1
|
Yadav P, Das J, Sundharam SS, Krishnamurthi S. Analysis of Culturable Bacterial Diversity of Pangong Tso Lake via a 16S rRNA Tag Sequencing Approach. Microorganisms 2024; 12:397. [PMID: 38399801 PMCID: PMC10892101 DOI: 10.3390/microorganisms12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
The Pangong Tso lake is a high-altitude freshwater habitat wherein the resident microbes experience unique selective pressures, i.e., high radiation, low nutrient content, desiccation, and temperature extremes. Our study attempts to analyze the diversity of culturable bacteria by applying a high-throughput amplicon sequencing approach based on long read technology to determine the spectrum of bacterial diversity supported by axenic media. The phyla Pseudomonadota, Bacteriodetes, and Actinomycetota were retrieved as the predominant taxa in both water and sediment samples. The genera Hydrogenophaga and Rheinheimera, Pseudomonas, Loktanella, Marinomonas, and Flavobacterium were abundantly present in the sediment and water samples, respectively. Low nutrient conditions supported the growth of taxa within the phyla Bacteriodetes, Actinomycetota, and Cyanobacteria and were biased towards the selection of Pseudomonas, Hydrogenophaga, Bacillus, and Enterococcus spp. Our study recommends that media formulations can be finalized after analyzing culturable diversity through a high-throughput sequencing effort to retrieve maximum species diversity targeting novel/relevant taxa.
Collapse
Affiliation(s)
- Pooja Yadav
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Joyasree Das
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Shiva S. Sundharam
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
2
|
Sui X, Li M, Frey B, Dai G, Yang L, Li MH. Effect of elevation on composition and diversity of fungi in the rhizosphere of a population of Deyeuxia angustifolia on Changbai Mountain, northeastern China. Front Microbiol 2023; 14:1087475. [PMID: 37266006 PMCID: PMC10231489 DOI: 10.3389/fmicb.2023.1087475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/27/2023] [Indexed: 06/03/2023] Open
Abstract
Soil fungi are a key component of terrestrial ecosystems and play a major role in soil biogeochemical cycling. Although the diversity and composition of fungal communities are regulated by many abiotic and biotic factors, the effect of elevation on soil fungal community diversity and composition remains largely unknown. In this study, the soil fungal composition and diversity in Deyeuxia angustifolia populations along an elevational gradient (1,690 m to 2020 m a.s.l.) were assessed, using Illumina MiSeq sequencing, on the north-facing slope of the Changbai Mountain, northeastern China. Our results showed that soil physicochemical parameters changed significantly along with the elevational gradients. The Ascomycota and Basidiomycota were the most dominant phyla along with the gradient. Alpha diversity of soil fungi decreased significantly with elevation. Soil nitrate nitrogen (NO3--N) was positively correlated with fungal richness and phylogenetic diversity (PD), indicating that soil nitrate nitrogen (NO3--N) is a key soil property determining fungal community diversity. In addition to soil nitrate content, soil pH and soil moisture were the most important environmental properties determining the soil fungal diversity. Our results suggest that the elevational changes in soil physicochemical properties play a key role in shaping the community composition and diversity of soil fungi. This study will allow us to better understand the biodiversity distribution patterns of soil microorganisms in mountain ecosystems.
Collapse
Affiliation(s)
- Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Mengsha Li
- School of Forestry, Northeast Forestry University, Harbin, China
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Guanhua Dai
- Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Erdaobaihe, China
| | - Libin Yang
- School of Forestry, Northeast Forestry University, Harbin, China
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Mai-He Li
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- School of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
3
|
Rai A, Bhattacharjee A. Molecular profiling of microbial community structure and their CAZymes via metagenomics, from Tsomgo lake in the Eastern Himalayas. Arch Microbiol 2021; 203:3135-3146. [PMID: 33813595 DOI: 10.1007/s00203-021-02278-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
The present study is the first of its kind which is focused on Tsomgo lake, a high-altitude lake, located in the Eastern Himalayas of Sikkim. To get a major insight into the bacterial diversity, the shotgun sequencing was carried out in Illumina platform. Our results showed that both the samples TLSS1 (soil) and TLSW1 (water), had Proteobacteria as the most abundant taxa. Cluster of Orthologous group (COG) functional category of TLSS1 has 1,46,965 predicted functions. Cluster of Orthologous Group (COG) functional category of TLSW1 has 1,34,773 predicted functions. Kyoto Encyclopedia of Gene and Genomes (KEGG) functional category of TLSS1 has 1,76,825 predicted functions, most of the sequence fall in metabolism followed by Environmental information processing function. (KEGG) functional category of TLSW1 has 1,62,696 predicted functions and it follows the same pattern as TLSS1. Our studies also provide insight into the presence of distribution of different carbohydrate-active enzymes (CAZymes) present in Tsomgo lake. We have found that in case of both the samples TLSW1 and TLSS1, GlycosylTransferases were active followed by GlycosylHydrolase. The result found, represents for the first time very important findings related to the microbial diversity and the abundance of CAZymes in Tsomgo lake one of the pristine high-altitude lakes in Sikkim.
Collapse
Affiliation(s)
- Aditi Rai
- Department of Microbiology, University of North Bengal, Darjeeling, 734013, West Bengal, India
| | - Arindam Bhattacharjee
- Department of Microbiology, University of North Bengal, Darjeeling, 734013, West Bengal, India.
| |
Collapse
|
4
|
Sułowicz S, Bondarczuk K, Ignatiuk D, Jania JA, Piotrowska-Seget Z. Microbial communities from subglacial water of naled ice bodies in the forefield of Werenskioldbreen, Svalbard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138025. [PMID: 32213417 DOI: 10.1016/j.scitotenv.2020.138025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
We assessed the structure of microbial communities in the subglacial drainage system of the Werenskioldbreen glacier, Svalbard, which consists of three independent channels. Dome-shaped naled ice bodies that had been forming and releasing subglacial water in the glacial forefield during accumulations season were used to study glacial microbiome. We tested the hypothesis that the properties of the water transported by these channels are site-dependent and influence bacterial diversity. We therefore established the phylogenetic structure of the subglacial microbial communities using next generation sequencing (NGS) of the 16S rRNA gene and performed bioinformatics analyses. A total of 1409 OTUs (operational taxonomic units) belonged to 40 phyla; mostly Proteobacteria, Gracilibacteria, Bacteroidetes, Actinobacteria and Parcubacteria were identified. Sites located on the edge of Werenskioldbreen forefield (Angell, Kvisla) were mainly dominated by Betaproteobacteria. In the central site (Dusan) domination of Epsilonproteobacteria class was observed. Gracilibacteria (GN02) and Gammaproteobacteria represented the dominant taxa only in the sample Kvisla 2. Principal Coordinate Analysis (PCoA) of beta diversity revealed that phylogenetic profiles grouped in three different clusters according to the sampling site. Moreover, higher similarity of bacterial communities from Angell and Kvisla compared to Dusan was confirmed by cluster analysis and Venn diagrams. The highest alpha index values was measured in Dusan. Richness and phylogenetic diversity indices were significantly (p < .05) and positively correlated with pH values of subglacial water and negatively with concentration of Cl-, Br-, and NO3- anions. These anions negatively impacted the values of richness indices but positively correlated with abundance of some microbial phyla. Our results indicated that subglacial water from naled ice bodies offer the possibility to study the glacial microbiome. In the studied subglacial water, the microbial community structure was sampling site specific and dependent on the water properties, which in turn were probably influenced by the local bedrock composition.
Collapse
Affiliation(s)
- Sławomir Sułowicz
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Kinga Bondarczuk
- Medical University of Bialystok, Centre for Bioinformatics and Data Analysis, Waszyngtona 13a, 15-269 Bialystok, Poland
| | - Dariusz Ignatiuk
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Bedzinska 60, 41-205 Sosnowiec, Poland; Svalbard Integrated Arctic Earth Observing System (SIOS), SIOS Knowledge Centre, Svalbard Science Centre, P.O. Box 156, N-9171 Longyearbyen, Svalbard, Norway
| | - Jacek A Jania
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Bedzinska 60, 41-205 Sosnowiec, Poland
| | - Zofia Piotrowska-Seget
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
5
|
Banerjee A, Chakraborty P, Bandopadhyay R. Urgent conservation needs in the Sikkim Himalaya biodiversity hotspot. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/14888386.2019.1656547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Aparna Banerjee
- UGC-Center of Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal, India
- Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca, Chile
| | - Priyanka Chakraborty
- UGC-Center of Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal, India
| | - Rajib Bandopadhyay
- UGC-Center of Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
6
|
Kumar S, Suyal DC, Yadav A, Shouche Y, Goel R. Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS One 2019; 14:e0213844. [PMID: 30875404 PMCID: PMC6419999 DOI: 10.1371/journal.pone.0213844] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/02/2019] [Indexed: 11/30/2022] Open
Abstract
Altitude is the major factor affecting both biodiversity and soil physiochemical properties of soil ecosystems. In order to understand the effect of altitude on soil physiochemical properties and bacterial diversity across the Himalayan cold desert, high altitude Gangotri soil ecosystem was studied and compared with the moderate altitude Kandakhal soil. Soil physiochemical analysis showed that altitude was positively correlated with soil pH, organic matter and total nitrogen content. However soil mineral nutrients and soil phosphorus were negatively correlated to the altitude. RT-PCR based analysis revealed the decreased bacterial and diazotrophic abundance at high altitude. Metagenomic study showed that Proteobacteria, Acidobacteria and Actinobacteria were dominant bacteria phyla at high altitude soil while Bacteroidetes and Fermicutes were found dominant at low altitude. High ratio of Gram-negative to Gram positive bacteria at Gangotri suggests the selective proliferation of Gram negative bacteria at high altitude with decrease in Gram positive bacteria. Moreover, Alphaproteobacteria was found more abundant at high altitude while the opposite was true for Betaproteobacteria. Abundance of Cytophaga, Flavobacterium and Bacteroides (CFB) were also found comparatively high at high altitude. Presence of many taxonomically unclassified sequences in Gangotri soil indicates the presence of novel bacterial diversity at high altitude. Further, isolation of bacteria through indigenously designed diffusion chamber revealed the existence of bacteria which has been documented in unculturable study of WIH (Western Indian Himalaya) but never been cultivated from WIH. Nevertheless, diverse functional free-living psychrotrophic diazotrophs were isolated only from the high altitude Gangotri soil. Molecular characterization revealed them as Arthrobacter humicola, Brevibacillus invocatus, Pseudomonas mandelii and Pseudomonas helmanticensis. Thus, this study documented the bacterial and psychrophilic diazotrophic diversity at high altitude and is an effort for exploration of low temperature bacteria in agricultural productivity with the target for sustainable hill agriculture.
Collapse
Affiliation(s)
- Saurabh Kumar
- Department of Microbiology, College of Basic Sciences and Humanities; Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Deep Chandra Suyal
- Department of Microbiology, College of Basic Sciences and Humanities; Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Amit Yadav
- National Centre for Microbial Resource, National Centre for Cell Science, Sutarwadi, Pashan, Pune, Maharashtra, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Sutarwadi, Pashan, Pune, Maharashtra, India
| | - Reeta Goel
- Department of Microbiology, College of Basic Sciences and Humanities; Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
7
|
Kosek K, Kozioł K, Luczkiewicz A, Jankowska K, Chmiel S, Polkowska Ż. Environmental characteristics of a tundra river system in Svalbard. Part 2: Chemical stress factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1585-1596. [PMID: 30446169 DOI: 10.1016/j.scitotenv.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Bacterial communities in the Arctic environment are subject to multiple stress factors, including contaminants, although typically their concentrations are small. The Arctic contamination research has focused on persistent organic pollutants (POPs) because they are bioaccumulative, resistant to degradation and toxic for all organisms. Pollutants have entered the Arctic predominantly by atmospheric and oceanic long-range transport, and this was facilitated by their volatile or semi-volatile properties, while their chemical stability extended their lifetimes following emission. Chemicals present in the Arctic at detectable and quantifiable concentrations testify to their global impact. Chemical contamination may induce serious disorders in the integrity of polar ecosystems influencing the growth of bacterial communities. In this study, the abundance and the types of bacteria in the Arctic freshwater were examined and the microbial characteristics were compared to the amount of potentially harmful chemical compounds in particular elements of the Arctic catchment. The highest concentrations of all determined PAHs were observed in two samples in the vicinity of the estuary both in June and September 2016 and were 1964 ng L-1 (R12) and 3901 ng L-1 (R13) in June, and 2179 ng L-1 (R12) and 1349 ng L-1 (R13) in September. Remarkable concentrations of the sum of phenols and formaldehyde were detected also at the outflow of the Revelva river into the sea (R12) and were 0.24 mg L-1 in June and 0.35 mg L-1 in September 2016. The elevated concentrations of chemical compounds near the estuary suggest a potential impact of the water from the lower tributaries (including the glacier-fed stream measured at R13) or the sea currents and the sea aerosol as pollutant sources. The POPs' degradation at low temperature is not well understood but bacteria capable to degrading such compounds were noted in each sampling point.
Collapse
Affiliation(s)
- Klaudia Kosek
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Krystyna Kozioł
- Institute of Geography, Faculty of Geography and Biology, Pedagogical University in Cracow, Podchorążych 2, Cracow 30-084, Poland; Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza St., Warsaw 01-452, Poland
| | - Aneta Luczkiewicz
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Katarzyna Jankowska
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Stanisław Chmiel
- Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, 2 C-D Kraśnicka Ave., Lublin 20-718, Poland
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
8
|
Rathour R, Gupta J, Tyagi B, Kumari T, Thakur IS. Biodegradation of pyrene in soil microcosm by Shewanella sp. ISTPL2, a psychrophilic, alkalophilic and halophilic bacterium. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Thakur V, Kumar V, Kumar S, Singh D. Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya. Can J Microbiol 2018; 64:798-808. [DOI: 10.1139/cjm-2017-0754] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Pangi–Chamba Himalaya (PCH) region is very pristine, unique, and virgin niche for bioresource exploration. In the current study, for the first time, the bacterial diversity of this region was investigated for potential cellulose degraders. A total of 454 pure bacterial isolates were obtained from diverse sites in the PCH region, and 111 isolates were further selected for 16S rDNA characterization based on ARDRA grouping. The identified bacteria belonged to 28 genera representing four phyla: Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Pseudomonas was most abundant genus, followed by Bacillus, Geobacillus, Arthrobacter, Paenibacillus, and Flavobacterium. In addition, six putative novel bacteria (based on 16S rDNA sequence similarity) and thermophiles from non-thermogenic sites were also reported for the first time. Screening for cellulose degradation ability on carboxymethyl cellulose plates revealed that 70.92% of bacteria were cellulolytic. The current study reports diverse bacterial genera (Arthrobacter, Paenibacillus, Chryseobacterium, Pedobacter, Streptomyces, Agromyces, Flavobacterium, and Pseudomonas) with high capacity for cellulose hydrolysis and cellulolytic functionality at wide pH and temperature not previously reported in the literature. Diverse bacterial genera with high cellulolytic activity in broad pH and temperature range provide opportunity to develop a bioprocess for efficient pretreatment of lignocellulosic biomass, which is currently being investigated.
Collapse
Affiliation(s)
- Vikas Thakur
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR – Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vijay Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
| | - Dharam Singh
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
| |
Collapse
|
10
|
Psychrotrophic Microbiomes: Molecular Diversity and Beneficial Role in Plant Growth Promotion and Soil Health. MICROORGANISMS FOR SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7146-1_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Zhao Y, Song C, Dong H, Luo Y, Wei Y, Gao J, Wu Q, Huang Y, An L, Sheng H. Community structure and distribution of culturable bacteria in soil along an altitudinal gradient of Tianshan Mountains, China. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1396195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yanting Zhao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Chunli Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Hongqiang Dong
- Xinjiang Production & Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Plant Sciences, Tarim University, Alare Xinjiang, PR China
| | - Yang Luo
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Yali Wei
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Jiangli Gao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Qianqian Wu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Yaolong Huang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Lizhe An
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Hongmei Sheng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
12
|
Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK. Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 2017; 7:118. [PMID: 28567630 PMCID: PMC5451362 DOI: 10.1007/s13205-017-0762-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/01/2017] [Indexed: 12/23/2022] Open
Abstract
Microbial communities in hot springs at high elevations have been extensively studied worldwide. In this sense, the Indian Himalaya regions is valuable ecosystems for providing both the extreme 'cold' and 'hot' sites for exploring microbial diversity. In the present study, a total of 140 thermophilic bacteria were isolated from 12 samples collected from Manikaran and Yumthang hot springs of Indian Himalayas. The bacterial isolates were studied for phylogenetic profiling, growth properties at varying conditions and potential sources of extracellular thermostable hydrolytic enzymes such as protease, amylase, xylanase and cellulase. Based on production of extracellular hydrolases, 51 isolates from Manikaran (28) and Yumthang thermal springs (23) were selected and identified using 16S rRNA gene sequencing which included 37 distinct species of 14 different genera namely Anoxybacillus, Bacillus, Brevibacillus, Brevundimonas, Burkholderia, Geobacillus, Paenibacillus, Planococcus, Pseudomonas, Rhodanobacter, Thermoactinomyces, Thermobacillus, Thermonema and Thiobacillus. Out of 51 hydrolase producing bacteria, 24 isolates showed stability at wide range of temperature and pH treatments. In present investigation, three thermotolerant bacteria namely, Thermobacillus sp NBM6, Paenibacillus ehimensis NBM24 and Paenibacillus popilliae NBM68 were found to produced cellulase-free xylanase. These potential extracellular thermostable hydrolytic enzymes producing thermophilic bacteria have a great commercial prospect in various industrial, medical and agriculture applications.
Collapse
Affiliation(s)
- Harmesh Sahay
- Department of Biological Science, Rani Durgavati University, Jabalpur, India
- Department of Research and Development, R-Biopharm Neugen Group, Hyderabad, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Atul Kumar Singh
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Surendra Singh
- Department of Biological Science, Rani Durgavati University, Jabalpur, India
| | - Rajeev Kaushik
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- National Bureau of Agriculturally Important Microorganisms, Kushmaur, Mau Nath Bhanjan, Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
13
|
Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota. World J Microbiol Biotechnol 2016; 32:24. [PMID: 26745984 PMCID: PMC4706583 DOI: 10.1007/s11274-015-1979-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/16/2015] [Indexed: 12/16/2022]
Abstract
Amylase is one of the earliest characterized enzymes and has many applications in clinical and industrial settings. In biotechnological industries, the amylase activity is enhanced through modifying amylase structure and through cloning and expressing targeted amylases in different species. It is important to understand how engineered amylases can survive from generation to generation. This study used phylogenetic and statistical approaches to explore general patterns of amylases evolution, including 3118 α-amylases and 280 β-amylases from archaea, eukaryota and bacteria with fully documented taxonomic lineage. First, the phylogenetic tree was created to analyze the evolution of amylases with focus on individual amylases used in biofuel industry. Second, the average pairwise p-distance was computed for each kingdom, phylum, class, order, family and genus, and its diversity implies multi-time and multi-clan evolution. Finally, the variance was further partitioned into inter-clan variance and intra-clan variance for each taxonomic group, and they represent horizontal and vertical gene transfer. Theoretically, the results show a full picture on the evolution of amylases in manners of vertical and horizontal gene transfer, and multi-time and multi-clan evolution as well. Practically, this study provides the information on the surviving chance of desired amylase in a given taxonomic group, which may potentially enhance the successful rate of cloning and expression of amylase gene in different species.
Collapse
|
14
|
Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 2015; 56:294-307. [PMID: 26933936 DOI: 10.1002/jobm.201500230] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/29/2015] [Indexed: 11/08/2022]
Abstract
The diversity of culturable, cold-active enzymes producing Bacilli was investigated from three sub-glacial lakes of north western Indian Himalayas. Amplified ribosomal DNA restriction analysis (ARDRA) using three restriction enzymes Alu I, Msp I, and Hae III led to the clustering of 136 Bacilli into 26, 23, and 22 clusters at 75% similarity index from Chandratal Lake, Dashair Lake, and Pangong Lake, respectively. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 35 Bacilli that could be grouped in seven families viz.: Bacillaceae (48%), Staphylococcaceae (14%), Bacillales incertae sedis (13%), Planococcaceae (12%), Paenibacillaceae (9%), Sporolactobacillaceae (3%), and Carnobacteriaceae (1%), which included twelve different genera Bacillus, Desemzia, Exiguobacterium, Jeotgalicoccus, Lysinibacillus, Paenibacillus, Planococcus, Pontibacillus, Sinobaca, Sporosarcina, Staphylococcus, and Virgibacillus. Based on their optimal temperature for growth, 35 Bacilli were grouped as psychrophilic (11 strains), psychrotrophic (17 strains), or psychrotolerant (7 strains), respectively. The representative isolates from each cluster were screened for cold-active enzyme activities. Amylase, β-glucosidase, pectinase, and protease activities at 4 °C were detected in more than 80% of the strains while approximately 40, 31, 23, 14, 11, and 9% of strains possessed cellulase, xylanase, β-galactosidase, laccase, chitinase, and lipase activity, respectively. Among 35 Bacilli, Bacillus amyloliquefaciens, Bacillus marisflavi, Exiguobacterium indicum, Paenibacillus terrae, Pontibacillus sp., Sporosarcina globispora, and Sporosarcina psychrophila were efficient producers of different cold-active enzymes. These cold-adapted Bacilli could play an important role in industrial and agricultural processes.
Collapse
Affiliation(s)
- Ajar Nath Yadav
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India.,Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India
| | | | - Priyanka Verma
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Rajeev Kaushik
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
15
|
Puja G, Jyoti V. Culturable bacterial diversity and hydrolytic enzymes from drass, a cold desert in India. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2015.7424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 2015; 119:683-93. [PMID: 25575970 DOI: 10.1016/j.jbiosc.2014.11.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/01/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022]
Abstract
Microbial communities in different samples collected from cold deserts of north western Himalayas, India, were analyzed using 16S rRNA gene sequencing and phospholipid fatty acids (PLFA) analysis. A total of 232 bacterial isolates were characterized employing 16S rDNA-Amplified Ribosomal DNA Restriction Analysis with the three restriction endonucleases Alu I, Msp I and Hae III, which led to formation of 29-54 groups for the different sites, adding up to169 groups. 16S rRNA gene based phylogenetic analysis, revealed that 82 distinct species of 31 different genera, belonged to four phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. PLFA profiling was performed for concerned samples which gave an estimate of microbial communities without cultivating the microorganisms. PLFA analysis led to characterization of diverse group of microbes in different samples such as gram-negative, gram-positive bacteria, actinomycetes, cyanobacteria, anaerobic bacteria, sulphate reducing bacteria and fungi. The representative strains were screened for their plant growth promoting attributes, which included production of ammonia, HCN, gibberellic acid, IAA and siderophore; solubilization of phosphorus and activity of ACC deaminase. In vitro antifungal activity assay was performed against Rhizoctonia solani and Macrophomina phaseolina. Cold adapted microorganisms may serve as inoculants for crops growing under cold climatic conditions. To our knowledge, this is the first report for the presence of Arthrobacter nicotianae, Brevundimonas terrae, Paenibacillus tylopili and Pseudomonas cedrina in cold deserts and exhibit multifunctional PGP attributes at low temperatures.
Collapse
|
17
|
Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 2014; 31:95-108. [DOI: 10.1007/s11274-014-1768-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
|
18
|
Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0897-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|