1
|
Ogata Y, Yamamura S, Nakajima N, Yamada M. Development of a floating constructed wetland for landfill leachate treatment and its potential to remove recalcitrant organic matter. WATER RESEARCH 2024; 263:122154. [PMID: 39094204 DOI: 10.1016/j.watres.2024.122154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The development of simple and economical treatment technologies for the removal of recalcitrant organic matter is required to achieve long-term and sustainable treatment of landfill leachates in tropical regions. In this study, we evaluated the fundamental properties required to develop the floating constructed wetland (FCW), which consists of a buoyant planting unit made of foamed glass and cattails. The results showed that foamed glass alone can be used as a planting substrate for cattails. Treatment of a synthetic landfill leachate by a lab-scale FCW demonstrated that the test system effectively and continuously removed recalcitrant organic matter, whereas the control system did not. This removal by FCW was shown to proceed through nearly equal contributions from adsorption and potential biological processes. Furthermore, the effect of introducing an FCW in an actual waste landfill site in Thailand was simulated using the parameters obtained from this study. The simulation indicated that the introduction of the FCW into the stabilisation pond was effective in reducing both leachate volume and recalcitrant organic matter. It is important to determine how much of the stabilisation pond should be covered with the FCW for cost-effectiveness. The FCW is expected to contribute to improving long-term, sustainable, and appropriate management of landfill leachate in tropical developing countries.
Collapse
Affiliation(s)
- Yuka Ogata
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Shigeki Yamamura
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Masato Yamada
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
2
|
Tonegawa S, Ishii K, Kaneko H, Habe H, Furuya T. Discovery of diphenyl ether-degrading Streptomyces strains by direct screening based on ether bond-cleaving activity. J Biosci Bioeng 2023; 135:474-479. [PMID: 36973095 DOI: 10.1016/j.jbiosc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Diphenyl ethers (DEs), which are widely used in the agricultural and chemical industries, have become hazardous contaminants in the environment. Although several DE-degrading bacteria have been reported, discovering new types of such microorganisms could enhance understanding of the degradation mechanism in the environment. In this study, we used a direct screening method based on detection of ether bond-cleaving activity to screen for microorganisms that degrade 4,4'-dihydroxydiphenyl ether (DHDE) as a model DE. Microorganisms isolated from soil samples were incubated with DHDE, and strains producing hydroquinone via ether bond cleavage were selected using hydroquinone-sensitive Rhodanine reagent. This screening procedure resulted in the isolation of 3 bacteria and 2 fungi that transform DHDE. Interestingly, all of the isolated bacteria belonged to one genus, Streptomyces. To our knowledge, these are the first microorganisms of the genus Streptomyces shown to degrade a DE. Streptomyces sp. TUS-ST3 exhibited high and stable DHDE-degrading activity. HPLC, LC-MS, and GC-MS analyses revealed that strain TUS-ST3 converts DHDE to its hydroxylated analogue and generates hydroquinone as an ether bond-cleavage product. Strain TUS-ST3 also transformed DEs other than DHDE. In addition, glucose-grown TUS-ST3 cells began to transform DHDE after incubation with this compound for 12 h, and produced 75 μM hydroquinone in 72 h. These activities of streptomycetes may play an important role in DE degradation in the environment. We also report the whole genome sequence of strain TUS-ST3.
Collapse
Affiliation(s)
- Satoshi Tonegawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kanako Ishii
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Kaneko
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
3
|
Oya S, Tonegawa S, Nakagawa H, Habe H, Furuya T. Isolation and characterization of microorganisms capable of cleaving the ether bond of 2-phenoxyacetophenone. Sci Rep 2022; 12:2874. [PMID: 35190591 PMCID: PMC8861056 DOI: 10.1038/s41598-022-06816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/07/2022] [Indexed: 11/08/2022] Open
Abstract
Lignin is a heterogeneous aromatic polymer and major component of plant cell walls. The β-O-4 alkyl aryl ether is the most abundant linkage within lignin. Given that lignin is effectively degraded on earth, as yet unknown ether bond-cleaving microorganisms could still exist in nature. In this study, we searched for microorganisms that transform 2-phenoxyacetophenone (2-PAP), a model compound for the β-O-4 linkage in lignin, by monitoring ether bond cleavage. We first isolated microorganisms that grew on medium including humic acid (soil-derived organic compound) as a carbon source. The isolated microorganisms were subsequently subjected to colorimetric assay for 2-PAP ether bond-cleaving activity; cells of the isolated strains were incubated with 2-PAP, and strains producing phenol via ether bond cleavage were selected using phenol-sensitive Gibbs reagent. This screening procedure enabled the isolation of various 2-PAP-transforming microorganisms, including 7 bacteria (genera: Acinetobacter, Cupriavidus, Nocardioides, or Streptomyces) and 1 fungus (genus: Penicillium). To our knowledge, these are the first microorganisms demonstrated to cleave the ether bond of 2-PAP. One Gram-negative bacterium, Acinetobacter sp. TUS-SO1, was characterized in detail. HPLC and GC-MS analyses revealed that strain TUS-SO1 oxidatively and selectively cleaves the ether bond of 2-PAP to produce phenol and benzoate. These results indicate that the transformation mechanism differs from that involved in reductive β-etherase, which has been well studied. Furthermore, strain TUS-SO1 efficiently transformed 2-PAP; glucose-grown TUS-SO1 cells converted 1 mM 2-PAP within only 12 h. These microorganisms might play important roles in the degradation of lignin-related compounds in nature.
Collapse
Affiliation(s)
- Saki Oya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Satoshi Tonegawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hirari Nakagawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
4
|
Microbial Diversity and Function in Shallow Subsurface Sediment and Oceanic Lithosphere of the Atlantis Massif. mBio 2021; 12:e0049021. [PMID: 34340550 PMCID: PMC8406227 DOI: 10.1128/mbio.00490-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The marine lithospheric subsurface is one of the largest biospheres on Earth; however, little is known about the identity and ecological function of microorganisms found in low abundance in this habitat, though these organisms impact global-scale biogeochemical cycling. Here, we describe the diversity and metabolic potential of sediment and endolithic (within rock) microbial communities found in ultrasmall amounts (101 to 104 cells cm−3) in the subsurface of the Atlantis Massif, an oceanic core complex on the Mid-Atlantic Ridge that was sampled on International Ocean Discovery Program (IODP) Expedition 357. This study used fluorescence-activated cell sorting (FACS) to enable the first amplicon, metagenomic, and single-cell genomic study of the shallow (<20 m below seafloor) subsurface of an actively serpentinizing marine system. The shallow subsurface biosphere of the Atlantis Massif was found to be distinct from communities observed in the nearby Lost City alkaline hydrothermal fluids and chimneys, yet similar to other low-temperature, aerobic subsurface settings. Genes associated with autotrophy were rare, although heterotrophy and aerobic carbon monoxide and formate cycling metabolisms were identified. Overall, this study reveals that the shallow subsurface of an oceanic core complex hosts a biosphere that is not fueled by active serpentinization reactions and by-products.
Collapse
|
5
|
Park HJ, Lee YM, Do H, Lee JH, Kim E, Lee H, Kim D. Involvement of laccase-like enzymes in humic substance degradation by diverse polar soil bacteria. Folia Microbiol (Praha) 2021; 66:331-340. [PMID: 33471293 DOI: 10.1007/s12223-020-00847-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
Humic substances (HS) in soil are widely distributed in cold environments and account for a significant fraction of soil's organic carbon. Bacterial strains (n = 281) were isolated at 15 °C using medium containing humic acids (HA), a principal component of HS, from a variety of polar soil samples: 217 from the Antarctic and 64 from the Arctic. We identified 73 potential HA-degrading bacteria based on 16S rRNA sequence similarity, and these sequences were affiliated with phyla Proteobacteria (73.9%), Actinobacteria (20.5%), and Bacteroidetes (5.5%). HA-degrading strains were further classified into the genera Pseudomonas (51 strains), Rhodococcus (10 strains), or others (12 strains). Most strains degraded HA between 10 and 25 °C, but not above 30 °C, indicating cold-adapted degradation. Thirty unique laccase-like multicopper oxidase (LMCO) gene fragments were PCR-amplified from 71% of the 73 HA-degrading bacterial strains, all of which included conserved copper-binding regions (CBR) I and II, both essential for laccase activity. Bacterial LMCO sequences differed from known fungal laccases; for example, a cysteine residue between CBR I and CBR II in fungal laccases was not detected in bacterial LMCOs. This suggests a bacterial biomarker role for LMCO to predict changes in HS-degradation rates in tundra regions as global climate changes. Computer-aided molecular modeling showed these LMCOs contain a highly-conserved copper-dependent active site formed by three histidine residues between CBR I and CBR II. Phylogenetic- and modeling-based methods confirmed the wide occurrence of LMCO genes in HA-degrading polar soil bacteria and linked their putative gene functions with initial HS-degradation processes.
Collapse
Affiliation(s)
- Ha Ju Park
- Division of Life Sciences, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Hackwon Do
- Department of Polar Sciences, Korea University of Science and Technology, 21990, Incheon, Republic of Korea
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Jun Hyuck Lee
- Department of Polar Sciences, Korea University of Science and Technology, 21990, Incheon, Republic of Korea
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Eungbin Kim
- Department of Systems Biology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, 21990, Incheon, Republic of Korea
| | - Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, 21990, Incheon, Republic of Korea.
| |
Collapse
|
6
|
Li D, Xi B, Li Y, Wang X, Yang T, Yu H, Huang C, Zhu J, Li Q, Peng X, Ma Z. The effect of redox capacity of humic acids on hexachlorobenzene dechlorination during the anaerobic digestion process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6099-6106. [PMID: 30617881 DOI: 10.1007/s11356-018-4056-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Hexachlorobenzene (HCB) dechlorination affected by humic acids (HA) was evaluated in terms of HA redox capacity, HA concentrations, and microbial community, as well as the correlation between HA redox capacity values and HCB concentrations. With addition of HA in the initial stage, redox capacity values increased by 2.19 meq/L (80 mg/L of HA addition, HA80), 2.51 meq/L (120 mg/L of HA addition, HA120), and 3.64 meq/L (200 mg/L of HA addition, HA200), respectively. The addition of HA could prominently enhance the HCB degradation rate. However, the concentration and the redox capacity of HA decreased during the anaerobic digestion process. Illumina MiSeq sequencing showed that microbial community affected by HA. Bacillus, Comamonas, and Pseudomonas were the predominant genera during the HCB dechlorination treatment. Moreover, Bacillus and Pseudomonas can improve HA electron transfer capability and promote the dechlorination of HCB.
Collapse
Affiliation(s)
- Dongyang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Yingjun Li
- Beijing Vocational Agriculture, Beijing, 100012, People's Republic of China
| | - Xiaowei Wang
- Energy Saving & Environmental Protection & Occupational Safety and Health Research, China Academy of Railway Sciences, Beijing, 100081, People's Republic of China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| | - Hong Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Jianchao Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Qi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Xing Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Zhifei Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| |
Collapse
|
7
|
Kim D, Park HJ, Kim JH, Youn UJ, Yang YH, Casanova-Katny A, Vargas CM, Venegas EZ, Park H, Hong SG. Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region. J Basic Microbiol 2018; 58:513-522. [PMID: 29570816 DOI: 10.1002/jobm.201700470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 11/08/2022]
Abstract
Although the maritime Antarctic has undergone rapid warming, the effects on indigenous soil-inhabiting microorganisms are not well known. Passive warming experiments using open-top chamber (OTC) have been performed on the Fildes Peninsula in the maritime Antarctic since 2008. When the soil temperature was measured at a depth of 2-5 cm during the 2013-2015 summer seasons, the mean temperature inside OTC (OTC-In) increased by approximately 0.8 °C compared with outside OTC (OTC-Out), while soil chemical and physical characteristics did not change. Soils (2015 summer) from OTC-In and OTC-Out were subjected to analysis for change in microbial community and degradation rate of humic substances (HS, the largest pool of recalcitrant organic carbon in soil). Archaeal and bacterial communities in OTC-In were minimally affected by warming compared with those in OTC-Out, with archaeal methanogenic Thermoplasmata slightly increased in abundance. The abundance of heterotrophic fungi Ascomycota was significantly altered in OTC-In. Total bacterial and fungal biomass in OTC-In increased by 20% compared to OTC-Out, indicating that this may be due to increased microbial degradation activity for soil organic matter (SOM) including HS, which would result in the release of more low-molecular-weight growth substrates from SOM. Despite the effects of warming on the microbial community over the 8-years-experiments warming did not induce any detectable change in content or structure of polymeric HS. These results suggest that increased temperature may have significant and direct effects on soil microbial communities inhabiting maritime Antarctic and that soil microbes would subsequently provide more available carbon sources for other indigenous microbes.
Collapse
Affiliation(s)
- Dockyu Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Ha Ju Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Jung Ho Kim
- Department of Microbial Engineering, Konkuk Univerisity, Seoul, South Korea
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Yung Hun Yang
- Department of Microbial Engineering, Konkuk Univerisity, Seoul, South Korea
| | - Angélica Casanova-Katny
- School of Environmental Science, Catholic University of Temuco, Rudecindo Ortega, Temuco, Chile
| | | | - Erick Zagal Venegas
- Department of Soils and Natural Resources, Concepción University, Chillán, Chile
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Soon Gyu Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
8
|
Transcriptome analysis of Pseudomonas sp. from subarctic tundra soil: pathway description and gene discovery for humic acids degradation. Folia Microbiol (Praha) 2017; 63:315-323. [PMID: 29196950 DOI: 10.1007/s12223-017-0573-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Although humic acids (HA) are involved in many biological processes in soils and thus their ecological importance has received much attention, the degradative pathways and corresponding catalytic genes underlying the HA degradation by bacteria remain unclear. To unveil those uncertainties, we analyzed transcriptomes extracted from Pseudomonas sp. PAMC 26793 cells time-dependently induced in the presence of HA in a lab flask. Out of 6288 genes, 299 (microarray) and 585 (RNA-seq) were up-regulated by > 2.0-fold in HA-induced cells, compared with controls. A significant portion (9.7% in microarray and 24.1% in RNA-seq) of these genes are predicted to function in the transport and metabolism of small molecule compounds, which could result from microbial HA degradation. To further identify lignin (a surrogate for HA)-degradative genes, 6288 protein sequences were analyzed against carbohydrate-active enzyme database and a self-curated list of putative lignin degradative genes. Out of 19 genes predicted to function in lignin degradation, several genes encoding laccase, dye-decolorizing peroxidase, vanillate O-demethylase oxygenase and reductase, and biphenyl 2,3-dioxygenase were up-regulated > 2.0-fold in RNA-seq. This induction was further confirmed by qRT-PCR, validating the likely involvement of these genes in the degradation of HA.
Collapse
|
9
|
Bacterial community structures and ice recrystallization inhibition activity of bacteria isolated from the phyllosphere of the Antarctic vascular plant Deschampsia antarctica. Polar Biol 2016. [DOI: 10.1007/s00300-016-2036-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Nie Y, Li L, Isoda R, Wang M, Hatano R, Hashidoko Y. Physiological and Genotypic Characteristics of Nitrous Oxide (N2O)-Emitting Pseudomonas Species Isolated from Dent Corn Andisol Farmland in Hokkaido, Japan. Microbes Environ 2016; 31:93-103. [PMID: 27109825 PMCID: PMC4912161 DOI: 10.1264/jsme2.me15155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dent corn Andisol at the Hokkaido University Shizunai Livestock Experimental Farm actively emits nitrous oxide (N2O). In order to screen for culturable and active N2O emitters with high N2O emission potential, soft gel medium containing excess KNO3 was inoculated with soil suspensions from farm soil samples collected at different land managements. Dominant bacterial colonies were searched for among 20 of the actively N2O-emitting cultures from post-harvest soil and 19 from pre-tilled soil, and all isolates were subjected to the culture-based N2O emission assay. Ten active N2O-emitting bacteria, four from post-harvest soil and six from pre-tilled soil, out of 156 isolates were identified as genus Pseudomonas by 16S rRNA gene sequencing. These N2O emitters showed clear responses to NO3(-) within a neutral pH range (5.5-6.7), and accelerated N2O production with 1.5-15 mM sucrose supplementation, suggesting the production of N2O during the denitrification process. However, the negative responses of 6 active N2O emitters, 3 from post-harvest soil and 3 from pre-tilled soil, out of the 10 isolates in the acetylene-blocking assay suggest that these 6 N2O emitters are incomplete denitrifiers that have lost their N2O reductase (N2OR) activity. Although the PCR assay for the denitrification-associated genes, narG and nirK/S, was positive in all 10 Pseudomonas isolates, those negative in the acetylene-blocking assay were nosZ-negative. Therefore, these results imply that the high N2O emission potential of dent corn Andisol is partly attributed to saprophytic, nosZ gene-missing pseudomonad denitrifiers.
Collapse
Affiliation(s)
- Yanxia Nie
- Research Faculty and Graduate School of Agriculture, Hokkaido University
| | | | | | | | | | | |
Collapse
|