1
|
Kot AM, Pobiega K, Kieliszek M, Michalak K, Błażejak S. Characteristic of new Phaffia rhodozyma yeast strains isolated from birch slime fluxes in Poland. Arch Microbiol 2024; 206:434. [PMID: 39412681 PMCID: PMC11485187 DOI: 10.1007/s00203-024-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Three new strains of Phaffia rhodozyma yeast have recently been isolated in Poland. The aim of this study was to phenotypically characterize these strains and to compare them with the properties of the reference strain. The potential for carotenoid biosynthesis in these strains was also determined, depending on temperature, carbon, and nitrogen sources in the medium. Phaffia rhodozyma yeasts were also identified by MALDI-TOF MS. There were minor differences in cell morphology among the strains. All strains reproduced asexually by budding and formed spherical chlamydospores. No ability for sexual reproduction was observed. Physiological tests showed minor variations between the reference strain and the isolates, likely due to the geographical specificity of the habitat from which they were originally isolated. Analysis of protein spectra showed that the tested yeast isolates had seven common peaks of different intensities, with masses at 2200, 2369, 3213, 3628, 3776, 3921, and 4710 m/z. Moreover, additional strain-dependent spectra were found. The amount of synthesized carotenoids varied with the carbon and nitrogen sources used, as well as the temperature. The best producer of carotenoids was the P. rhodozyma CMIFS 102 isolate.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland.
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, Lublin, 20-612, Poland
| | - Stanisław Błażejak
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, Warsaw, 02-776, Poland
| |
Collapse
|
2
|
Moliné M, Libkind D, van Broock MR. Two at once: simultaneous increased production of astaxanthin and mycosporines in a single batch culture using a Phaffia rhodozyma mutant strain. World J Microbiol Biotechnol 2024; 40:87. [PMID: 38329645 DOI: 10.1007/s11274-024-03901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Phaffia rhodozyma is a basidiomycetous yeast characterized by its production of the carotenoid pigment astaxanthin, which holds high commercial value for its significance in aquaculture, cosmetics and as nutraceutics, and the UV-B-absorbing compound mycosporine-glutaminol-glucoside (MGG), which is of great biotechnological relevance for its incorporation into natural sunscreens. However, the industrial exploitation has been limited to the production of astaxanthin in small quantities. On the other hand, the accumulation of MGG in P. rhodozyma was recently reported and could add value to the simultaneous production of both metabolites. In this work, we obtain a mutant strain that overproduces both compounds, furthermore we determined how the accumulation of each is affected by the carbon-to-nitrogen ratio and six biotic and abiotic factors. The mutant obtained produces 159% more astaxanthin (470.1 μg g-1) and 220% more MGG (57.9 mg g-1) than the parental strain (295.8 μg g-1 and 26.2 mg g-1 respectively). Furthermore, we establish that the carotenoids accumulate during the exponential growth phase while MGG accumulates during the stationary phase. The carbon-to-nitrogen ratio affects each metabolite differently, high ratios favoring carotenoid accumulation while low ratios favoring MGG accumulation. Finally, the accumulation of both metabolites is stimulated only by photosynthetically active radiation and low concentrations of hydrogen peroxide. The mutant strain obtained is the first hyper-productive mutant capable of accumulating high concentrations of MGG and astaxanthin described to date. The characterization of how both compounds accumulate during growth and the factors that stimulate their accumulation, are the first steps toward the future commercial exploitation of strains for the simultaneous production of two biotechnologically important metabolites.
Collapse
Affiliation(s)
- M Moliné
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, 8400, Argentina.
| | - D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, 8400, Argentina
| | - M R van Broock
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, 8400, Argentina
| |
Collapse
|
3
|
Sepúlveda D, Campusano S, Moliné M, Barahona S, Baeza M, Alcaíno J, Colabella F, Urzúa B, Libkind D, Cifuentes V. Unraveling the Molecular Basis of Mycosporine Biosynthesis in Fungi. Int J Mol Sci 2023; 24:ijms24065930. [PMID: 36983003 PMCID: PMC10057719 DOI: 10.3390/ijms24065930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The Phaffia rhodozyma UCD 67-385 genome harbors a 7873 bp cluster containing DDGS, OMT, and ATPG, encoding 2-desmethy-4-deoxygadusol synthase, O-methyl transferase, and ATP-grasp ligase, respectively, of the mycosporine glutaminol (MG) biosynthesis pathway. Homozygous deletion mutants of the entire cluster, single-gene mutants, and the Δddgs-/-;Δomt-/- and Δomt-/-;Δatpg-/- double-gene mutants did not produce mycosporines. However, Δatpg-/- accumulated the intermediate 4-deoxygadusol. Heterologous expression of the DDGS and OMT or DDGS, OMT, and ATPG cDNAs in Saccharomyces cerevisiae led to 4-deoxygadusol or MG production, respectively. Genetic integration of the complete cluster into the genome of the non-mycosporine-producing CBS 6938 wild-type strain resulted in a transgenic strain (CBS 6938_MYC) that produced MG and mycosporine glutaminol glucoside. These results indicate the function of DDGS, OMT, and ATPG in the mycosporine biosynthesis pathway. The transcription factor gene mutants Δmig1-/-, Δcyc8-/-, and Δopi1-/- showed upregulation, Δrox1-/- and Δskn7-/- showed downregulation, and Δtup6-/- and Δyap6-/- showed no effect on mycosporinogenesis in glucose-containing medium. Finally, comparative analysis of the cluster sequences in several P. rhodozyma strains and the four newly described species of the genus showed the phylogenetic relationship of the P. rhodozyma strains and their differentiation from the other species of the genus Phaffia.
Collapse
Affiliation(s)
- Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Sebastián Campusano
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Martín Moliné
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (Consejo Nacional de Investigaciones Científicas y Técnicas), CONICET-UNCo, Universidad Nacional del Comahue, Bariloche 8400, Rio Negro, Argentina
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | | | - Blanca Urzúa
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380492, Chile
| | - Diego Libkind
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (Consejo Nacional de Investigaciones Científicas y Técnicas), CONICET-UNCo, Universidad Nacional del Comahue, Bariloche 8400, Rio Negro, Argentina
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| |
Collapse
|
4
|
Libkind D, Moliné M, Colabella F. Isolation and Selection of New Astaxanthin-Producing Strains of Phaffia rhodozyma. Methods Mol Biol 2018; 1852:297-310. [PMID: 30109639 DOI: 10.1007/978-1-4939-8742-9_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astaxanthin is a xanthophyll pigment of high economic value for its use as a feeding component in aquaculture. Phaffia rhodozyma (Xanthophyllomyces dendrorhous) is a basidiomycetous fungi able to synthesize astaxanthin as its major carotenoid, the only known yeast species bearing the capability to produce this type of carotenoid and the only tremellomycetes with biotechnological application. Recently, the habitat and intraspecific variability of this species have been found to be wider than previously expected, encouraging the search for new wild strains with potential biotechnological applications. Here we describe effective procedures for isolation of P. rhodozyma from environmental samples, accurate identification of the strains, analysis of their astaxanthin content, and proper conservation of the isolates.
Collapse
Affiliation(s)
- Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, IPATEC, UNComahue-CONICET, Bariloche, Argentina.
| | - Martín Moliné
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, IPATEC, UNComahue-CONICET, Bariloche, Argentina
| | - Fernando Colabella
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, IPATEC, UNComahue-CONICET, Bariloche, Argentina
| |
Collapse
|
5
|
Dhinaut J, Balourdet A, Teixeira M, Chogne M, Moret Y. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Sci Rep 2017; 7:12429. [PMID: 28963510 PMCID: PMC5622072 DOI: 10.1038/s41598-017-12769-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022] Open
Abstract
Immunopathology corresponds to self-damage of the inflammatory response, resulting from oxidizing molecules produced when the immune system is activated. Immunopathology often contributes to age-related diseases and is believed to accelerate ageing. Prevention of immunopathology relies on endogenous antioxidant enzymes and the consumption of dietary antioxidants, including carotenoids such as astaxanthin. Astaxanthin currently raises considerable interest as a powerful antioxidant and for its potential in alleviating age-related diseases. Current in vitro and short-term in vivo studies provide promising results about immune-stimulating and antioxidant properties of astaxanthin. However, to what extent dietary supplementation with astaxanthin can prevent long-term adverse effects of immunopathology on longevity is unknown so far. Here, using the mealworm beetle, Tenebrio molitor, as biological model we tested the effect of lifetime dietary supplementation with astaxanthin on longevity when exposed to early life inflammation. While supplementation with astaxanthin was found to lessen immunopathology cost on larval survival and insect longevity, it was also found to reduce immunity, growth rate and the survival of non immune-challenged larvae. This study therefore reveals that astaxanthin prevents immunopathology through an immune depressive effect and can have adverse consequences on growth.
Collapse
Affiliation(s)
- Julien Dhinaut
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Aude Balourdet
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Maria Teixeira
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Manon Chogne
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France.
| |
Collapse
|
6
|
Day PA, Villalba MS, Herrero OM, Arancibia LA, Alvarez HM. Formation of indigoidine derived-pigments contributes to the adaptation of Vogesella sp. strain EB to cold aquatic iron-oxidizing environments. Antonie van Leeuwenhoek 2016; 110:415-428. [DOI: 10.1007/s10482-016-0814-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/26/2016] [Indexed: 01/18/2023]
|
7
|
PCR-based method for the rapid identification of astaxanthin-accumulating yeasts (Phaffia spp.). Rev Argent Microbiol 2016; 48:15-20. [PMID: 26922472 DOI: 10.1016/j.ram.2015.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 11/23/2022] Open
Abstract
It has been recently found that the natural distribution, habitat, and genetic diversity of astaxanthin-producing yeasts (i.e. Phaffia rhodozyma, synonym Xanthophyllomyces dendrorhous) is much greater than previously thought. P. rhodozyma is biotechnologically exploited due to its ability to produce the carotenoid pigment astaxanthin and thus, it is used as a natural source of this pigment for aquaculture. P. rhodozyma was also capable of synthesizing the potent UVB sunscreen mycosporine-glutaminol-glucoside (MGG). Therefore, further environmental studies are needed to elucidate its ecological aspects and detect new potential strains for the production of astaxanthin and MGG. However, obtaining new isolates of P. rhodozyma and related species is not always easy due to its low abundance and the presence of other sympatric and pigmented yeasts. In this work we report a successful development of a species-specific primer which has the ability to quickly and accurately detecting isolates representing all known lineages of the genus Phaffia (including novel species of the genus) and excluding closely related taxa. For this purpose, a primer of 20 nucleotides (called PhR) was designed to be used in combination with universal primers ITS3 and NL4 in a multiplex amplification. The proposed method has the sensitivity and specificity required for the precise detection of new isolates, and therefore represents an important tool for the environmental search for novel astaxanthin-producing yeasts.
Collapse
|
8
|
Contreras G, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World J Microbiol Biotechnol 2015; 31:517-26. [PMID: 25643668 PMCID: PMC4333312 DOI: 10.1007/s11274-015-1808-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
Abstract
Antarctic microorganisms have developed different strategies to live in their environments, including modifications to their membrane components to regulate fluidity and the production of photoprotective metabolites such as carotenoids. Three yeast colonies (ANCH01, ANCH06 and ANCH08) were isolated from soil samples collected at King George Island, which according to their rDNA sequence analyses, were determined to be Xanthophyllomyces dendrorhous. This yeast is of biotechnological interest, because it can synthesize astaxanthin as its main carotenoid, which is a powerful antioxidant pigment used in aquaculture. Then, the aim of this work was to characterize the ANCH isolates at their molecular and phenotypic level. The isolates did not display any differences in their rDNA and COX1 gene nucleotide sequences. However, ANCH01 produces approximately sixfold more astaxanthin than other wild type strains. Moreover, even though ANCH06 and ANCH08 produce astaxanthin, their main carotenoid was β-carotene. In contrast to other X. dendrorhous strains, the ANCH isolates did not produce mycosporines. Finally, the ANCH isolates had a higher proportion of polyunsaturated fatty acids than other wild type strains. In conclusion, the reported X. dendrorhous isolates are phenotypically different from other wild type strains, including characteristics that could make them more resistant and better able to inhabit their original habitat, which may also have biotechnological potential.
Collapse
Affiliation(s)
- Gabriela Contreras
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago Chile
| |
Collapse
|
9
|
Ye L, Xie W, Zhou P, Yu H. Biotechnological Production of Astaxanthin through Metabolic Engineering of Yeasts. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
David-Palma M, Libkind D, Sampaio JP. Global distribution, diversity hot spots and niche transitions of an astaxanthin-producing eukaryotic microbe. Mol Ecol 2014; 23:921-32. [DOI: 10.1111/mec.12642] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Márcia David-Palma
- Departamento de Ciências da Vida; Faculdade de Ciências e Tecnologia; Centro de Recursos Microbiológicos (CREM); Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología; Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA); CONICET - UNComahue; Quintral 1250 (8400), Bariloche Argentina
| | - José Paulo Sampaio
- Departamento de Ciências da Vida; Faculdade de Ciências e Tecnologia; Centro de Recursos Microbiológicos (CREM); Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| |
Collapse
|