1
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
2
|
Lazar CS, Schwab VF, Ueberschaar N, Pohnert G, Trumbore S, Küsel K. Microbial degradation and assimilation of veratric acid in oxic and anoxic groundwaters. Front Microbiol 2023; 14:1252498. [PMID: 37901809 PMCID: PMC10602745 DOI: 10.3389/fmicb.2023.1252498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Microbial communities are key players in groundwater ecosystems. In this dark environment, heterotrophic microbes rely on biomass produced by the activity of lithoautotrophs or on the degradation of organic matter seeping from the surface. Most studies on bacterial diversity in groundwater habitats are based on 16S gene sequencing and full genome reconstructions showing potential metabolic pathways used in these habitats. However, molecular-based studies do not allow for the assessment of population dynamics over time or the assimilation of specific compounds and their biochemical transformation by microbial communities. Therefore, in this study, we combined DNA-, phospholipid fatty acid-, and metabolomic-stable isotope probing to target and identify heterotrophic bacteria in the groundwater setting of the Hainich Critical Zone Exploratory (CZE), focusing on 2 aquifers with different physico-chemical conditions (oxic and anoxic). We incubated groundwater from 4 different wells using either 13C-labeled veratric acid (a lignin-derived compound) (single labeling) or a combination of 13CO2 and D-labeled veratric acid (dual labeling). Our results show that heterotrophic activities dominate all groundwater sites. We identified bacteria with the potential to break down veratric acid (Sphingobium or Microbacterium). We observed differences in heterotrophic activities between the oxic and anoxic aquifers, indicating local adaptations of bacterial populations. The dual labeling experiments suggested that the serine pathway is an important carbon assimilation pathway and that organic matter was an important source of hydrogen in the newly produced lipids. These experiments also yielded different labeled taxa compared to the single labeling experiments, showing that there exists a complex interaction network in the groundwater habitats.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- Department of Biological Sciences, University of Quebec at Montreal (UQAM), Montreal, QC, Canada
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Valérie F. Schwab
- Department Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Nico Ueberschaar
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Susan Trumbore
- Department Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Allemann MN, Presley GN, Elkins JG, Michener JK. Sphingobium lignivorans sp. nov., isolated from river sediment downstream of a paper mill. Int J Syst Evol Microbiol 2023; 73. [PMID: 36790427 DOI: 10.1099/ijsem.0.005704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A bacterial isolate, B1D3AT, was isolated from river sediment collected from the Hiwassee River near Calhoun, TN, by enrichment culturing with a model 5-5' lignin dimer, dehydrodivanillate, as its sole carbon source. B1D3AT was also shown to utilize several model lignin-derived monomers and dimers as sole carbon sources in a variety of minimal media. Cells were Gram-stain-negative, aerobic, motile, rod-shaped and formed yellow/cream-coloured colonies on rich agar. Optimal growth occurred at 30 °C, pH 7-8, and in the absence of NaCl. The major fatty acids of B1D3AT were C18 : 1 ω7c and C17 : 1 ω6c. The predominant hydroxy fatty acids were C14 : 0 2-OH and C15 : 0 2-OH. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethanolamine and sphingoglycolipid. B1D3AT contained spermidine as the only major polyamine. The major isoprenoid quinone was Q-10 with minor amounts of Q-9 and Q-11. The genomic DNA G+C content of B1D3AT was 65.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 49 core, universal genes defined by Clusters of Orthologous Groups gene families indicated that B1D3AT was a member of the genus Sphingobium. B1D3AT was most closely related to Sphingobium sp. SYK-6, with a 100 % 16S rRNA gene sequence similarity. B1D3AT showed 78.1-89.9 % average nucleotide identity and 19.5-22.2% digital DNA-DNA hybridization identity with other type strains from the genus Sphingobium. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain B1D3AT should be classified as representing a novel species of the genus Sphingobium, for which the name Sphingobium lignivorans sp. nov. is proposed. The type strain is strain B1D3AT (ATCC TSD-279T=DSM 111877T).
Collapse
Affiliation(s)
- Marco N Allemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Gerald N Presley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Present address: Wood Science and Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - James G Elkins
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Joshua K Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
4
|
Cai C, Xu Z, Li J, Zhou H, Jin M. Developing
Rhodococcus opacus
and
Sphingobium
sp. co‐culture systems for valorization of lignin‐derived dimers. Biotechnol Bioeng 2022; 119:3162-3177. [DOI: 10.1002/bit.28215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chenggu Cai
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Zhaoxian Xu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Jie Li
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Huarong Zhou
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Mingjie Jin
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjing210094China
| |
Collapse
|
5
|
Miyamoto H, Asano F, Ishizawa K, Suda W, Miyamoto H, Tsuji N, Matsuura M, Tsuboi A, Ishii C, Nakaguma T, Shindo C, Kato T, Kurotani A, Shima H, Moriya S, Hattori M, Kodama H, Ohno H, Kikuchi J. A potential network structure of symbiotic bacteria involved in carbon and nitrogen metabolism of wood-utilizing insect larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155520. [PMID: 35508250 DOI: 10.1016/j.scitotenv.2022.155520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Effective biological utilization of wood biomass is necessary worldwide. Since several insect larvae can use wood biomass as a nutrient source, studies on their digestive microbial structures are expected to reveal a novel rule underlying wood biomass processing. Here, structural inferences for inhabitant bacteria involved in carbon and nitrogen metabolism for beetle larvae, an insect model, were performed to explore the potential rules. Bacterial analysis of larval feces showed enrichment of the phyla Chroloflexi, Gemmatimonadetes, and Planctomycetes, and the genera Bradyrhizobium, Chonella, Corallococcus, Gemmata, Hyphomicrobium, Lutibacterium, Paenibacillus, and Rhodoplanes, as bacteria potential involved in plant growth promotion, nitrogen cycle modulation, and/or environmental protection. The fecal abundances of these bacteria were not necessarily positively correlated with their abundances in the habitat, indicating that they were selectively enriched in the feces of the larvae. Correlation and association analyses predicted that common fecal bacteria might affect carbon and nitrogen metabolism. Based on these hypotheses, structural equation modeling (SEM) statistically estimated that inhabitant bacterial groups involved in carbon and nitrogen metabolism were composed of the phylum Gemmatimonadetes and Planctomycetes, and the genera Bradyrhizobium, Corallococcus, Gemmata, and Paenibacillus, which were among the fecal-enriched bacteria. Nevertheless, the selected common bacteria, i.e., the phyla Acidobacteria, Armatimonadetes, and Bacteroidetes and the genera Candidatus Solibacter, Devosia, Fimbriimonas, Gemmatimonas Opitutus, Sphingobium, and Methanobacterium, were necessary to obtain good fit indices in the SEM. In addition, the composition of the bacterial groups differed depending upon metabolic targets, carbon and nitrogen, and their stable isotopes, δ13C and δ15N, respectively. Thus, the statistically derived causal structural models highlighted that the larval fecal-enriched bacteria and common symbiotic bacteria might selectively play a role in wood biomass carbon and nitrogen metabolism. This information could confer a new perspective that helps us use wood biomass more efficiently and might stimulate innovation in environmental industries in the future.
Collapse
Affiliation(s)
- Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan; Japan Eco-science (Nikkan Kagaku) Co., Ltd., Chiba, Chiba 260-0034, Japan.
| | - Futo Asano
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan
| | | | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | | | - Naoko Tsuji
- Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan
| | - Makiko Matsuura
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan
| | - Arisa Tsuboi
- Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan; Japan Eco-science (Nikkan Kagaku) Co., Ltd., Chiba, Chiba 260-0034, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Chitose Ishii
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan
| | - Teruno Nakaguma
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; Sermas Co., Ltd., Ichikawa, Chiba 272-0033, Japan; Japan Eco-science (Nikkan Kagaku) Co., Ltd., Chiba, Chiba 260-0034, Japan
| | - Chie Shindo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tamotsu Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hideaki Shima
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Shigeharu Moriya
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Hiroaki Kodama
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8501, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
6
|
Niu Q, Meng Q, Yang H, Wang Y, Li X, Li G, Li Q. Humification process and mechanisms investigated by Fenton-like reaction and laccase functional expression during composting. BIORESOURCE TECHNOLOGY 2021; 341:125906. [PMID: 34523564 DOI: 10.1016/j.biortech.2021.125906] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
This study aims to explore the impacts of the Fenton-like reaction on hydrogen peroxide, hydroxyl radicals, humic substance (HS) formation, laccase activity and microbial communities during composting to optimize composting performances. The results indicated that the activity of laccase in the presence of the Fenton-like reaction (HC) (35.92 U/g) was significantly higher than that in the control (CP) (29.56 U/g). The content of HS in HC (151.91 g/kg) was higher than that in CP (131.73 g/kg), and amides, quinones, aliphatic compounds and aromatic compounds were promoted to form HS in HC by 2D-FTIR-COS analysis. Proteobacteria contributed most greatly to AA1 at phylum level, Pseudomonas and Sphingomonas abundances increased in HC. Redundancy analysis indicated that there was a strong positive correlation among the Fenton-like reaction, laccase and HS. Conclusively, the Fenton-like reaction improved the activity of laccase, promoted the formation of HS and enhanced the quality of compost.
Collapse
Affiliation(s)
- Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Gen Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
7
|
Li T, Zhang Q, Zhang X, Wan Q, Wang S, Zhang R, Zhang Z. Transcriptome and microbiome analyses of the mechanisms underlying antibiotic-mediated inhibition of larval development of the saprophagous insect Musca domestica (Diptera: Muscidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112602. [PMID: 34385061 DOI: 10.1016/j.ecoenv.2021.112602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are designed to treat bacterial infections in humans and animals; however, the overuse of various antibiotics and consequent contamination in the environment can have adverse effects on aquatic, soil, and saprophytic organisms. The house fly, an important decomposer in ecosystems, has been used for bioconversion of human and animal waste. Vermireactors have been used to remove antibiotics from waste for pollution control, but the effects of antibiotics on fly larvae are unclear. In the present work, we aimed to reveal the mechanism underlying the effects of antibiotics on larval growth in house flies at the transcriptome and microbiome levels and the relationships between genes and the microbiota. Observation of house flies after antibiotic exposure showed that gentamicin sulfate and levofloxacin hydrochloride inhibited larval development to a greater extent than amoxicillin. Transcriptome analysis revealed that biological pathways related to protein synthesis and the metabolism of fatty acids, pentose, and glucuronate were significantly enriched in flies exposed to gentamicin sulfate and levofloxacin hydrochloride. Crucial genes in these pathways were identified as candidates for future study. Microbiome analysis revealed three key bacteria that were closely correlated with gentamicin sulfate and levofloxacin hydrochloride exposure. The correlation network between the differentially expressed genes and bacteria identified an important microbic effector, Pseudomonas and its associated genes. This work will improve the knowledge about the mechanism underlying the effects of antibiotics on the larval development of house flies in the environment and provide guidance for improving the application of house fly bioconversion.
Collapse
Affiliation(s)
- Ting Li
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changcheng Road, Taian 271016, Shandong, China; School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Qian Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changcheng Road, Taian 271016, Shandong, China; School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Xinyu Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changcheng Road, Taian 271016, Shandong, China; School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Qing Wan
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changcheng Road, Taian 271016, Shandong, China; School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Shumin Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changcheng Road, Taian 271016, Shandong, China; School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changcheng Road, Taian 271016, Shandong, China; School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China.
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changcheng Road, Taian 271016, Shandong, China; School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China.
| |
Collapse
|
8
|
Stravoravdis S, Shipway JR, Goodell B. How Do Shipworms Eat Wood? Screening Shipworm Gill Symbiont Genomes for Lignin-Modifying Enzymes. Front Microbiol 2021; 12:665001. [PMID: 34322098 PMCID: PMC8312274 DOI: 10.3389/fmicb.2021.665001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Shipworms are ecologically and economically important mollusks that feed on woody plant material (lignocellulosic biomass) in marine environments. Digestion occurs in a specialized cecum, reported to be virtually sterile and lacking resident gut microbiota. Wood-degrading CAZymes are produced both endogenously and by gill endosymbiotic bacteria, with extracellular enzymes from the latter being transported to the gut. Previous research has predominantly focused on how these animals process the cellulose component of woody plant material, neglecting the breakdown of lignin – a tough, aromatic polymer which blocks access to the holocellulose components of wood. Enzymatic or non-enzymatic modification and depolymerization of lignin has been shown to be required in other wood-degrading biological systems as a precursor to cellulose deconstruction. We investigated the genomes of five shipworm gill bacterial symbionts obtained from the Joint Genome Institute Integrated Microbial Genomes and Microbiomes Expert Review for the production of lignin-modifying enzymes, or ligninases. The genomes were searched for putative ligninases using the Joint Genome Institute’s Function Profile tool and blastp analyses. The resulting proteins were then modeled using SWISS-MODEL. Although each bacterial genome possessed at least four predicted ligninases, the percent identities and protein models were of low quality and were unreliable. Prior research demonstrates limited endogenous ability of shipworms to modify lignin at the chemical/molecular level. Similarly, our results reveal that shipworm bacterial gill-symbiont enzymes are unlikely to play a role in lignin modification during lignocellulose digestion in the shipworm gut. This suggests that our understanding of how these keystone organisms digest and process lignocellulose is incomplete, and further research into non-enzymatic and/or other unknown mechanisms for lignin modification is required.
Collapse
Affiliation(s)
- Stefanos Stravoravdis
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - J Reuben Shipway
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Barry Goodell
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
9
|
Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. THE ISME JOURNAL 2021; 15:879-893. [PMID: 33139871 PMCID: PMC8027834 DOI: 10.1038/s41396-020-00820-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/30/2023]
Abstract
Thermal swamps are unique ecosystems where geothermally warmed waters mix with decomposing woody biomass, hosting novel biogeochemical-cycling and lignin-degrading microbial consortia. Assembly of shotgun metagenome libraries resolved 351 distinct genomes from hot-spring (30-45 °C) and mesophilic (17 °C) sediments. Annotation of 39 refined draft genomes revealed metabolism consistent with oligotrophy, including pathways for degradation of aromatic compounds, such as syringate, vanillate, p-hydroxybenzoate, and phenol. Thermotolerant Burkholderiales, including Rubrivivax ssp., were implicated in diverse biogeochemical and aromatic transformations, highlighting their broad metabolic capacity. Lignin catabolism was further investigated using metatranscriptomics of sediment incubated with milled or Kraft lignin at 45 °C. Aromatic compounds were depleted from lignin-amended sediment over 148 h. The metatranscriptomic data revealed upregulation of des/lig genes predicted to specify the catabolism of syringate, vanillate, and phenolic oligomers in the sphingomonads Altererythrobacter ssp. and Novosphingobium ssp., as well as in the Burkholderiales genus, Rubrivivax. This study demonstrates how temperature structures biogeochemical cycling populations in a unique ecosystem, and combines community-level metagenomics with targeted metatranscriptomics to identify pathways with potential for bio-refinement of lignin-derived aromatic compounds. In addition, the diverse aromatic catabolic pathways of Altererythrobacter ssp. may serve as a source of thermotolerant enzymes for lignin valorization.
Collapse
|
10
|
Xiong YI, Zhao Y, Ni K, Shi Y, Xu Q. Characterization of Ligninolytic Bacteria and Analysis of Alkali-Lignin Biodegradation Products. Pol J Microbiol 2021; 69:339-347. [PMID: 33574863 PMCID: PMC7810122 DOI: 10.33073/pjm-2020-037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/05/2022] Open
Abstract
Ligninolytic bacteria degrading lignin were isolates and identified, and their biodegradation mechanism of alkaline-lignin was investigated. Four strains with lignin degradation capability were screened and identified from the soil, straw, and silage based on their decolorizing capacity of aniline blue and colony size on alkaline-lignin medium. The degradation ratio of Bacillus aryabhattai BY5, Acinetobacter johnsonii LN2, Acinetobacter lwoffii LN4, and Micrococcus yunnanensis CL32 have been assayed using alkaline-lignin as the unique carbon source. Further, the Lip (lignin peroxidase) and Mnp (manganese peroxidase) activities of strains were investigated. Lip activity of A. lwoffii LN4 was highest after 72 h of incubation and reached 7151.7 U · l-1. Mnp activity of M. yunnanensis CL32 was highest after 48 h and reached 12533 U · l-1. The analysis of alkaline-lignin degradation products by GC-MS revealed that the strains screened could utilize aromatic esters compounds such as dibutyl phthalate (DBP), and decomposite monocyclic aromatic compounds through the DBP aerobic metabolic pathway. The results indicate that B. aryabhattai BY5, A. johnsonii LN2, A. lwoffii LN4, and M. yunnanensis CL32 have high potential to degrade alkaline-lignin, and might utilize aromatic compounds by DBP aerobic metabolic pathway in the process of lignin degradation.
Collapse
Affiliation(s)
- Y I Xiong
- College of Grassland Science, Shanxi Agricultural University, Taigu, China.,College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yaru Zhao
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yue Shi
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| | - Qingfang Xu
- College of Grassland Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
11
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
12
|
de Gonzalo G, Colpa DI, Habib MH, Fraaije MW. Bacterial enzymes involved in lignin degradation. J Biotechnol 2016; 236:110-9. [DOI: 10.1016/j.jbiotec.2016.08.011] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
|
13
|
Gibson A, Malek L, Dekker RF, Ross B. Detecting volatile compounds from Kraft lignin degradation in the headspace of microbial cultures by selected ion flow tube mass spectrometry (SIFT-MS). J Microbiol Methods 2015; 112:40-5. [DOI: 10.1016/j.mimet.2015.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|