1
|
Hajji-Hedfi L, Hlaoua W, Rhouma A, Al-Judaibi AA, Arcos SC, Robertson L, Ciordia S, Horrigue-Raouani N, Navas A, Abdel-Azeem AM. Biological and proteomic analysis of a new isolate of the nematophagous fungus lecanicillium sp. BMC Microbiol 2023; 23:108. [PMID: 37081392 PMCID: PMC10116813 DOI: 10.1186/s12866-023-02855-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND In our continuing search for biologically active natural enemies from North of Africa with special reference to Tunisian fungi, our teamwork screened fungi from different ecological habitats in Tunisia. Our previous study on the comparative effectiveness of filamentous fungi in the biocontrol of Meloidogyne javanica, a taxon (Lecanicillium) showed high potentiality against M. javanica. We undertook the present study to evaluate the ability and understand the mechanism of this fungal parasite as a biological control candidate against the root-knot nematode M. javanica. This study used in vitro bioassays with fungal filtrate cultures, scanning electron microscopy (SEM) observation, and isobaric tag for relative and absolute quantitation (iTRAQ) methodology to characterize the biological and molecular features of this fungus. RESULTS The microscopic and SEM observation revealed that Lecanicillium sp. exhibited exceptional hyperparasitism against M. javanica eggs. The hyphae of this fungi penetrated the eggs, causing destructive damage to the outer eggshell. The exposure to five concentrations of Lecanicillium sp. filtrate cultures showed high inhibition of egg hatching, which increases depending on the exposure time; the best results are recorded at 50%, 75%, and 100% dilutions after seven days of exposure. The SEM observation of nematode-parasitized eggs and juveniles suggests that the production of lytic enzymes degrades the egg cuticle and fungal hyphae penetrate unhatched M.javanica juveniles. Forty-seven unique proteins were identified from the Lecanicillium sp. isolate. These proteins have signalling and stress response functions, bioenergy, metabolism, and protein synthesis and degradation. CONCLUSION Collectively, Lecanicillium sp. had ovicidal potentiality proved by SEM and proteomic analysis against root-knot nematode' eggs. This study recommended applying this biological control candidate as a bio-agent on vegetable crops grown in situ.
Collapse
Affiliation(s)
- Lobna Hajji-Hedfi
- Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, B.P. 357, Sidi Bouzid, 9100, Tunisia.
| | - Wassila Hlaoua
- Department of Plant Protection and Biological Sciences, Higher Agronomic Institute of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Abdelhak Rhouma
- Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, B.P. 357, Sidi Bouzid, 9100, Tunisia
| | - Awatif A Al-Judaibi
- Department of Biological Sciences-Microbiology Section, Faculty of Science, Jeddah University, Jeddah, 21959, Saudi Arabia
| | - Susana Cobacho Arcos
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Lee Robertson
- Dpto Protección Vegetal. Instituto Nacional de Investigaciones Agrarias. Carretera de la Coruña, Km 7, Madrid, 28040, Spain
| | - Sergio Ciordia
- Unidad de Proteómica Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Najet Horrigue-Raouani
- Department of Plant Protection and Biological Sciences, Higher Agronomic Institute of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Alfonso Navas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
2
|
Soil Fungal Diversity of the Aguarongo Andean Forest (Ecuador). BIOLOGY 2021; 10:biology10121289. [PMID: 34943204 PMCID: PMC8698837 DOI: 10.3390/biology10121289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The Kingdom Fungi is one of the richest in species, most of which are still unknown. Many fungal species are hidden in the tropics, the area richest in biodiversity on earth. In this paper, a mycological analysis is presented on a vast number of soil samples collected in the Aguarongo forest, an important Andean Natural Reserve of Ecuador. The study was carried out by analyzing the total DNA extracted from the soil and unveiled a total of more than 400 species of fungi. The most abundant species belong to Ascomycota and Mortierellomycota; some are important beneficial fungi for the environments such as antagonistics of fungal pathogens or nematode predators, while others are well-known producers of nutraceutical and pharmaceutical compounds. Based on the results of this study, a picture of the mycodiversity of Aguarongo forest soil was obtained. This area hides a huge number of unknown fungal species that could be discovered; thus, the protection of the Aguarongo forest is mandatory. Abstract Fungi represent an essential component of ecosystems, functioning as decomposers and biotrophs, and they are one of the most diverse groups of Eukarya. In the tropics, many species are unknown. In this work, high-throughput DNA sequencing was used to discover the biodiversity of soil fungi in the Aguarongo forest reserve, one of the richest biodiversity hotspots in Ecuador. The rDNA metabarcoding analysis revealed the presence of seven phyla: Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, Glomeromycota, Chytridiomycota, and Monoblepharomycota. A total of 440 identified species were recorded. They mainly belonged to Ascomycota (263) and Basidiomycota (127). In Mortierellomycota, 12 species were recorded, among which Podila verticillata is extremely frequent and represents the dominant species in the entire mycobiota of Aguarongo. The present research provides the first account of the entire soil mycobiota in the Aguarongo forest, where many fungal species exist that have strong application potential in agriculture, bioremediation, chemical, and the food industry. The Aguarongo forest hides a huge number of unknown fungal species that could be assessed, and its protection is of the utmost importance.
Collapse
|
3
|
Siddiqui MZ, Chowdhury AR, Singh BR, Maurya S, Prasad N. Synthesis, Characterization and Antimicrobial Evaluation of Piyar Gum-Induced Silver Nanoparticles. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2020. [DOI: 10.1007/s40009-020-00982-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Acute Oral Toxicity of Vetom 21.77 Based on Duddingtonia Flagrans in Broiler Chickens. MACEDONIAN VETERINARY REVIEW 2019. [DOI: 10.2478/macvetrev-2018-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
A 14-d study was undertaken to test the acute toxicity of a new preparation Vetom 21.77 based on the predacious fungus Duddingtonia flagrans. A total of 40 healthy 5-day-old broiler chickens (Hubbard F15, 100 ± 5 g), that had previously gone through a required 5-days adaptation to the environment, were orally dosed with the drug for 5 consecutive days at different doses, after which their health status was assessed daily up to the end of the experiment. According to the results, no substantial changes in the physiological state of the chickens were detected during the experiment. Internal organs weighing revealed no statistically significant differences between the groups, though weight coefficient values of internal organs of treated chickens slightly exceeded those of the control group. Some haematological parameters were significantly higher in the treatment group, without going beyond reference ranges. All chickens used in the experiment survived the study. The preparation has not produced any toxic effect even at a higher dose (4000 µL/kg bw/day). It is concluded that Vetom 21.77 pertains to preparations of IV toxicity class.
Collapse
|
5
|
Chiboub M, Jebara SH, Saadani O, Fatnassi IC, Abdelkerim S, Jebara M. Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria. JOURNAL OF PLANT RESEARCH 2018; 131:99-110. [PMID: 28808815 DOI: 10.1007/s10265-017-0971-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Plant growth promoting bacteria (PGPB) may help to reduce the toxicity of heavy metals on plants growing in polluted soils. In this work, Sulla coronaria inoculated with four Cd resistant bacteria (two Pseudomonas spp. and two Rhizobium sullae) were cultivated in hydroponic conditions treated by Cd; long time treatment 50 µM CdCl2 for 30 days and short time treatment; 100 µM CdCl2 for 7 days. Results showed that inoculation with Cd resistant PGPB enhanced plant biomass, thus shoot and root dry weights of control plants were enhanced by 148 and 35% respectively after 7 days. Co-inoculation of plants treated with 50 and 100 µM Cd increased plant biomasses as compared to Cd-treated and uninoculated plants. Cadmium treatment induced lipid peroxidation in plant tissues measured through MDA content in short 7 days 100 µM treatment. Antioxidant enzyme studies showed that inoculation of control plants enhanced APX, SOD and CAT activities after 30 days in shoots and SOD, APX, SOD, GPOX in roots. Application of 50 µM CdCl2 stimulated all enzymes in shoots and decreased SOD and CAT activities in roots. Moreover, 100 µM of CdCl2 increased SOD, APX, CAT and GPOX activities in shoots and increased significantly CAT activity in roots. Metal accumulation depended on Cd concentration, plant organ and time of treatment. Furthermore, the inoculation enhanced Cd uptake in roots by 20% in all treatments. The cultivation of this symbiosis in Cd contaminated soil or in heavy metal hydroponically treated medium, showed that inoculation improved plant biomass and increased Cd uptake especially in roots. Therefore, the present study established that co-inoculation of S. coronaria by a specific consortium of heavy metal resistant PGPB formed a symbiotic system useful for soil phytostabilization.
Collapse
Affiliation(s)
- Manel Chiboub
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Salwa Harzalli Jebara
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia.
| | - Omar Saadani
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Imen Challougui Fatnassi
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Souhir Abdelkerim
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Moez Jebara
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| |
Collapse
|
6
|
da Silveira WF, Braga FR, de Oliveira Tavela A, dos Santos LF, Domingues RR, Aguiar AR, Ferraz CM, de Carvalho LM, de Hollanda Ayupe T, Zanuncio JC, de Araújo JV. Nematophagous fungi combinations reduce free-living stages of sheep gastrointestinal nematodes in the field. J Invertebr Pathol 2017; 150:1-5. [DOI: 10.1016/j.jip.2017.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/23/2022]
|
7
|
Pandya U, Prakash S, Shende K, Dhuldhaj U, Saraf M. Multifarious allelochemicals exhibiting antifungal activity from Bacillus subtilis MBCU5. 3 Biotech 2017; 7:175. [PMID: 28664362 DOI: 10.1007/s13205-017-0827-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/31/2017] [Indexed: 11/28/2022] Open
Abstract
A potential antagonist, designated strain Bacillus subtilis MBCU5 was previously isolated from vermicompost-amended soils of Gandhinagar, Gujarat, India. Crude allelochemicals from strain MBCU5 displayed strong antifungal activity against Macrophomina phaseolina as well as Rhizoctonia solani. These crude allelochemicals were tentatively identified as iturin, fengycin and surfactin through TLC and HPTLC analysis. Lipopeptides produced by MBCU5 were identified by MALDI-TOF-MS and LC-ESI-MS/MS analysis showed that iturin homologues (m/z 1020-1120), surfactin (m/z 1008.7 and m/z 1022.7), fengycin A and fengycin B (m/z 1400-1550) types of allelochemicals which are responsible for antifungal activity against pathogens. PCR analysis showed presence of genes (i.e. Iturin A synthetase KJ531680 and Surfactin synthetase KJ601726) involved in the biosynthesis of allelochemicals. Many reports showed lipopeptides from Bacillus species; this is the first report executed of multifarious allelochemicals from vermicompost-amended soil due to the presence of predominant Bacillus species.
Collapse
Affiliation(s)
- Urja Pandya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380 009, India
| | - Sunita Prakash
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Kishor Shende
- Department of Biotechnology and Bioinformatics Center, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Umesh Dhuldhaj
- Department of Biotechnology, School of Life Science, North Maharashtra University, Jalgaon, 425001, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380 009, India.
| |
Collapse
|
8
|
Gao JX, Yu CJ, Wang M, Sun JN, Li YQ, Chen J. Involvement of a velvet protein ClVelB in the regulation of vegetative differentiation, oxidative stress response, secondary metabolism, and virulence in Curvularia lunata. Sci Rep 2017; 7:46054. [PMID: 28393907 PMCID: PMC5385503 DOI: 10.1038/srep46054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/10/2017] [Indexed: 12/04/2022] Open
Abstract
The ortholog of Aspergillus nidulans VelB, which is known as ClVelB, was studied to gain a broader insight into the functions of a velvet protein in Curvularia lunata. With the expected common and specific functions of ClVelB, the deletion of clvelB results in similar though not identical phenotypes. The pathogenicity assays revealed that ΔClVelB was impaired in colonizing the host tissue, which corresponds to the finding that ClVelB controls the production of conidia and the methyl 5-(hydroxymethyl) furan-2-carboxylate toxin in C. lunata. However, the deletion of clvelB led to the increase in aerial hyphae and melanin formation. In addition, ΔClVelB showed a decreased sensitivity to iprodione and fludioxonil fungicides and a decreased resistance to cell wall-damaging agents and osmotic stress and tolerance to H2O2. The ultrastructural analysis indicated that the cell wall of ΔClVelB became thinner, which agrees with the finding that the accumulated level of glycerol in ΔClVelB is lower than the wild-type. Furthermore, the interaction of ClVelB with ClVeA and ClVosA was identified in the present research through the yeast two-hybrid and bimolecular fluorescence complementation assays. Results indicate that ClVelB plays a vital role in the regulation of various cellular processes in C. lunata.
Collapse
Affiliation(s)
- Jin-Xin Gao
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chuan-Jin Yu
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Meng Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jia-Nan Sun
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ya-Qian Li
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.,Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Chaabane Chaouch F, Bouras N, Mokrane S, Bouznada K, Zitouni A, Pötter G, Spröer C, Klenk HP, Sabaou N. Planomonospora algeriensis sp. nov., an actinobacterium isolated from a Saharan soil of Algeria. Antonie van Leeuwenhoek 2016; 110:245-252. [PMID: 27803992 DOI: 10.1007/s10482-016-0795-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/22/2016] [Indexed: 11/26/2022]
Abstract
A filamentous actinobacterium, designated strain PM3T, was isolated from a Saharan soil sample collected from Béni-Abbès, Béchar (South-West Algeria). A polyphasic taxonomic study was carried out to establish the status of strain PM3T. The isolate was found to have morphological and chemotaxonomical properties associated with members of the genus Planomonospora. The new isolated microorganism developed cylindrical sporangia arranged in double parallel rows on aerial mycelium, each one containing a motile single sporangiospore. The cell wall of the strain was found to contain meso-diaminopimelic acid. Whole-cell hydrolysates were found to contain madurose, glucose, mannose and ribose. The predominant menaquinone was identified as MK-9(H2) (69.6%). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, phosphatidylhydroxyethanolamine and glucosamine-containing lipids. The major fatty acids were found to be C17:1ω9c (38.6%) and C17:0 (24.2%). Results of 16S rRNA gene sequence comparison revealed that strain PM3T shared a high degree of 16S rRNA gene sequence similarity with Planomonospora sphaerica DSM 44632T (99.3%), Planomonospora parontospora subsp. parontospora DSM 43177T (99.2%) and P. parontospora subsp. antibiotica DSM 43869T (99.0%). DNA-DNA hybridization values between strain PM3T and the type strains of the closely related species were between 58.4 and 70.1%. The combination of phylogenetic analysis, DNA-DNA relatedness data, phenotypic characteristics and chemotaxonomic data support the conclusion that strain PM3T represents a novel species of the genus Planomonospora, for which the name Planomonospora algeriensis sp. nov. is proposed. The type strain is PM3T (=DSM 46752T = CECT 9047T).
Collapse
Affiliation(s)
- Fawzia Chaabane Chaouch
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| | - Noureddine Bouras
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, BP 455, 47000, Ghardaïa, Algeria
| | - Salim Mokrane
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| | - Khaoula Bouznada
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| | - Abdelghani Zitouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria
| | - Gabriele Pötter
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK.
| | - Nasserdine Sabaou
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria.
| |
Collapse
|
10
|
Pan F, Li Y, Chapman SJ, Yao H. Effect of rice straw application on microbial community and activity in paddy soil under different water status. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5941-5948. [PMID: 26596827 DOI: 10.1007/s11356-015-5832-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Rice straw application and flooding are common practices in rice production, both of which can induce changes in the microbial community. This study used soil microcosms to investigate the impact of water status (saturated and nonsaturated) and straw application (10 g kg(-1) soil) on soil microbial composition (phospholipid fatty acid analysis) and activity (MicroResp(™) method). Straw application significantly increased total PLFA amount and individual PLFA components independent of soil moisture level. The amount of soil fungal PLFA was less than Gram-negative, Gram-positive, and actinomycete PLFA, except the drained treatment with rice straw application, which had higher fungal PLFA than actinomycete PLFA at the initial incubation stage. Straw amendment and waterlogging had different effects on microbial community structure and substrate-induced pattern. PLFA profiles were primarily influenced by straw application, whereas soil water status had the greater influence on microbial respiration. Of the variation in PLFA and respiration data, straw accounted for 30.1 and 16.7 %, while soil water status explained 7.5 and 29.1 %, respectively. Our results suggest that (1) the size of microbial communities in paddy soil is more limited by carbon substrate availability rather than by the anaerobic conditions due to waterlogging and (2) that soil water status is more important as a control of fungal growth and microbial community activity.
Collapse
Affiliation(s)
- Fuxia Pan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | | | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
11
|
Balakumaran PA, Förster J, Zimmermann M, Charumathi J, Schmitz A, Czarnotta E, Lehnen M, Sudarsan S, Ebert BE, Blank LM, Meenakshisundaram S. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris. BMC Biotechnol 2016; 16:20. [PMID: 26897180 PMCID: PMC4761204 DOI: 10.1186/s12896-016-0251-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/11/2016] [Indexed: 01/28/2023] Open
Abstract
Background Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. Results At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h−1 to 0.16 h−1 were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by 13C-metabolic flux analysis. Conclusion Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge, which revealed the fact that intracellular copper accumulation influenced laccase production and should be considered for high protein expression of copper-dependent enzymes when using P. pastoris. The results are discussed in the context of P. pastoris as a general host for copper -dependent enzyme production. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0251-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jan Förster
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Martin Zimmermann
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jayachandran Charumathi
- Centre for Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai, 600025, India.
| | - Andreas Schmitz
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Eik Czarnotta
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Mathias Lehnen
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Suresh Sudarsan
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Birgitta E Ebert
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | | |
Collapse
|
12
|
Maity D, Pattanayak S, Mollick MMR, Rana D, Mondal D, Bhowmick B, Dash SK, Chattopadhyay S, Das B, Roy S, Chakraborty M, Chattopadhyay D. Green one step morphosynthesis of silver nanoparticles and their antibacterial and anticancerous activities. NEW J CHEM 2016. [DOI: 10.1039/c5nj03409d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive sodium cholate stabilized silver nanoparticles and their biomedical applications.
Collapse
Affiliation(s)
- Dipanwita Maity
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | | | | | - Dipak Rana
- Department of Chemical and Biological Engineering
- Industrial Membrane Research Institute
- University of Ottawa
- Ottawa
- Canada
| | - Dibyendu Mondal
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Biplab Bhowmick
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Sandeep Kumar Dash
- Immunology and Microbiology Laboratory
- Department of Human Physiology and Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Sourav Chattopadhyay
- Immunology and Microbiology Laboratory
- Department of Human Physiology and Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Balaram Das
- Immunology and Microbiology Laboratory
- Department of Human Physiology and Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Somenath Roy
- Immunology and Microbiology Laboratory
- Department of Human Physiology and Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Mukut Chakraborty
- Department of Chemistry
- West Bengal State University
- Kolkata-700126
- India
| | | |
Collapse
|
13
|
Faria-Oliveira F, Carvalho J, Ferreira C, Hernáez ML, Gil C, Lucas C. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye. BMC Microbiol 2015; 15:271. [PMID: 26608260 PMCID: PMC4660637 DOI: 10.1186/s12866-015-0550-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/12/2015] [Indexed: 11/16/2022] Open
Abstract
Background Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation. Methods S. cerevisiae W303-1A wt strain and gup1∆ mutant were used as previously described to generate biofilm-like mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis. Results The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133. Conclusions yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1∆ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.
Collapse
Affiliation(s)
- Fábio Faria-Oliveira
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Carvalho
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Célia Ferreira
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Maria Luisa Hernáez
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid (UCM-PCM), Madrid, Spain
| | - Concha Gil
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid (UCM-PCM), Madrid, Spain.,Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Cândida Lucas
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
14
|
Masand M, Jose PA, Menghani E, Jebakumar SRD. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites. World J Microbiol Biotechnol 2015; 31:1863-75. [PMID: 26410426 DOI: 10.1007/s11274-015-1950-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.
Collapse
Affiliation(s)
- Meeta Masand
- School of Life sciences, Suresh Gyan Vihar University, Jaipur, India
| | - Polpass Arul Jose
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India. .,Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India.
| | - Ekta Menghani
- Department of Biotechnology, School of Science, JECRC University, Jaipur, India
| | | |
Collapse
|
15
|
Liu W, Han Y, Wang BB, Sun LJ, Chen MY, Cai KZ, Li X, Zhao MW, Xu CL, Xu Q, Yi LX, Wang H, Xie DQ, Li XS, Wu JY, Yang J, Wei S, Li D, Chen CR, Zheng TH, Li Q, Peng JW. Isolation, identification, and characterization of the nematophagous fungusMonacrosporium salinumfrom China. J Basic Microbiol 2015; 55:992-1001. [DOI: 10.1002/jobm.201400909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/05/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Liu
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Yuan Han
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Bo-bo Wang
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Long-jie Sun
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Ming-yue Chen
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Kui-zheng Cai
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Xuan Li
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Ming-wang Zhao
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Chun-lan Xu
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Qiang Xu
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Lin-xin Yi
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Hui Wang
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - De-qiong Xie
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Xiao-shan Li
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Jia-yan Wu
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Jing Yang
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Shuan Wei
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Dan Li
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Chun-rong Chen
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Tian-hui Zheng
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Qing Li
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| | - Jian-wei Peng
- College of Life Science and Engineering; Northwest University for Nationalities; Lanzhou China
| |
Collapse
|
16
|
Peralta A, Robles C, Martínez A, Alvarez L, Valera A, Calamante G, König GA. Identification and molecular characterization of Orf virus in Argentina. Virus Genes 2015; 50:381-8. [DOI: 10.1007/s11262-015-1189-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
|
17
|
Montenegro D, Kalpana K, Chrissian C, Sharma A, Takaoka A, Iacovidou M, Soll CE, Aminova O, Heguy A, Cohen L, Shen S, Kawamura A. Uncovering potential 'herbal probiotics' in Juzen-taiho-to through the study of associated bacterial populations. Bioorg Med Chem Lett 2015; 25:466-9. [PMID: 25547935 PMCID: PMC4297534 DOI: 10.1016/j.bmcl.2014.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022]
Abstract
Juzen-taiho-to (JTT) is an immune-boosting formulation of ten medicinal herbs. It is used clinically in East Asia to boost the human immune functions. The active factors in JTT have not been clarified. But, existing evidence suggests that lipopolysaccharide (LPS)-like factors contribute to the activity. To examine this possibility, JTT was subjected to a series of analyses, including high resolution mass spectrometry, which suggested the presence of structural variants of LPS. This finding opened a possibility that JTT contains immune-boosting bacteria. As the first step to characterize the bacteria in JTT, 16S ribosomal RNA sequencing was carried out for Angelica sinensis (dried root), one of the most potent immunostimulatory herbs in JTT. The sequencing revealed a total of 519 bacteria genera in A. sinensis. The most abundant genus was Rahnella, which is widely distributed in water and plants. The abundance of Rahnella appeared to correlate with the immunostimulatory activity of A. sinensis. In conclusion, the current study provided new pieces of evidence supporting the emerging theory of bacterial contribution in immune-boosting herbs.
Collapse
Affiliation(s)
- Diego Montenegro
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Kriti Kalpana
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Christine Chrissian
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Ashutosh Sharma
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Anna Takaoka
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Maria Iacovidou
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Clifford E Soll
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Olga Aminova
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Adriana Heguy
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Lisa Cohen
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Steven Shen
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, Center for Health Informatics and Bioinformatics, NYU School of Medicine, 227 East 30th Street, New York, NY 10016, USA
| | - Akira Kawamura
- Department of Chemistry, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
18
|
Jebara SH, Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Jebara M. Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2537-45. [PMID: 25185494 DOI: 10.1007/s11356-014-3510-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/24/2014] [Indexed: 05/08/2023]
Abstract
Phytoremediation comprises a set of plant and microbe-based technologies for remediation of soil heavy metal contamination. In this work, four Pb-resistant bacteria (Agrobacterium tumefaciens, Rahnella aquatilis, and two Pseudomonas sp.) were selected among a collection of isolates from root nodule of Lens culinaris. They had a high degree of bioaccumulation ability in nutrient medium containing 2 mM Pb, and the maximum Pb accumulation of whole cell was found after 48-h incubation. These Pb-resistant bacteria synthesized plant growth promoting substances such as indole acetic acid and siderophore. The presence of the Pb resistance genes (pbrA) in these bacteria has been confirmed by PCR. L. culinaris cultivated in two experimental soils with different levels of contamination showed that Pb contamination affected plant growth; therefore, it's co-inoculation with the consortium of Pb-resistant bacteria improved plant biomass. The present study demonstrated that lentil accumulated Pb primarily in their roots and poorly in their shoots; in addition, it's co-inoculation in moderately Pb-contaminated soil induced a reduction in Pb accumulation in roots and shoots by 22 and 80 %, respectively. Whereas in highly Pb-contaminated soil, we registered a diminution in concentration of Pb in shoots (66 %) and an augmentation in roots (21 %). The contamination of soil by Pb caused an oxidative stress in lentil plant, inducing modulation in antioxidant enzymes activities, essentially in superoxide dismutase (SOD) and peroxidase (GPOX) activities which were more pronounced in lentil cultivated in highly Pb-contaminated soil, in addition, co-inoculation enhanced these activities, suggesting the protective role of enzymatic antioxidant against Pb-induced plant stress.Thus, the present study demonstrated that co-inoculation of lentil with A. tumefaciens, R. aquatilis, and Pseudomonas sp. formed a symbiotic system useful for phytostabilization of highly and moderately Pb-contaminated soils.
Collapse
Affiliation(s)
- Salwa Harzalli Jebara
- Centre de Biotechnologie Borj Cedria, Laboratoire des Légumineuses, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisie,
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Natural food antimicrobials are bioactive compounds that inhibit the growth of microorganisms involved in food spoilage or food-borne illness. However, stability issues result in degradation and loss of antimicrobial activity. Nanoencapsulation allows protection of antimicrobial food agents from unfavorable environmental conditions and incompatibilities. Encapsulation of food antimicrobials control delivery increasing the concentration of the antimicrobials in specific areas and the improvement of passive cellular absorption mechanisms resulted in higher antimicrobial activity. This paper reviews the present state of the art of the nanostructures used as food antimicrobial carriers including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers.
Collapse
|