1
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
2
|
Ditre JW, Brandon TH, Zale EL, Meagher MM. Pain, nicotine, and smoking: research findings and mechanistic considerations. Psychol Bull 2012; 137:1065-93. [PMID: 21967450 DOI: 10.1037/a0025544] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tobacco addiction and chronic pain represent 2 highly prevalent and comorbid conditions that engender substantial burdens upon individuals and systems. Interrelations between pain and smoking have been of clinical and empirical interest for decades, and research in this area has increased dramatically over the past 5 years. We conceptualize the interaction of pain and smoking as a prototypical example of the biopsychosocial model. Accordingly, we extrapolated from behavioral, cognitive, affective, biomedical, and social perspectives to propose causal mechanisms that may contribute to the observed comorbidity between these 2 conditions. The extant literature was 1st dichotomized into investigations of either effects of smoking on pain or effects of pain on smoking. We then integrated these findings to present a reciprocal model of pain and smoking that is hypothesized to interact in the manner of a positive feedback loop, resulting in greater pain and increased smoking. Finally, we proposed directions for future research and discussed clinical implications for smokers with comorbid pain disorders. We observed modest evidence that smoking may be a risk factor in the multifactorial etiology of some chronically painful conditions and that pain may come to serve as a potent motivator of smoking. We also found that whereas animal studies yielded consistent support for direct pain-inhibitory effects of nicotine and tobacco, results from human studies were much less consistent. Future research in the emerging area of pain and smoking has the potential to inform theoretical and clinical applications with respect to tobacco smoking, chronic pain, and their comorbid presentation. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Collapse
Affiliation(s)
- Joseph W Ditre
- Department of Psychology, Texas A&M University, College Station, USA.
| | | | | | | |
Collapse
|
3
|
Lee DH, Kim EG, Park KS, Jeong SW, Kong ID, Lee JW. Characteristics of P2X7-like receptor activated by adenosine triphosphate in HIT-T15 cells. Pancreas 2007; 35:53-62. [PMID: 17575546 DOI: 10.1097/01.mpa.0000278676.58491.ef] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The study examined the presence of a P2X7 receptor subtype and its functional roles in pancreatic beta cells. METHODS In a hamster beta-cell line, HIT-T15 cells, purinergic stimulation was investigated using fluorometry, electrophysiology, flow cytometry, and electrophoresis. RESULTS Adenosine triphosphate (ATP) and 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) increased in the intracellular free Ca2+ concentration, with an EC50 of 398.0 and 136.6 microM, respectively. Preincubation with oxidized ATP, a P2X7 receptor antagonist, inhibited the ATP- and BzATP-induced increase in the intracellular Ca2+ level. The BzATP-induced increase in the intracellular Ca2+ level was dependent on the extracellular Ca2+ concentration. The extracellular Mg2+ had a significant effect on the ATP-induced increase in the intracellular Ca2+ level. The ATP also induced depolarization like high potassium chloride. In the voltage-clamp experiments, ATP evoked inward currents, which were reversed at almost 0 mV. The ATP stimulated the slow influx of ethidium bromide, indicating permeability to larger molecules. Flow cytometry showed that the number of hypodiploid cells (A0), which are indicative of apoptosis, increased when the cells were exposed to ATP for 24 hours. The ATP also induced DNA fragmentation. CONCLUSIONS These results suggest that the HIT-T15 cells have endogenous P2X7-like receptors and that purinergic stimulation increased the level of intracellular Ca2+, depolarization, inward current, permeability, and apoptosis.
Collapse
Affiliation(s)
- Dong Hyeon Lee
- Biobank for Health Sciences, Center for Genome Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
4
|
Lechner SG, Dorostkar MM, Mayer M, Edelbauer H, Pankevych H, Boehm S. Autoinhibition of transmitter release from PC12 cells and sympathetic neurons through a P2Y receptor-mediated inhibition of voltage-gated Ca2+ channels. Eur J Neurosci 2005; 20:2917-28. [PMID: 15579146 DOI: 10.1111/j.1460-9568.2004.03760.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although feedback inhibition of noradrenaline release by coreleased nucleotides is a well known phenomenon, it remained unclear which P2 receptor subtypes and associated signalling cascades may be involved. In the rat pheochromocytoma cell line PC12, 2-methylthio-ADP reduced noradrenaline release triggered by K+ depolarization more potently than ADP and ATP, whereas UDP or UTP failed to do so. The inhibition by ADP was abolished by pertussis toxin and antagonized by reactive blue 2, 2-methylthio-AMP, and AR-C69931MX, but not by suramin. AR-C69931MX acted as a competitive antagonist with an apparent affinity of 2 nm, but did not alter noradrenaline release, when PC12 cells were continuously superfused. However, when the superfusion was halted during K+ depolarization, release was significantly reduced and this inhibition was attenuated by AR-C69931MX, thus revealing ongoing autoinhibition. Rises in cellular cyclic AMP did not alter depolarization-evoked release nor its reduction by ADP, even though the nucleotide did inhibit cyclic AMP accumulation. ADP and the direct Ca2+ channel blocker Cd2+ inhibited voltage-activated Ca2+ currents, but not ATP-induced currents, and both agents reduced K+-evoked, but not ATP-evoked, release. Hence, if voltage-gated Ca2+ channels do not contribute to stimulation-evoked release, ADP fails to exert its inhibitory action. In primary cultures of rat sympathetic neurons, ADP also reduced Ca2+ currents and K+-evoked noradrenaline release, and AR-C69931MX acted again as competitive antagonist with an apparent affinity of 3 nm. These results show that P2Y12 receptors mediate an autoinhibition of transmitter release from PC12 cells and sympathetic neurons through an inhibition of voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- Stefan G Lechner
- Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
5
|
Rossi AM, Picotto G, de Boland AR, Boland RL. Evidence on the operation of ATP-induced capacitative calcium entry in breast cancer cells and its blockade by 17beta-estradiol. J Cell Biochem 2004; 87:324-33. [PMID: 12397614 DOI: 10.1002/jcb.10303] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Little is known about the regulation of cytosolic calcium Ca(2+) levels ([Ca(2+)](i)) in breast cancer cells. We investigated the existence of capacitative calcium entry (CCE) in the tumorigenic cell line MCF-7 and its responsiveness to ATP. MCF-7 cells express purinergic receptors as well as estrogen receptors (ER). Depletion of calcium stores with thapsigargin (TG, 500 nM) or ATP (10 microM) in the absence of extracellular Ca(2+), resulted in a rapid and transient elevation in [Ca(2+)](i). After recovery of basal levels, Ca(2+) readmission (1.5 mM) to the medium increased Ca(2+) influx (twofold over basal), reflecting pre-activation of a CCE pathway. Cells pretreated with TG were unable to respond to ATP, thus indicating that the same Ca(2+) store is involved in their response. Moreover, IP(3)-dependent ATP-induced calcium mobilization and CCE were completely blocked using compound U-73122, an inhibitor of phospholipase C. Compound 2-APB (75 microM) and Gd(3+) (10 microM), antagonists of the CCE pathway, completely prevented ATP-stimulated capacitative Ca(2+) entry. CCE in MCF-7 cells was highly permeable to Mn(2+) and to the Ca(2+) surrogate Sr(2+). Mn(2+) entry sensitivity to Gd(3+) matched that of the Ca(2+) entry pathway. 17Beta-estradiol blocked ATP-induced CCE, but was without effect on TG-induced CCE. Besides, the estrogen blockade of the ATP-induced CCE was completely abolished by preincubation of the cells with an ER monoclonal antibody. ER alpha immunoreactivity could also be detected in a purified plasma membrane fraction of MCF-7 cells. These results represent the first evidence on the operation of a ATP-responsive CCE pathway in MCF-7 cells and also indicate that 17beta-estradiol interferes with this mechanism by acting at the cell surface level.
Collapse
Affiliation(s)
- Ana M Rossi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahia Blanca, Argentina
| | | | | | | |
Collapse
|
6
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
7
|
|
8
|
Grobben B, Claes P, Van Kolen K, Roymans D, Fransen P, Sys SU, Slegers H. Agonists of the P2Y(AC)-receptor activate MAP kinase by a ras-independent pathway in rat C6 glioma. J Neurochem 2001; 78:1325-38. [PMID: 11579141 DOI: 10.1046/j.1471-4159.2001.00524.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that an ecto-NPPase modulates the ATP- and ADP-mediated P2Y(AC)-receptor activation in rat C6 glioma. In the present study, 2MeSADP and Ap(3)A induced no detectable PI turnover and were identified as specific agonists of the P2Y(AC)-receptor with EC(50) values of 250 +/- 37 pM and 1 +/- 0.5 microM, respectively. P2Y(AC)-receptor stimulation increased MAP kinase (ERK1/2) activation that returned to the basal level 4 h after stimulation and was correlated with a gradual desensitization of the P2Y(AC)-purinoceptor. The purinoceptor antagonists DIDS and RB2 blocked MAP kinase activation. An IP(3)-independent Ca(2+)-influx was observed after P2Y(AC)-receptor activation. Inhibition of this influx by Ca(2+)-chelation, did not affect MAP kinase activation. Pertussis toxin, toxin B, selective PKC-inhibitors and a specific MEK-inhibitor inhibited the 2MeSADP- and Ap(3)A-induced MAP kinase activation. In addition, transfection with dominant negative RhoA(Asn19) rendered C6 cells insensitive to P2Y(AC)-receptor-mediated MAP kinase activation whereas dominant negative ras was without effect. Immunoprecipitation experiments indicated a significant increase in the phosphorylation of raf-1 after P2Y(AC)-receptor activation. We may conclude that P2Y(AC)-purinoceptor agonists activate MAP kinase through a G(i)-RhoA-PKC-raf-MEK-dependent, but ras- and Ca(2+)-independent cascade.
Collapse
Affiliation(s)
- B Grobben
- Department of Biochemistry, Cellular Biochemistry, Universiteit Antwerpen, Universitaire Instelling Antwerpen, Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Vollmayer P, Koch M, Braun N, Heine P, Servos J, Israr E, Kegel B, Zimmermann H. Multiple ecto-nucleotidases in PC12 cells: identification and cellular distribution after heterologous expression. J Neurochem 2001; 78:1019-28. [PMID: 11553676 DOI: 10.1046/j.1471-4159.2001.00480.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The physiological action of extracellular ATP and other nucleotides in the nervous system is controlled by surface-located enzymes (ecto-nucleotidases) of which several families with partially overlapping substrate specificities exist. In order to identify ecto-nucleotidases potentially associated with neural cells, we chose PC12 cells for analysis. PC12 cells revealed surface-located ATPase and ADPase activity with apparent K(m)-values of 283 microM and 243 microM, respectively. Using PCR we identified the mRNA of all members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated (NTPDase1 to NTPDase3, NTPDase5/6), of ecto-nucleotide pyrophosphatase/phosphodiesterase3 (NPP3), tissue-non-specific alkaline phosphatase and ecto-5'-nucleotidase. The surface-located catalytic activity differed greatly between the various enzyme species. Our data suggest that hydrolysis of ATP and ADP is mainly due to members of the ecto-nucleoside triphosphate diphosphohydrolase family. Activity of ecto-5'-nucleotidase and alkaline phosphatase was very low and activity of NPP3 was absent. For a detailed analysis of the cellular distribution of ecto-nucleotidases single and double transfections of PC12 cells were performed, followed by fluorescence analysis. Ecto-nucleotidases were distributed over the entire cell surface and accumulated intracellularly in varicosities and neurite tips. PC12 cell ecto-nucleotidases are likely to play an important role in terminating autocrine functions of released nucleotides and in producing extracellular nucleosides supporting the survival and neuritic differentiation of PC12 cells.
Collapse
Affiliation(s)
- P Vollmayer
- Biozentrum der J.W. Goethe-Universität, AK Neurochemie, Zoologisches Institut, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hur EM, Park TJ, Kim KT. Coupling of L-type voltage-sensitive calcium channels to P2X(2) purinoceptors in PC-12 cells. Am J Physiol Cell Physiol 2001; 280:C1121-9. [PMID: 11287325 DOI: 10.1152/ajpcell.2001.280.5.c1121] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular ATP elevates cytosolic Ca(2+) by activating P2X and P2Y purinoceptors and voltage-sensitive Ca(2+) channels (VCCCs) in PC-12 cells, thereby facilitating catecholamine secretion. We investigated the mechanism by which ATP activates VSCCs. 2-Methylthioadenosine 5'-triphosphate (2-MeS-ATP) and UTP were used as preferential activators of P2X and P2Y, respectively. Nifedipine inhibited the ATP- and 2-MeS-ATP-evoked cytosolic Ca(2+) concentration increase and [(3)H]norepinephrine secretion, but not the UTP-evoked responses. Studies with Ca(2+) channel blockers indicated that L-type VSCCs were activated after the P2X activation. Mn(2+) entry profiles and studies with thapsigargin revealed that Ca(2+) entry, rather than Ca(2+) release, was sensitive to nifedipine. Although P2X(2) and P2X(4) receptor mRNAs were detected, studies with pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid revealed that P2X(2) was mainly coupled to the L-type VSCCs. The inhibitory effect of nifedipine did not occur in the absence of extracellular Na(+), suggesting that Na(+) influx, which induces depolarization, was essential for the P2X(2)-mediated activation of VSCCs. We report that depolarization induced by Na(+) entry through the P2X(2) purinoceptors effectively activates L-type VSCCs in PC-12 cells.
Collapse
Affiliation(s)
- E M Hur
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | |
Collapse
|
11
|
Benrezzak O, Grondin G, Proulx J, Rousseau E, D'Orléans-Juste P, Beaudoin AR. Characterization and immunohistochemical localization of nucleoside triphosphate diphosphohydrolase (NTPDase) in pig adrenal glands (presence of a non-sedimentable isoform). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1524:94-101. [PMID: 11113555 DOI: 10.1016/s0304-4165(00)00116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considering that adrenal glands possess a variety of purinoceptors associated with various cell types and that some of these cells (chromaffin cells) secrete large amounts of adenine nucleotides, it was of interest to localize nucleoside triphosphate diphosphohydrolase (NTPDase) in these glands and to define the biochemical characteristics of this ectonucleotidase. Immunolocalization produced a moderate reaction in capsula and medulla, with no signal in zona glomerulosa and zona reticularis. In contrast, a very strong reaction was found in zona fasciculata. Biochemical analysis of particulate fractions isolated from whole glands revealed high levels of ATPase and ADPase activities. This appeared to be attributable to the NTPDase since the level of ADPase was as high as ATPase. Both ATPase and ADPase activities were similarly inhibited by sodium azide. Additionally electrophoretograms with these two substrates showed comparable patterns. Western blots with 'Ringo', an antibody that recognizes the different isoforms of mammalian NTPDases, showed the presence of isoforms of NTPDases at 54 and 78 kDa, respectively. Interestingly, the 54 kDa isoform remains in the supernatant of a chromaffin granule lysate after ultracentrifugation. Up until now little interest has been given to the relationship between adrenal medulla and cortex. Presence of purinoceptors and ectonucleotidases in both these regions together with the effects of ATP in vivo and in vitro in different species indicate that purines play a significant role in adrenal glands.
Collapse
Affiliation(s)
- O Benrezzak
- Département de Biologie, Université de Sherbrooke, Québec J1K 2R1, Sherbrooke, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Chung HS, Park KS, Cha SK, Kong ID, Lee JW. ATP-induced [Ca(2+)](i) changes and depolarization in GH3 cells. Br J Pharmacol 2000; 130:1843-52. [PMID: 10952673 PMCID: PMC1572246 DOI: 10.1038/sj.bjp.0703253] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Extracellular ATP is a neurotransmitter and mediates a variety of responses. In the endocrine system, there are data suggesting a physiological role for ATP in Ca(2+) signalling and hormone secretion. However, the ATP receptor subtype involved has not been clearly elucidated in GH3 cells, a rat anterior pituitary cell line. BzATP- and ATP-induced [Ca(2+)](i) responses had EC(50) values of 18 and 651 microM, respectively. The maximal response to ATP was only 59+/-8% of that for BzATP. The BzATP-induced [Ca(2+)](i) increase was dependent upon the extracellular Ca(2+) concentration. Preincubation with oxidized ATP (oATP) nearly abolished the ATP- and BzATP-induced [Ca(2+)](i) increases. Both BzATP and ATP induced depolarization in GH3 cells, with EC(50) values of 31 microM and 1 mM, respectively. The maximal depolarization to BzATP and ATP were 152+/-21 and 146+/-16% of that elicited by 30 mM KCl. The rank order of agonist potency for [Ca(2+)](i) and depolarization responses was BzATP > > ATP >2-MeSATP and purine derivatives such as ADP, AMP, adenosine were ineffective. Neither UTP nor alpha, beta-methylene ATP showed any effect. In low-divalent conditions BzATP evoked non-desensitizing inward currents, which were reversed at approximately 0 mV. This nonselective cationic conductance was increased by repeated applications of BzATP and the cells became very permeable to NMDG. Longer applications (30 min) of BzATP stimulated ethidium bromide influx in low divalent conditions, suggesting increased permeability to larger molecules. We also identified the existence of P2X(7) mRNA on GH3 cells by using reverse transcriptase (RT)-polymerase chain reaction (PCR). These results suggest that the GH3 cells have an endogenous P2X(7) receptor and purinergic stimulation may play a potential role in neuroendocrine modulation on these cells.
Collapse
Affiliation(s)
- Hae Sook Chung
- Department of Physiology, Yonsei University, Wonju College of Medicine, Wonju 220-701, Korea
| | - Kyu Sang Park
- Department of Physiology, Yonsei University, Wonju College of Medicine, Wonju 220-701, Korea
| | - Seung Kyu Cha
- Department of Physiology, Yonsei University, Wonju College of Medicine, Wonju 220-701, Korea
| | - In Deok Kong
- Department of Physiology, Yonsei University, Wonju College of Medicine, Wonju 220-701, Korea
| | - Joong Woo Lee
- Department of Physiology, Yonsei University, Wonju College of Medicine, Wonju 220-701, Korea
- Author for correspondence:
| |
Collapse
|
13
|
Tusa G, Reed JK. The synthesis of cyclonucleotides with fixed glycosidic bond linkages as putative agonists for P2-purinergic receptors. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:805-13. [PMID: 10960037 DOI: 10.1080/15257770008035026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cyclonucleotides with fixed glycosidic bond linkages were investigated as possible ligands for purinoceptors in PC12 cells. P2Y2-purinoceptors were not activated by the ATP analogue, 8,2'-thioanhydroadenosine-5'-triphosphate (4) and only weakly by the UTP analogue, 2,2' -anhydrouridine-5'-triphosphate (6). However, both analogues were agonists for P2X2-purinoceptors although the potencies were approximately 30-fold less than that of the parent nucleotides.
Collapse
Affiliation(s)
- G Tusa
- Department of Chemistry, University of Toronto at Mississauga, Ontario
| | | |
Collapse
|
14
|
Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F. Trophic effects of purines in neurons and glial cells. Prog Neurobiol 1999; 59:663-90. [PMID: 10845757 DOI: 10.1016/s0301-0082(99)00017-9] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In addition to their well known roles within cells, purine nucleotides such as adenosine 5' triphosphate (ATP) and guanosine 5' triphosphate (GTP), nucleosides such as adenosine and guanosine and bases, such as adenine and guanine and their metabolic products xanthine and hypoxanthine are released into the extracellular space where they act as intercellular signaling molecules. In the nervous system they mediate both immediate effects, such as neurotransmission, and trophic effects which induce changes in cell metabolism, structure and function and therefore have a longer time course. Some trophic effects of purines are mediated via purinergic cell surface receptors, whereas others require uptake of purines by the target cells. Purine nucleosides and nucleotides, especially guanosine, ATP and GTP stimulate incorporation of [3H]thymidine into DNA of astrocytes and microglia and concomitant mitosis in vitro. High concentrations of adenosine also induce apoptosis, through both activation of cell-surface A3 receptors and through a mechanism requiring uptake into the cells. Extracellular purines also stimulate the synthesis and release of protein trophic factors by astrocytes, including bFGF (basic fibroblast growth factor), nerve growth factor (NGF), neurotrophin-3, ciliary neurotrophic factor and S-100beta protein. In vivo infusion into brain of adenosine analogs stimulates reactive gliosis. Purine nucleosides and nucleotides also stimulate the differentiation and process outgrowth from various neurons including primary cultures of hippocampal neurons and pheochromocytoma cells. A tonic release of ATP from neurons, its hydrolysis by ecto-nucleotidases and subsequent re-uptake by axons appears crucial for normal axonal growth. Guanosine and GTP, through apparently different mechanisms, are also potent stimulators of axonal growth in vitro. In vivo the extracellular concentration of purines depends on a balance between the release of purines from cells and their re-uptake and extracellular metabolism. Purine nucleosides and nucleotides are released from neurons by exocytosis and from both neurons and glia by non-exocytotic mechanisms. Nucleosides are principally released through the equilibratory nucleoside transmembrane transporters whereas nucleotides may be transported through the ATP binding cassette family of proteins, including the multidrug resistance protein. The extracellular purine nucleotides are rapidly metabolized by ectonucleotidases. Adenosine is deaminated by adenosine deaminase (ADA) and guanosine is converted to guanine and deaminated by guanase. Nucleosides are also removed from the extracellular space into neurons and glia by transporter systems. Large quantities of purines, particularly guanosine and, to a lesser extent adenosine, are released extracellularly following ischemia or trauma. Thus purines are likely to exert trophic effects in vivo following trauma. The extracellular purine nucleotide GTP enhances the tonic release of adenine nucleotides, whereas the nucleoside guanosine stimulates tonic release of adenosine and its metabolic products. The trophic effects of guanosine and GTP may depend on this process. Guanosine is likely to be an important trophic effector in vivo because high concentrations remain extracellularly for up to a week after focal brain injury. Purine derivatives are now in clinical trials in humans as memory-enhancing agents in Alzheimer's disease. Two of these, propentofylline and AIT-082, are trophic effectors in animals, increasing production of neurotrophic factors in brain and spinal cord. Likely more clinical uses for purine derivatives will be found; purines interact at the level of signal-transduction pathways with other transmitters, for example, glutamate. They can beneficially modify the actions of these other transmitters.
Collapse
Affiliation(s)
- M P Rathbone
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Webb TE, Barnard EA. Molecular biology of P2Y receptors expressed in the nervous system. PROGRESS IN BRAIN RESEARCH 1999; 120:23-31. [PMID: 10550985 DOI: 10.1016/s0079-6123(08)63543-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- T E Webb
- Molecular Neurobiology Unit, Royal Free Hospital School of Medicine, Hampstead, London, UK.
| | | |
Collapse
|
16
|
Grobben B, Anciaux K, Roymans D, Stefan C, Bollen M, Esmans EL, Slegers H. An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem 1999; 72:826-34. [PMID: 9930759 DOI: 10.1046/j.1471-4159.1999.0720826.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence of a nucleotide pyrophosphatase (EC 3.6.1.9) on the plasma membrane of rat C6 glioma has been demonstrated by analysis of the hydrolysis of ATP labeled in the base and in the alpha- and gamma-phosphates. The enzyme degraded ATP into AMP and PPi and, depending on the ATP concentration, accounted for approximately 50-75% of the extracellular degradation of ATP. The association of the enzyme with the plasma membrane was confirmed by ATP hydrolysis in the presence of a varying concentration of pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a membrane-impermeable inhibitor of the enzyme. PPADS concentration above 20 microM abolished the degradation of ATP into AMP and PPi. The nucleotide pyrophosphatase has an alkaline pH optimum and a Km for ATP of 17 +/- 5 microM. The enzyme has a broad substrate specificity and hydrolyzes nucleoside triphosphates, nucleoside diphosphates, dinucleoside polyphosphates, and nucleoside monophosphate esters but is inhibited by nucleoside monophosphates, adenosine 3',5'-bisphosphate, and PPADS. The substrate specificity characterizes the enzyme as a nucleotide pyrophosphatase/phosphodiesterase I (PD-I). Immunoblotting and autoadenylylation identified the enzyme as a plasma cell differentiation antigen-related protein. Hydrolysis of ATP terminates the autophosphorylation of a nucleoside diphosphate kinase (NDPK/nm23) detected in the conditioned medium of C6 cultures. A function of the pyrophosphatase/PD-I and NDPK in the purinergic and pyrimidinergic signal transduction in C6 is discussed.
Collapse
Affiliation(s)
- B Grobben
- Department of Biochemistry, Cellular Biochemistry, University of Antwerp, Universitaire Instelling Antwerpen, Antwerpen-Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Abbracchio MP, Burnstock G. Purinergic signalling: pathophysiological roles. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 78:113-45. [PMID: 9829617 DOI: 10.1254/jjp.78.113] [Citation(s) in RCA: 321] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, after a summary of the history and current status of the receptors involved in purinergic signalling, we focus on the distribution and physiological roles of purines and pyrimidines in both short-term events such as neurotransmission, exocrine and endocrine secretion and regulation of immune cell function, and long-term events such as cell growth, differentiation and proliferation in development and regeneration. Finally, the protective roles of nucleosides and nucleotides in events such as cancer, ischemia, wound healing, drug toxicity, inflammation and pain are explored and some suggestions made for future developments in this rapidly expanding field, with particular emphasis on the involvement of selective agonists and antagonists for purinergic receptor subtypes in therapeutic strategies.
Collapse
Affiliation(s)
- M P Abbracchio
- Institute of Pharmacological Sciences, University of Milan, Italy
| | | |
Collapse
|
18
|
Abstract
The Anion Cl-/HCO3- Exchangers AE1, AE2, and AE3 are membrane pH regulatory ion transporters ubiquitously expressed in vertebrate tissues. Besides relieving intracellular alkaline and CO2 loads, the AEs have an important function during development and cell death and play a central role in such cellular properties as cell shape, metabolism, and contractility. The activity of AE(s) are regulated by neurohormones. However, little is known as to the intracellular signal transduction pathways that underlie this modulation. We show here that, in cardiomyocytes that express both AE1 and AE3, the purinergic agonist, ATP, triggers activation of anion exchange. The AE activation is observed in cells in which AE3 expression was blocked but not in cells microinjected with neutralizing anti-AE1 antibodies. ATP induces tyrosine phosphorylation of AE1, activation of the tyrosine kinase Fyn, and association of both Fyn and FAK with AE1. Inhibition of Src family kinases in vivo by genistein, herbimycin A, or ST638 prevents purinergic activation of AE1. Microinjection of either anti-Cst.1 antibody or recombinant CSK, both of which prevent activation of Src family kinase, significantly decreases ATP-induced activation of AE. Microinjection of an anti-FAK antibody as well as expression in cardiomyocytes of Phe397 FAK dominant negative mutant, also prevents purinergic activation of AE. Therefore, tyrosine kinases play a key role in acute regulation of intracellular pH and thus in cell function including excitation-contraction coupling of the myocardium.
Collapse
Affiliation(s)
- M Pucéat
- Institut National de la Santé et de la Recherche Médicale U-390, Laboratoire de Physiopathologie Cardiovasculaire, C.H.U. Arnaud de Villeneuve.
| | | | | |
Collapse
|