PMC9185002 DOI: 10.1177/17590914221102065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is
characteristic for astrocytes and neural stem cells, and their malignant analogues in
glioma. Since the discovery of the protein 50 years ago, multiple alternative splice
variants of the GFAP gene have been discovered, leading to different GFAP isoforms. In
this review, we will describe GFAP isoform expression from gene to protein to network,
taking the canonical isoforms GFAPα and the main alternative variant GFAPδ as the starting
point. We will discuss the relevance of studying GFAP and its isoforms in disease, with a
specific focus on diffuse gliomas.
Collapse
Affiliation(s)
- Jessy V. van Asperen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Pierre A.J.T. Robe
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, The Netherlands
| | - Elly M. Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Abstract
Fifty years have passed since the discovery of glial fibrillary acidic protein (GFAP) by Lawrence Eng and colleagues. Now recognized as a member of the intermediate filament family of proteins, it has become a subject for study in fields as diverse as structural biology, cell biology, gene expression, basic neuroscience, clinical genetics and gene therapy. This review covers each of these areas, presenting an overview of current understanding and controversies regarding GFAP with the goal of stimulating continued study of this fascinating protein.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center, University of Wisconsin-Madison.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham
| |
Collapse
|
6
|
Brenner M, Messing A. Regulation of GFAP Expression. ASN Neuro 2021; 13:1759091420981206. [PMID: 33601918 PMCID: PMC7897836 DOI: 10.1177/1759091420981206] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of the GFAP gene has attracted considerable attention because its onset is a marker for astrocyte development, its upregulation is a marker for reactive gliosis, and its predominance in astrocytes provides a tool for their genetic manipulation. The literature on GFAP regulation is voluminous, as almost any perturbation of development or homeostasis in the CNS will lead to changes in its expression. In this review, we limit our discussion to mechanisms proposed to regulate GFAP synthesis through a direct interaction with its gene or mRNA. Strengths and weaknesses of the supportive experimental findings are described, and suggestions made for additional studies. This review covers 15 transcription factors, DNA and histone methylation, and microRNAs. The complexity involved in regulating the expression of this intermediate filament protein suggests that GFAP function may vary among both astrocyte subtypes and other GFAP-expressing cells, as well as during development and in response to perturbations.
Collapse
Affiliation(s)
- Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
7
|
Selection of Reliable Reference Genes for Analysis of Gene Expression in Spinal Cord during Rat Postnatal Development and after Injury. Brain Sci 2019; 10:brainsci10010006. [PMID: 31861889 PMCID: PMC7017034 DOI: 10.3390/brainsci10010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
In order to obtain unbiased results of target gene expression, selection of the most appropriate reference gene (RG) remains a key precondition. However, an experimental study focused on the validation of stably expressed RGs in the rat spinal cord (SC) during development or after spinal cord injury (SCI) is missing. In our study, we tested the stability of the expression of nine selected RGs in rat SC tissue during normal development (postnatal days 1-43, adulthood) and after minimal (mSCI) and contusion (cSCI) spinal cord injury. The following RGs were tested: common housekeeping genes of basal cell metabolism (Gapdh, Hprt1, Mapk6) and protein translation (Rpl29, Eef1a1, Eif2b2), as well as newly designed RGs (Gpatch1, Gorasp1, Cds2) selected according to the RefGenes tool of GeneVestigator. The stability of RGs was assessed by geNorm, NormFinder, and BestKeeper. All three applets favored Gapdh and Eef1a1 as the most stable genes in SC during development. In both models of SCI, Eif2b2 displayed the highest stability of expression, followed by Gapdh and Gorasp1/Hprt1 in cSCI, and Gapdh and Eef1a1 in the mSCI experiments. To verify our results, selected RGs were employed for normalization of the expression of genes with a clear biological context in the SC-Gfap and Slc1a3/Glast during postnatal development and Aif1/Iba1 and Cd68/Ed1 after SCI.
Collapse
|
8
|
Graham EM, Burd I, Everett AD, Northington FJ. Blood Biomarkers for Evaluation of Perinatal Encephalopathy. Front Pharmacol 2016; 7:196. [PMID: 27468268 PMCID: PMC4942457 DOI: 10.3389/fphar.2016.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
Recent research in identification of brain injury after trauma shows many possible blood biomarkers that may help identify the fetus and neonate with encephalopathy. Traumatic brain injury shares many common features with perinatal hypoxic-ischemic encephalopathy. Trauma has a hypoxic component, and one of the 1st physiologic consequences of moderate-severe traumatic brain injury is apnea. Trauma and hypoxia-ischemia initiate an excitotoxic cascade and free radical injury followed by the inflammatory cascade, producing injury in neurons, glial cells and white matter. Increased excitatory amino acids, lipid peroxidation products, and alteration in microRNAs and inflammatory markers are common to both traumatic brain injury and perinatal encephalopathy. The blood-brain barrier is disrupted in both leading to egress of substances normally only found in the central nervous system. Brain exosomes may represent ideal biomarker containers, as RNA and protein transported within the vesicles are protected from enzymatic degradation. Evaluation of fetal or neonatal brain derived exosomes that cross the blood-brain barrier and circulate peripherally has been referred to as the "liquid brain biopsy." A multiplex of serum biomarkers could improve upon the current imprecise methods of identifying fetal and neonatal brain injury such as fetal heart rate abnormalities, meconium, cord gases at delivery, and Apgar scores. Quantitative biomarker measurements of perinatal brain injury and recovery could lead to operative delivery only in the presence of significant fetal risk, triage to appropriate therapy after birth and measure the effectiveness of treatment.
Collapse
Affiliation(s)
- Ernest M. Graham
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Irina Burd
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Allen D. Everett
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
9
|
Abstract
Years of research in the field of neurotrauma have led to the concept of applying systems biology as a tool for biomarker discovery in traumatic brain injury (TBI). Biomarkers may lead to understanding mechanisms of injury and recovery in TBI and can be potential targets for wound healing, recovery, and increased survival with enhanced quality of life. The literature available on neurotrauma studies from both animal and clinical studies has provided rich insight on the molecular pathways and complex networks of TBI, elucidating the proteomics of this disease for the discovery of biomarkers. With such a plethora of information available, the data from the studies require databases with tools to analyze and infer new patterns and associations. The role of different systems biology tools and their use in biomarker discovery in TBI are discussed in this chapter.
Collapse
|
10
|
Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 2015; 38:364-74. [PMID: 25975510 PMCID: PMC4559283 DOI: 10.1016/j.tins.2015.04.003] [Citation(s) in RCA: 570] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). GFAP is also subject to numerous post-translational modifications (PTMs), while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.
Collapse
Affiliation(s)
- Zhihui Yang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA.
| |
Collapse
|
11
|
Kumar P, Singh R, Nazmi A, Lakhanpal D, Kataria H, Kaur G. Glioprotective effects of Ashwagandha leaf extract against lead induced toxicity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182029. [PMID: 24987671 PMCID: PMC4058459 DOI: 10.1155/2014/182029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 01/01/2023]
Abstract
Withania somnifera (Ashwagandha), also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25 μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200 μM) resulted in normalization of glial fibrillary acidic protein (GFAP) expression as well as heat shock protein (HSP70), mortalin, and neural cell adhesion molecule (NCAM) expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx) levels, catalase, and superoxide dismutase (SOD) but not reduced glutathione (GSH) contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Raghavendra Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Arshed Nazmi
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Dinesh Lakhanpal
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Hardeep Kataria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
12
|
Guingab-Cagmat JD, Cagmat EB, Hayes RL, Anagli J. Integration of proteomics, bioinformatics, and systems biology in traumatic brain injury biomarker discovery. Front Neurol 2013; 4:61. [PMID: 23750150 PMCID: PMC3668328 DOI: 10.3389/fneur.2013.00061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/12/2013] [Indexed: 01/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a major medical crisis without any FDA-approved pharmacological therapies that have been demonstrated to improve functional outcomes. It has been argued that discovery of disease-relevant biomarkers might help to guide successful clinical trials for TBI. Major advances in mass spectrometry (MS) have revolutionized the field of proteomic biomarker discovery and facilitated the identification of several candidate markers that are being further evaluated for their efficacy as TBI biomarkers. However, several hurdles have to be overcome even during the discovery phase which is only the first step in the long process of biomarker development. The high-throughput nature of MS-based proteomic experiments generates a massive amount of mass spectral data presenting great challenges in downstream interpretation. Currently, different bioinformatics platforms are available for functional analysis and data mining of MS-generated proteomic data. These tools provide a way to convert data sets to biologically interpretable results and functional outcomes. A strategy that has promise in advancing biomarker development involves the triad of proteomics, bioinformatics, and systems biology. In this review, a brief overview of how bioinformatics and systems biology tools analyze, transform, and interpret complex MS datasets into biologically relevant results is discussed. In addition, challenges and limitations of proteomics, bioinformatics, and systems biology in TBI biomarker discovery are presented. A brief survey of researches that utilized these three overlapping disciplines in TBI biomarker discovery is also presented. Finally, examples of TBI biomarkers and their applications are discussed.
Collapse
|
13
|
Rai A, Maurya SK, Sharma R, Ali S. Down-regulated GFAPα: a major player in heavy metal induced astrocyte damage. Toxicol Mech Methods 2012; 23:99-107. [DOI: 10.3109/15376516.2012.721809] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Boyd SE, Nair B, Ng SW, Keith JM, Orian JM. Computational characterization of 3' splice variants in the GFAP isoform family. PLoS One 2012; 7:e33565. [PMID: 22479412 PMCID: PMC3316583 DOI: 10.1371/journal.pone.0033565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/16/2012] [Indexed: 12/26/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein specific to central nervous system (CNS) astrocytes. It has been the subject of intense interest due to its association with neurodegenerative diseases, and because of growing evidence that IF proteins not only modulate cellular structure, but also cellular function. Moreover, GFAP has a family of splicing isoforms apparently more complex than that of other CNS IF proteins, consistent with it possessing a range of functional and structural roles. The gene consists of 9 exons, and to date all isoforms associated with 3' end splicing have been identified from modifications within intron 7, resulting in the generation of exon 7a (GFAPδ/ε) and 7b (GFAPκ). To better understand the nature and functional significance of variation in this region, we used a Bayesian multiple change-point approach to identify conserved regions. This is the first successful application of this method to a single gene--it has previously only been used in whole-genome analyses. We identified several highly or moderately conserved regions throughout the intron 7/7a/7b regions, including untranslated regions and regulatory features, consistent with the biology of GFAP. Several putative unconfirmed features were also identified, including a possible new isoform. We then integrated multiple computational analyses on both the DNA and protein sequences from the mouse, rat and human, showing that the major isoform, GFAPα, has highly conserved structure and features across the three species, whereas the minor isoforms GFAPδ/ε and GFAPκ have low conservation of structure and features at the distal 3' end, both relative to each other and relative to GFAPα. The overall picture suggests distinct and tightly regulated functions for the 3' end isoforms, consistent with complex astrocyte biology. The results illustrate a computational approach for characterising splicing isoform families, using both DNA and protein sequences.
Collapse
Affiliation(s)
- Sarah E. Boyd
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
| | - Betina Nair
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | - Sze Woei Ng
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | - Jonathan M. Keith
- School of Mathematical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
15
|
Žurek J, Fedora M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir (Wien) 2012; 154:93-103; discussion 103. [PMID: 21976236 DOI: 10.1007/s00701-011-1175-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 09/15/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Predicting the long-term outcome after traumatic brain injury (TBI) is an important component of treatment strategy. Despite dramatically improved emergency management of TBI and apparent clinical recovery, most patients with TBI still may have long-term central nervous system (CNS) impairment. METHODS Sixty-three patients with TBI were enrolled into the prospective study. Venous blood samples were taken at admission and every 24 h for a maximum of 6 consecutive days. Serum concentrations of the biomarkers S100B, neuron-specific enolase (NSE), GFAP, NF-H, secretagogin and Hsp70 were quantified immuno-luminometrically or by enzyme-linked immunosorbent assay. The outcome was evaluated 6 months after TBI using the Glasgow Outcome Scale (GOS) in all patients. RESULTS The S100B levels in patients with worse outcome (GOS 4 or death) were already significantly higher at D0 (p < 0.001; p = 0.002). NSE levels were significantly higher in patients who died or had worse outcomes (p < 0.001; p = 0.003). Patients who had worse outcomes (GOS) or died had higher GFAP values (p < 0.001; p < 0.001), but their dynamics were similar over the same period. NF-H grew significantly faster in patients who had a worse GOS or died (p < 0.001; p = 0.001). CONCLUSIONS Although further prospective study is warranted, these findings suggest that levels of biomarkers correlate with mortality and may be useful as predictors of outcome in children with TBI.
Collapse
Affiliation(s)
- Jiří Žurek
- Department of Anesthesia and Intensive Care, University Children‘s Hospital, Brno, Czech Republic.
| | | |
Collapse
|
16
|
Dynamics of glial fibrillary acidic protein during traumatic brain injury in children. ACTA ACUST UNITED AC 2011; 71:854-9. [PMID: 21986734 DOI: 10.1097/ta.0b013e3182140c8c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUNDS Glial fibrillary acidic protein (GFAP) is a monomeric intermediate filament protein found in the astroglial cytoskeleton and is not found outside the central nervous system. It is a brain-specific protein that is released after traumatic brain injury (TBI). METHODS This prospective study enrolled 59 children who had TBI, as verified by computed tomography. Daily GFAP measurement began at admission (<12 hours after trauma) and continued for 6 days. Blood samples were analyzed for GFAP by enzyme-linked immunosorbent assay. Outcome was assessed using the Glasgow Outcome Scale (GOS) at 6 months after injury. RESULTS The median serum levels of GFAP at admission were 7.47 ng/mL in patients who died, compared with 0.12 ng/mL in patients who survived (p=0.002). GFAP levels were significantly higher in patients who had a poor outcome 6 months after injury than in those who were alive or had good outcome (p<0.001). The area under the receiver operating characteristic curve for GFAP was 0.833 for day 0 and 0.884 for day 2. CONCLUSIONS These results suggest that determination of serum levels of GFAP may add to the clinical assessment of the primary damage and prediction of outcome after severe TBI.
Collapse
|
17
|
Immunohistochemical characterization of the out-of frame splice variants GFAP Δ164/Δexon 6 in focal lesions associated with chronic epilepsy. Epilepsy Res 2010; 90:99-109. [DOI: 10.1016/j.eplepsyres.2010.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 11/19/2022]
|
18
|
Svetlov SI, Larner SF, Kirk DR, Atkinson J, Hayes RL, Wang KKW. Biomarkers of blast-induced neurotrauma: profiling molecular and cellular mechanisms of blast brain injury. J Neurotrauma 2009; 26:913-21. [PMID: 19422293 DOI: 10.1089/neu.2008.0609] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nature of warfare in the 21st century has led to a significant increase in primary blast or over-pressurization injuries to the whole body and head, which manifest as a complex of neuro-somatic damage, including traumatic brain injury (TBI). Identifying relevant pathogenic pathways in reproducible experimental models of primary blast wave exposure is therefore vital to the development of biomarkers for diagnostics of blast brain injury. Comparative analysis of mechanisms and putative biomarkers of blast brain injury is complicated by a deficiency of experimental studies. In this article, we present an overview of current TBI biomarkers, as well as outline experimental strategies to investigate molecular signatures of blast neurotrauma and to develop a pathway network map for novel biomarker discovery. These biomarkers will be effective for triaging and managing both combat and civilian casualities.
Collapse
Affiliation(s)
- Stanislav I Svetlov
- Center of Innovative Research, Banyan Biomarkers, Inc. 12085 Research Drive, Alachua, FL 32615, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Andreiuolo F, Junier MP, Hol EM, Miquel C, Chimelli L, Leonard N, Chneiweiss H, Daumas-Duport C, Varlet P. GFAPδ immunostaining improves visualization of normal and pathologic astrocytic heterogeneity. Neuropathology 2009; 29:31-9. [DOI: 10.1111/j.1440-1789.2008.00936.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Monnet-Tschudi F, Zurich MG, Honegger P. Neurotoxicant-induced inflammatory response in three-dimensional brain cell cultures. Hum Exp Toxicol 2007; 26:339-46. [PMID: 17615115 DOI: 10.1177/0960327107074589] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Brain inflammatory response is triggered by the activation of microglial cells and astrocytes in response to various types of CNS injury, including neurotoxic insults. Its outcome is determined by cellular interactions, inflammatory mediators, as well as trophic and/or cytotoxic signals, and depends on many additional factors such as the intensity and duration of the insult, the extent of both the primary neuronal damage and glial reactivity and the developmental stage of the brain. Depending on particular circumstances, the brain inflammatory response can promote neuroprotection, regeneration or neurodegeneration. Glial reactivity, regarded as the central phenomenon of brain inflammation, has also been used as an early marker of neurotoxicity. To study the mechanisms underlying the glial reactivity, serum-free aggregating brain cell cultures were used as an in vitro model to test the effects of conventional neurotoxicants such as organophosphate pesticides, heavy metals, excitotoxins and mycotoxins. This approach was found to be relevant and justified by the complex cell-cell interactions involved in the brain inflammatory response, the variability of the glial reactions and the multitude of mediators involved. All these variables need to be considered for the elucidation of the specific cellular and molecular reactions and their consequences caused by a given chemical insult.
Collapse
Affiliation(s)
- F Monnet-Tschudi
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| | | | | |
Collapse
|
21
|
Quinlan RA, Brenner M, Goldman JE, Messing A. GFAP and its role in Alexander disease. Exp Cell Res 2007; 313:2077-87. [PMID: 17498694 PMCID: PMC2702672 DOI: 10.1016/j.yexcr.2007.04.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 01/01/2023]
Abstract
Here we review how GFAP mutations cause Alexander disease. The current data suggest that a combination of events cause the disease. These include: (i) the accumulation of GFAP and the formation of characteristic aggregates, called Rosenthal fibers, (ii) the sequestration of the protein chaperones alpha B-crystallin and HSP27 into Rosenthal fibers, and (iii) the activation of both Jnk and the stress response. These then set in motion events that lead to Alexander disease. We discuss parallels with other intermediate filament diseases and assess potential therapies as part of this review as well as emerging trends in disease diagnosis and other aspects concerning GFAP.
Collapse
Affiliation(s)
- Roy A Quinlan
- School of Biological and Biomedical Sciences, The University, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
22
|
Byers MR, Maeda T, Brown AM, Westenbroek RE. GFAP immunoreactivity and transcription in trigeminal and dental tissues of rats and transgenic GFP/GFAP mice. Microsc Res Tech 2005; 65:295-307. [PMID: 15662620 DOI: 10.1002/jemt.20130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sensory mechanisms in teeth are not well understood and may involve pulpal-neural interactions. Tooth cells that proliferate in vitro have polyclonal immunoreactivity (IR) for glial fibrillary acidic protein (GFAP), growth-associated protein (GAP-43), and vimentin, plus glial-like ion channels. Here, we analyzed GFAP-IR patterns in dental and trigeminal tissues of rats, for comparison with green fluorescent protein (GFP) associated with GFAP transcription in transgenic mice, in order to better characterize glial-like cells in dental tissues. Astrocytes, ganglion satellite cells, and epineurial Schwann cells were demonstrated by anti-GFAP antibodies and GFP-GFAP, as expected. Odontoblasts did not stain by any of these methods and cannot be the glial-like cells. Fibroblasts and undifferentiated mesenchymal cells in pulp had polyclonal GFAP-IR and vimentin-IR, while nerve fibers reacted only with polyclonal antibody. Some Schwann cell subtypes in trigeminal nerve and oral mucosa were positive for GFP and for polyclonal anti-GFAP, but not for monoclonal antibody. In pulp almost all Schwann cells were unstained, but many Schwann cells in periodontal ligament had polyclonal GFAP-IR. These results show greater heterogeneity for Schwann cells than expected, and suggest that the glial-like pulp cells are fibroblasts and/or undifferentiated mesenchymal cells or stem cells. We also found that polyclonal GFAP revealed intermediate filaments in preterminal sensory nerve fibers, thereby providing a useful marker for that neural subregion. GFP transcription by some Schwann cell subtypes in oral mucosae and trigeminal nerve, but not trigeminal root was a novel finding that reveals more complexity in peripheral glia than previously recognized.
Collapse
Affiliation(s)
- Margaret R Byers
- Anesthesiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
23
|
Nielsen AL, Holm IE, Johansen M, Bonven B, Jørgensen P, Jørgensen AL. A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J Biol Chem 2002; 277:29983-91. [PMID: 12058025 DOI: 10.1074/jbc.m112121200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe a new human isoform, GFAP epsilon, of the intermediary filament protein GFAP (glial fibrillary acidic protein). GFAP epsilon mRNA is the result of alternative splicing and a new polyadenylation signal, and thus GFAP epsilon has a new C-terminal protein sequence. This provides GFAP epsilon with the capacity for specific binding of presenilin proteins in yeast and in vitro. Our observations suggest a direct link between the presenilins and the cytoskeleton where GFAP epsilon is incorporated. Mutations in GFAP and presenilins are associated with Alexander disease and Alzheimer's disease, respectively. Accordingly, GFAP epsilon should be taken into consideration when studying neurodegenerative diseases.
Collapse
|
24
|
Hai M, Muja N, DeVries GH, Quarles RH, Patel PI. Comparative analysis of Schwann cell lines as model systems for myelin gene transcription studies. J Neurosci Res 2002; 69:497-508. [PMID: 12210843 DOI: 10.1002/jnr.10327] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Primary and immortalized cultured Schwann cells are commonly utilized in analyses of myelin gene promoters, but few lines are well-characterized in terms of their endogenous expression of myelin genes. This is particularly significant in that cultured Schwann cells typically do not express myelin genes at levels comparable to those observed in vivo. In this study, the steady-state levels of mRNA and protein for five Schwann cell markers (PMP22, P0, MBP, MAG, and LNGF-R) were assessed in primary Schwann cells and six representative Schwann cell lines (RT4-D6P2T, JS-1, RSC96, R3, S16, and S16Y). RT4-D6P2T and S16 cells were the most similar to myelinating Schwann cells based on their comparatively high expression of PMP22 and P0 mRNA. Both RT4-D6P2T and S16 also expressed P0 protein. In addition, the previously reported P1-A positive regulatory region from the myelination-specific PMP22 promoter demonstrated significant activity in both these cell lines. However, nuclear proteins that interacted with P1-A were different in extracts prepared from RT4-D6P2T and S16 cells. Primary Schwann cells expressed myelin proteins at levels that were equal or less than those observed with the RT4-D6P2T and S16 lines, indicating that primary Schwann cells are not necessarily better than immortalized Schwann cells as model systems for the study of myelin gene regulation. The data presented here demonstrate that cultured Schwann cells used to study myelin gene promoters have to be carefully selected on the basis of the endogenous level of expression of the myelin gene under study.
Collapse
Affiliation(s)
- Mehreen Hai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
25
|
Damodaran TV, Bilska MA, Rahman AA, Abou-Doni MB. Sarin causes early differential alteration and persistent overexpression in mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of rats. Neurochem Res 2002; 27:407-15. [PMID: 12064357 DOI: 10.1023/a:1015508132137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurotoxic effects of single dose of 0.5 x LD50 sarin (O-isopropylmethylphosphonoflouridate) on central nervous system (CNS) of male Sprague-Dawley rats were studied. We investigated the mRNA expression of the astroglial marker genes glial fibrillary acidic protein (GFAP) and vimentin to evaluate the fate of astroglial and neuronal cells, because reactive gliosis is very often used to assess the extent of CNS damage. Rats were treated with 50 microg/kg/ml of sarin and terminated at the time-points 1 and 2 hours and 1, 3, and 7 days post-treatment. Control rats were treated with normal saline. Total RNA was extracted and Northern blots were hybridized with cDNA probes for GFAP and vimentin, as well as 28S RNA (control). The data obtained indicate that a single dose of sarin (0.5 x LD50) showed induction in the transcript levels of GFAP and vimentin in the cortex, cerebellum, brainstem and midbrain, and spinal cord. The induction showed distinct spatial-temporal differences for each tissue studied. Both GFAP and vimentin were induced at 1 hour in all the tissues studied except brainstem, where moderate and high levels of GFAP induction were noted at 1 and 3 days. Overexpressed transcript levels of GFAP and vimentin remained high in more responsive tissues such as the brainstem and midbrain. Other tissues, such as the cortex, spinal cord, and cerebellum showed a more downward trend for either GFAP or vimentin, or both, transcript levels at 7 days. It is noteworthy that both cortex (318 +/- 12%) and spinal cord (368 +/- 12%) showed relatively higher induction of GFAP, whereas cortex alone showed the highest level of overexpressed vimentin transcript levels (284 +/- 11%). Overall it is also clear that both GFAP and vimentin are needed for the effective recovery involving co-ordinated alternating up- and downregulation of these two key astrocyte genes, depending on tissue specificity. The changes seen in the transcript levels of GFAP and vimentin may be the result of astrocyte dysfunction and loss, accompanied by compensatory proliferation and dedifferentiation of the astroglia. These changes could affect the neuronal cell types, thus altering the neuron-glia homeostasis.
Collapse
Affiliation(s)
- Tirupapuliyar V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
26
|
Webster MJ, Knable MB, Johnston-Wilson N, Nagata K, Inagaki M, Yolken RH. Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immun 2001; 15:388-400. [PMID: 11782105 DOI: 10.1006/brbi.2001.0646] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Increasingly, abnormalities of glial cell function have been implicated in pathological studies of the major mental illnesses (schizophrenia, bipolar disorder, and major depression). In a recent proteomic study, four isoforms of astrocytic glial fibrillary acidic protein (GFAP) were decreased in one or more of these diseases. In the current study, we sought to determine the immunohistochemical localization of phosphorylated GFAP (pGFAP) in the prefrontal cortex and hippocampus and to describe possible disease-related changes in the distribution of pGFAP containing astrocytes. In the prefrontal cortex, interlaminar astrocytes in layer I and stellate astrocytes in layers II and VI were labeled. Labeled cells were also present adjacent to blood vessels in the gyral white matter and in underlying white matter generally. In the hippocampus, labeled cells were present in the polymorphic layer of the dentate gyrus. In the prefrontal cortex, schizophrenia and major depression were characterized by decreased labeling of astrocytes adjacent to blood vessels. There were no significant differences between the diagnostic groups in the other prefrontal layers or in the hippocampus. These results suggest that reduced numbers or functional regulation of pGFAP containing astrocytes occurs in schizophrenia and major depression. The mechanism by which this deficit occurs is not known, but it may adversely effect the regulation of neuronal metabolism, communication, and response to injury.
Collapse
Affiliation(s)
- M J Webster
- Stanley Laboratory of Brain Research, USUHS, 4301 Jones Bridge Road, Bethesda, Maryland 20814, USA
| | | | | | | | | | | |
Collapse
|
27
|
Damodaran TV, Abou-Donia MB. Alterations in levels of mRNAs coding for glial fibrillary acidic protein (GFAP) and vimentin genes in the central nervous system of hens treated with diisopropyl phosphorofluoridate (DFP). Neurochem Res 2000; 25:809-16. [PMID: 10943999 DOI: 10.1023/a:1007565407341] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diisopropyl phophorofluoridate (DFP) produces organophosphorus-ester induced delayed neurotoxicity (OPIDN) in the hen, human and other sensitive species. We studied the effect of DFP admimistration (1.7 mg/kg/s.c.) on the expression of Intermediate Filament (IF) proteins: Glial Fibrillary Acidic Protein (GFAP) and vimentin which are known indicators of neurotoxicity and astroglial pathology. The hens were sacrificed at different time points i.e. 1,2,5,10 and 20 days. Total RNA was extracted from the following brain regions: cerebrum, cerebellum, and brainstem as well as spinal cord. Northern blots prepared using standard protocols were hybridized with GFAP and vimentin as well as beta-actin and 18S RNA cDNA (controls) probes. The results indicate a differential/spatial/temporal regulation of GFAP and vimentin levels which may be due to the result of disruption of glial-neuronal network. The GFAP transcript levels reached near control levels (88% and 95%) at 20 days post DFP treatment after an initial down-regulation (60% and 73%) in highly susceptible tissues like spinal cord and brainstem respectively. However vimentin transcript levels remained down-regulated (61% and 53%) at 20 days after an early reduced levels(47% and 55%) for spinal cord and brainstem respectively. This may be due to the astroglial pathology resulting in neuronal alterations or vice-versa. In cerebellum (less susceptile tissue) GFAP levels were moderately down-regulated at 1,2 and 5 days and reached near control values at 10 and 20 days. Vimentin was rapidly reinduced (128%) in cerebellum at 5 days and remained at the same level at 10 days and then returned to control values at 20 days after an initial down-regulation at 1 and 2 days. Thus these alterations were less drastic in cerebellum as indicated by initial susceptibility followed by rapid recovery. On the other hand both GFAP and vimentin levels were upregulated from 2 days onwards in the non-susceptible tissue cerebrum, implying protective mechanisms from the beginning. Hence the DFP induced astroglial pathology as indicated by the complex expression profile of GFAP and vimentin mRNA levels may be playing an important role in the delayed degeneration of axons or is the result of progressive degeneration of axons in OPIDN.
Collapse
Affiliation(s)
- T V Damodaran
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27708, USA
| | | |
Collapse
|
28
|
Condorelli DF, Nicoletti VG, Barresi V, Conticello SG, Caruso A, Tendi EA, Giuffrida Stella AM. Structural features of the rat GFAP gene and identification of a novel alternative transcript. J Neurosci Res 1999; 56:219-28. [PMID: 10336251 DOI: 10.1002/(sici)1097-4547(19990501)56:3<219::aid-jnr1>3.0.co;2-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The glial fibrillary acidic protein (GFAP) is expressed in a cell-specific manner and represents the major subunit of intermediate filaments of astroglial cells. The knowledge of the gene structure is an important step for further understanding the mechanisms of cell-specific expression. In the present study, we report the complete sequence of the rat GFAP gene and provide evidence for the existence, in the rat brain, of a novel alternative transcript. Since three different transcripts, indicated as GFAPalpha, beta, and gamma, have been previously reported (Feinstein et al. [1992] J. Neurosci. Res. 32:1-14; Zelenika et al. [1995] Mol. Brain Res. 30:251-258), we called this novel mRNA isoform GFAPdelta. It is generated by the alternative splicing of a novel exon located in the classic seventh intron. This alternative exon (called VII+) contains a 101-bp coding sequence in frame with exon VII and interrupted by a stop codon TAA at position +5451. Therefore, the novel GFAPdelta transcript encodes for an hypothetical GFAP where the forty-two carboxy-terminal amino acids encoded by exon VIII and IX are replaced by thirty-three amino acids encoded by exon VII+. Northern blot analysis with a specific probe for exon VII+ revealed a 4.2-kb mRNA, expressed in several brain areas, but absent in extracerebral tissues (lung, heart, kidney, liver, spleen). The previously discovered GFAP isoforms (alpha, beta, and gamma) produce hypothetical translation products differing in the amino-terminal Head domain. The present data suggest, for the first time, the possible existence of GFAP isoforms differing in the carboxy-terminal Tail domain.
Collapse
Affiliation(s)
- D F Condorelli
- Institute of Biochemistry, Faculty of Medicine, University of Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Condorelli DF, Nicoletti VG, Dell'Albani P, Barresi V, Caruso A, Conticello SG, Belluardo N, Giuffrida Stella AM. GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem Res 1999; 24:709-14. [PMID: 10344602 DOI: 10.1023/a:1021016828704] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
GFAPbeta mRNA is an alternative transcript of the glial fibrillary acidic protein (GFAP) gene, whose transcriptional start site is located 169 nucleotides upstream to the classical GFAPalpha mRNA. By an RT-PCR method with primers on separate exons, we were able to confirm the presence of GFAP transcripts with a longer 5' untranslated region in all the examined areas of rat brain and in primary cultures of astroglial cells. Northern blot analysis, using an oligoprobe specific for the 5' region of GFAPbeta, revealed a single hybridization band of 2.9 kb in all the brain regions examined and in primary cultures of astroglial cells. The availability of the quantitative Northern blot assay allowed further studies on the regulation of GFAPbeta expression in vivo. Since it is well-known that neuronal brain injury is one of the most powerful inducers of GFAP, we examined the expression of GFAPalpha and beta after a neurotoxic lesion in the rat hippocampus. Results obtained show a parallel increase in both GFAP transcripts with an identical time-course, suggesting that regulatory regions of the gene influence in similar way the rate of transcription at the two different start sites (alpha and beta) or that a similar post-transcriptional mechanism is involved in regulating both mRNA isoforms.
Collapse
Affiliation(s)
- D F Condorelli
- Institute of Biochemistry, Faculty of Medicine, University of Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Feinstein DL, Reis DJ, Regunathan S. Inhibition of astroglial nitric oxide synthase type 2 expression by idazoxan. Mol Pharmacol 1999; 55:304-8. [PMID: 9927622 DOI: 10.1124/mol.55.2.304] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of idazoxan (IDA) to imidazoline receptors of the I2 subtype in astrocytes influences astroglial gene expression as evidenced by increased expression of glial fibrillary acidic protein and mRNA. To determine whether IDA affected glial inflammatory gene expression, we tested the effects of IDA on astroglial nitric oxide synthase type-2 (NOS-2) expression. NOS-2 was induced in primary rat astrocytes and C6 glioma cells by incubation with 1 microgram/ml lipopolysaccharide (LPS) plus three cytokines (tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma) or three cytokines alone. Cells were incubated with 1-100 microM IDA, and at 24 h NOS-2 expression assessed. In astrocytes and C6 cells, preincubation with IDA dose-dependently inhibited nitrite accumulation (IC50 approximately 25 microM), accompanied by a reduction in NOS-2 protein levels and L-citrulline synthesis activity in cell lysates. IDA also inhibited nitrite production in LPS stimulated RAW 264.7 macrophages. In astrocytes, but not C6 cells, longer preincubation times with IDA yielded significantly greater suppression, and maximal suppression (>90%) was achieved after a 8 h preincubation in 100 microM IDA. The degree of inhibition was diminished whether IDA was added after LPS plus cytokine mixture. In contrast to NE, continuous incubation with IDA was required to achieve suppression. IDA reduced induction of NOS-2 protein levels, steady state NOS-2 mRNA levels, and activity of a NOS-2 promoter construct stably transfected in C6 cells. These results show that IDA inhibits NOS-2 activity and protein expression in glial cells and macrophages, and suggest that this occurs by decreasing transcription from the NOS-2 promoter.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Animals, Newborn
- Arginine/drug effects
- Arginine/metabolism
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/enzymology
- Cell Line
- Cell-Free System/drug effects
- Cell-Free System/enzymology
- Chloramphenicol O-Acetyltransferase/drug effects
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Citrulline/drug effects
- Citrulline/metabolism
- Cytokines/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic/drug effects
- Idazoxan/pharmacology
- Lipopolysaccharides/pharmacology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type I
- Nitrites/metabolism
- Norepinephrine/pharmacology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Time Factors
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/enzymology
Collapse
Affiliation(s)
- D L Feinstein
- Division of Neurobiology, Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York, USA
| | | | | |
Collapse
|
31
|
Cervós-Navarro J, Sharma HS, Westman J, Bongcam-Rudloff E. Glial reactions in the central nervous system following heat stress. PROGRESS IN BRAIN RESEARCH 1998; 115:241-74. [PMID: 9632939 DOI: 10.1016/s0079-6123(08)62039-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Cervós-Navarro
- Institute of Neuropathology, Free University Berlin, Klinikum Steglitz, Berlin, Germany
| | | | | | | |
Collapse
|
32
|
Fujita K, Yamauchi M, Matsui T, Titani K, Takahashi H, Kato T, Isomura G, Ando M, Nagata Y. Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse. Brain Res 1998; 785:31-40. [PMID: 9526038 DOI: 10.1016/s0006-8993(97)00612-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We analyzed protein fractions extracted from the spinal cord of the motor neuron degeneration (Mnd) mouse, a mutant that exhibits progressive degeneration of lower spinal motor neurons, by one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) after solubilization of the tissue with medium containing sodium dodecyl sulfate (SDS)-urea during growth of the animal, in comparison with those of age-matched controls (C57BL/6). Several protein spots were detected around a region of pI 5.6-6.0 and molecular mass of 35-50 kDa in Mnd spinal cord tissue on the two-dimensional PAGE separation profile with Coomassie brilliant blue staining, while only a few spots around the same region were found in the control spinal cord. These spots were all immunoreactive with an antibody against glial fibrillary acidic protein (GFAP), a cytoskeleton filamentous protein specific to astroglial cells. The protein spot with molecular mass of 50 kDa showed immunoreactivity with anti-GFAP antibody, had a blocked amino-terminus, and is assumed to be intact GFAP. Several protein spots with slightly smaller molecular masses of 35 to 48 kDa lacked the head domain of the GFAP molecule as a result of cleavage at the 29th and 56th residues from the amino terminus. In Mnd spinal cord tissue, the densities of the immunoreactive GFAP bands with smaller molecular masses increased with development, and became dominant at the time of the appearance of behavioral paralytic gait around 6 to 7 months of age. These results suggest that the increased GFAPs devoid of head domains are related to the degenerative loss of motor neurons in the Mnd spinal cord. Histopathological and GFAP immunohistochemical examination of Mnd spinal cord preparation demonstrated progressive degenerative loss of motor neurons, and considerable increases in number of GFAP-stained astrocytes in the ventral horn at 7 to 9 months of age. These processes of degenerative loss of motor neurons and proliferation of reactive astrocytes with increased levels of fragmented GFAP in the Mnd spinal cord during development seem to be characteristic and preceded the deterioration of motor activities in this animal model of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- K Fujita
- Department of Physiology, School of Medicine, Toyoake, Aichi 470-11, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Riol H, Tardy M, Rolland B, L�vesque G, Ven Murthy M. Detection of the peripheral nervous system (PNS)-type glial fibrillary acidic protein (GFAP) and its mRNA in human lymphocytes. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970401)48:1<53::aid-jnr5>3.0.co;2-d] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Halliday GM, Cullen KM, Kril JJ, Harding AJ, Harasty J. Glial fibrillary acidic protein (GFAP) immunohistochemistry in human cortex: a quantitative study using different antisera. Neurosci Lett 1996; 209:29-32. [PMID: 8734902 DOI: 10.1016/0304-3940(96)12592-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is the principal marker for brain astrocytes. The present study aims to examine the variability in GFAP immunohistochemistry in formalin-fixed human brain. Four commercially-available antisera were tested using standardised protocols in the cerebral cortex of three cases with prominent glial reactions and one control. GFAP immunoreactivity was largely confined to the pial surface and white matter in control cortex, with the number of astrocytic cell bodies and processes as well as intensity of staining markedly increased in damaged cortices. A dramatic difference in the pattern of GFAP staining using different antisera was observed and may account for discrepancies between past studies. This variance has important practical implications for the interpretation of results using GFAP immunohistochemistry in human tissue.
Collapse
Affiliation(s)
- G M Halliday
- Department of Pathology, University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|