1
|
Cheng J, Zhang C, Zhang K, Li J, Hou Y, Xin J, Sun Y, Xu C, Xu W. Cyanobacteria-Mediated Light-Driven Biotransformation: The Current Status and Perspectives. ACS OMEGA 2023; 8:42062-42071. [PMID: 38024730 PMCID: PMC10653055 DOI: 10.1021/acsomega.3c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Most chemicals are manufactured by traditional chemical processes but at the expense of toxic catalyst use, high energy consumption, and waste generation. Biotransformation is a green, sustainable, and cost-effective process. As cyanobacteria can use light as the energy source to power the synthesis of NADPH and ATP, using cyanobacteria as the chassis organisms to design and develop light-driven biotransformation platforms for chemical synthesis has been gaining attention, since it can provide a theoretical and practical basis for the sustainable and green production of chemicals. Meanwhile, metabolic engineering and genome editing techniques have tremendous prospects for further engineering and optimizing chassis cells to achieve efficient light-driven systems for synthesizing various chemicals. Here, we display the potential of cyanobacteria as a promising light-driven biotransformation platform for the efficient synthesis of green chemicals and current achievements of light-driven biotransformation processes in wild-type or genetically modified cyanobacteria. Meanwhile, future perspectives of one-pot enzymatic cascade biotransformation from biobased materials in cyanobacteria have been proposed, which could provide additional research insights for green biotransformation and accelerate the advancement of biomanufacturing industries.
Collapse
Affiliation(s)
- Jie Cheng
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chaobo Zhang
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Kaidian Zhang
- State
Key Laboratory of Marine Resource Utilization in the South China Sea,
School of Marine Biology and Aquaculture, Hainan University, Haikou, Hainan 570100, China
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiashun Li
- Xiamen
Key Laboratory of Urban Sea Ecological Conservation and Restoration,
State Key Laboratory of Marine Environmental Science, College of Ocean
and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuyong Hou
- Key
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotech-nology, Chinese
Academy of Sciences, Tianjin 300308, China
| | - Jiachao Xin
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yang Sun
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chengshuai Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wei Xu
- School
of Life Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
2
|
Comparative transcriptome analysis reveals metabolic regulation of prodigiosin in Serratia marcescens. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s43393-021-00028-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Effects of NADH Availability on 3-Phenyllactic Acid Production by Lactobacillus plantarum Expressing Formate Dehydrogenase. Curr Microbiol 2019; 76:706-712. [PMID: 30963198 DOI: 10.1007/s00284-019-01681-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
It is well known that cofactors play a key role in the production of different compounds in bioconversion processes, while the high cost of cofactors limits their usage in industrial applications. In the present study, a NADH regeneration system was successfully developed in Lactobacillus plantarum by expressing the fdh gene coding for formate dehydrogenase (FDH) from Candida boidinii. Results indicated that the FDH was expressed with the highest activity of 0.82 U/mg of protein when cells entered early stationary phase. In addition, the expression of FDH increased the intracellular level of NADH and NADH/NAD+ ratio in L. plantarum, and therefore, enhanced the NADH-dependent production of 3-phenyllactic acid (PLA) in repeated and fed-batch bioconversions. In brief, the results demonstrate that the NADH regeneration by expressing FDH is a promising strategy for producing NADH-dependent microbial metabolites in L. plantarum.
Collapse
|
4
|
Guo J, Cao Y, Liu H, Zhang R, Xian M, Liu H. Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways. Appl Microbiol Biotechnol 2019; 103:2597-2608. [PMID: 30719552 DOI: 10.1007/s00253-018-09578-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/01/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023]
Abstract
The biosynthesis of isoprene by microorganisms is a promising green route. However, the yield of isoprene is limited due to the generation of excess NAD(P)H via the mevalonate (MVA) pathway, which converts more glucose into CO2 or undesired reduced by-products. The production of 1,3-propanediol (1,3-PDO) from glycerol is a typical NAD(P)H-consuming process, which restricts 1,3-PDO yield to ~ 0.7 mol/mol. In this study, we propose a strategy of redox cofactor balance by coupling the production of isoprene with 1,3-PDO fermentation. With the introduction and optimization of the dual pathways in an engineered Escherichia coli, ~ 85.2% of the excess NADPH from isoprene pathway was recycled for 1,3-PDO production. The best strain G05 simultaneously produced 665.2 mg/L isoprene and 2532.1 mg/L 1,3-PDO under flask fermentation conditions. The yields were 0.3 mol/mol glucose and 1.0 mol/mol glycerol, respectively, showing 3.3- and 4.3-fold improvements relative to either pathway independently. Since isoprene is a volatile organic compound (VOC) whereas 1,3-PDO is separated from the fermentation broth, their coproduction process does not increase the complexity or cost for the separation from each other. Hence, the presented strategy will be especially useful for developing efficient biocatalysts for other biofuels and biochemicals, which are driven by cofactor concentrations.
Collapse
Affiliation(s)
- Jing Guo
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujin Cao
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China
| | - Hui Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China
| | - Rubing Zhang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China.
| | - Huizhou Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Rd., Qingdao, 266101, China.
| |
Collapse
|
5
|
Improved 1,3-propanediol production by Escherichia coli from glycerol due to Co-expression of glycerol dehydratase reactivation factors and succinate addition. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0293-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Jiang X, Zhu C, Lin J, Li J, Fu S, Gong H. Vector promoters used inKlebsiella pneumoniae. Biotechnol Appl Biochem 2015; 63:734-739. [DOI: 10.1002/bab.1423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 07/22/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Xiao Jiang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai People's Republic of China
| | - Chengqian Zhu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai People's Republic of China
| | - Jie Lin
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai People's Republic of China
| | - Jingkang Li
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai People's Republic of China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai People's Republic of China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai People's Republic of China
| |
Collapse
|
7
|
Yang T, Rao Z, Hu G, Zhang X, Liu M, Dai Y, Xu M, Xu Z, Yang ST. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:129. [PMID: 26312069 PMCID: PMC4549875 DOI: 10.1186/s13068-015-0320-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/18/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND Acetoin reductase (Acr) catalyzes the conversion of acetoin to 2,3-butanediol (2,3-BD) with concomitant oxidation of NADH to NAD(+). Therefore, intracellular 2,3-BD production is likely governed by the quantities of rate-limiting factor(s) Acr and/or NADH. Previously, we showed that a high level of Acr was beneficial for 2,3-BD accumulation. RESULTS Metabolic engineering strategies were proposed to redistribute carbon flux to 2,3-BD by manipulating NADH levels. The disruption of NADH oxidase (YodC, encoded by yodC) by insertion of a formate dehydrogenase gene in Bacillus subtilis was more efficient for enhancing 2,3-BD production and decreasing acetoin formation than the disruption of YodC by the insertion of a Cat expression cassette. This was because the former resulted in the recombinant strain AFY in which an extra NADH regeneration system was introduced and NADH oxidase was disrupted simultaneously. On fermentation by strain AFY, the highest 2,3-BD concentration increased by 19.9 % while the acetoin titer decreased by 71.9 %, relative to the parental strain. However, the concentration of lactate, the main byproduct, increased by 47.2 %. To further improve carbon flux and NADH to 2,3-BD, the pathway to lactate was blocked using the insertional mutation technique to disrupt the lactate dehydrogenase gene ldhA. The resultant engineered strain B. subtilis AFYL could efficiently convert glucose into 2,3-BD with little acetoin and lactate accumulation. CONCLUSIONS Through increasing the availability of NADH and decreasing the concentration of unwanted byproducts, this work demonstrates an important strategy in the metabolic engineering of 2,3-BD production by integrative recombinant hosts.
Collapse
Affiliation(s)
- Taowei Yang
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Zhiming Rao
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
- />School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Guiyuan Hu
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Xian Zhang
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Mei Liu
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Yue Dai
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Meijuan Xu
- />The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Zhenghong Xu
- />Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Shang-Tian Yang
- />Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
8
|
Improvement of 1,3-propanediol production in Klebsiella pneumoniae by moderate expression of puuC (encoding an aldehyde dehydrogenase). Biotechnol Lett 2015; 37:1783-90. [DOI: 10.1007/s10529-015-1851-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/01/2015] [Indexed: 01/11/2023]
|
9
|
Gungormusler-Yilmaz M, Shamshurin D, Grigoryan M, Taillefer M, Spicer V, Krokhin OV, Sparling R, Levin DB. Reduced catabolic protein expression in Clostridium butyricum DSM 10702 correlate with reduced 1,3-propanediol synthesis at high glycerol loading. AMB Express 2014; 4:63. [PMID: 25401066 PMCID: PMC4230902 DOI: 10.1186/s13568-014-0063-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 01/03/2023] Open
Abstract
Higher initial glycerol loadings (620 mM) have a negative effect on growth and 1,3-propanediol (1,3-PDO) synthesis in Clostridium butyricum DSM 10702 relative to lower initial glycerol concentrations (170 mM). To help understand metabolic shifts associated with elevated glycerol, protein expression levels were quantified by LC/MS/MS analyses. Thirty one (31) proteins involved in conversion of glycerol to 1,3-PDO and other by-products were analyzed by multiple reaction monitoring (MRM). The analyses revealed that high glycerol concentrations reduced cell growth. The expression levels of most proteins in glycerol catabolism pathways were down-regulated, consistent with the slower growth rates observed. However, at high initial glycerol concentrations, some of the proteins involved in the butyrate synthesis pathways such as a putative ethanol dehydrogenase (CBY_3753) and a 3-hydroxybutyryl-CoA dehydrogenase (CBY_3045) were up-regulated in both exponential and stationary growth phases. Expression levels of proteins (CBY_0500, CBY_0501 and CBY_0502) involved in the reductive pathway of glycerol to 1,3-PDO were consistent with glycerol consumption and product concentrations observed during fermentation at both glycerol concentrations, and the molar yields of 1,3-PDO were similar in both cultures. This is the first report that correlates expression levels of glycerol catabolism enzymes with synthesis of 1,3-PDO in C. butyricum. The results revealed that significant differences in the expression of a small subset of proteins were observed between exponential and stationary growth phases at both low and high glycerol concentrations.
Collapse
|
10
|
Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST. Improved production of 2,3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2,3-butanediol dehydrogenase. PLoS One 2013; 8:e76149. [PMID: 24098433 PMCID: PMC3788785 DOI: 10.1371/journal.pone.0076149] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previously, a safe strain, Bacillus amyloliquefaciens B10-127 was identified as an excellent candidate for industrial-scale microbial fermentation of 2,3-butanediol (2,3-BD). However, B. amyloliquefaciens fermentation yields large quantities of acetoin, lactate and succinate as by-products, and the 2,3-BD yield remains prohibitively low for commercial production. METHODOLOGY/PRINCIPAL FINDINGS In the 2,3-butanediol metabolic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of 3-phosphate glyceraldehyde to 1,3-bisphosphoglycerate, with concomitant reduction of NAD(+) to NADH. In the same pathway, 2,3-BD dehydrogenase (BDH) catalyzes the conversion of acetoin to 2,3-BD with concomitant oxidation of NADH to NAD(+). In this study, to improve 2,3-BD production, we first over-produced NAD(+)-dependent GAPDH and NADH-dependent BDH in B. amyloliquefaciens. Excess GAPDH reduced the fermentation time, increased the 2,3-BD yield by 12.7%, and decreased the acetoin titer by 44.3%. However, the process also enhanced lactate and succinate production. Excess BDH increased the 2,3-BD yield by 16.6% while decreasing acetoin, lactate and succinate production, but prolonged the fermentation time. When BDH and GAPDH were co-overproduced in B. amyloliquefaciens, the fermentation time was reduced. Furthermore, in the NADH-dependent pathways, the molar yield of 2,3-BD was increased by 22.7%, while those of acetoin, lactate and succinate were reduced by 80.8%, 33.3% and 39.5%, relative to the parent strain. In fed-batch fermentations, the 2,3-BD concentration was maximized at 132.9 g/l after 45 h, with a productivity of 2.95 g/l·h. CONCLUSIONS/SIGNIFICANCE Co-overexpression of bdh and gapA genes proved an effective method for enhancing 2,3-BD production and inhibiting the accumulation of unwanted by-products (acetoin, lactate and succinate). To our knowledge, we have attained the highest 2,3-BD fermentation yield thus far reported for safe microorganisms.
Collapse
Affiliation(s)
- Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
- * E-mail: (ZR); (ZX)
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu Province, China
- * E-mail: (ZR); (ZX)
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, the Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|