1
|
Subramani AK, Ramachandra R, Thote S, Govindaraj V, Vanzara P, Raval R, Raval K. Engineering a recombinant chitinase from the marine bacterium Bacillus aryabhattai with targeted activity on insoluble crystalline chitin for chitin oligomer production. Int J Biol Macromol 2024; 264:130499. [PMID: 38462115 DOI: 10.1016/j.ijbiomac.2024.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Chitin, an abundant polysaccharide in India, is primary by-product of the seafood industry. Efficiently converting chitin into valuable products is crucial. Chitinase, transforms chitin into chitin oligomers, holds significant industrial potential. However, the crystalline and insoluble nature of chitin makes the conversion process challenging. In this study, a recombinant chitinase from marine bacteria Bacillus aryabhattai was developed. This enzyme exhibits activity against insoluble chitin substrates, chitin powder and flakes. The chitinase gene was cloned into the pET 23a plasmid and transformed into E. coli Rosetta pLysS. IPTG induction was employed to express chitinase, and purification using Ni-NTA affinity chromatography. Optimal chitinase activity against colloidal chitin was observed in Tris buffer at pH 8, temperature 55°C, with the presence of 400 mM sodium chloride. Enzyme kinetics studies revealed a Vmax of 2000 μmole min-1 and a Km of 4.6 mg mL-1. The highest chitinase activity against insoluble chitin powder and flakes reached 875 U mg-1 and 625 U mg-1, respectively. The chitinase demonstrated inhibition of Candida albicans, Fusarium solani, and Penicillium chrysogenum growth. Thin Layer Chromatography (TLC) and LC-MS analysis confirmed the production of chitin oligomers, chitin trimer, tetramer, pentamer, and hexamer, from chitin powder and flakes using recombinant chitinase.
Collapse
Affiliation(s)
- Arun Kumar Subramani
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Reshma Ramachandra
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Sachin Thote
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Vishnupriya Govindaraj
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Piyush Vanzara
- Department of Chemical Engineering, Vyavasayi Vidya Pratishthan Engineering College, Rajkot, Gujarat 360005, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Academy of Higher Education (MAHE), Karnataka 576104, India.
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India.
| |
Collapse
|
2
|
Bawane P, Deshpande S, Yele S. Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater. Curr Pharm Biotechnol 2024; 25:1564-1584. [PMID: 38258768 DOI: 10.2174/0113892010265978231109085224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.
Collapse
Affiliation(s)
- Pradip Bawane
- Department of Pharmacognosy, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, 400056, India
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shirish Deshpande
- Department of Pharmaceutical Chemistry, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| |
Collapse
|
3
|
Chanworawit K, Wangsoonthorn P, Deevong P. Characterization of chitinolytic bacteria newly isolated from the termite Microcerotermes sp. and their biocontrol potential against plant pathogenic fungi. Biosci Biotechnol Biochem 2023; 87:1077-1091. [PMID: 37328422 DOI: 10.1093/bbb/zbad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Chitinolytic bacteria were isolated from guts and shells of the termite Microcerotermes sp. Among the nineteen morphologically different chitinolytic isolates, three isolates with highest extracellular chitinase production ratio (≥2.26) were selected. Based on molecular identification of 16S rRNA gene sequences and biochemical characterizations using API test kits and MALDI-TOF MS, these isolates were closely related to Bacillus thuringiensis (Mc_E02) and Paenibacillus species (Mc_E07 and Mc_G06). Isolate Mc_E02 exhibited the highest chitinase-specific activity (2.45 U/mg protein) at 96 h of cultivation, and the enzyme activity was optimized at pH 7.0 and 45 °C. The isolate showed highest and broad-spectrum inhibitory effect against three phytopathogenic fungi (Curvularia lunata, Colletotrichum capsici, and Fusarium oxysporum). Its 36-kDa chitinase exhibited the biomass reduction and mycelium inhibition against all fungi, with highest effects to Curvularia lunata. This research provides novel information about termite chitinolytic bacteria and their effective chitinase, with potential use as biocontrol tool.
Collapse
Affiliation(s)
- Kittipong Chanworawit
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pachara Wangsoonthorn
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pinsurang Deevong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Zhao Q, Fan L, Deng C, Ma C, Zhang C, Zhao L. Bioconversion of chitin into chitin oligosaccharides using a novel chitinase with high chitin-binding capacity. Int J Biol Macromol 2023:125241. [PMID: 37301336 DOI: 10.1016/j.ijbiomac.2023.125241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Chitin is the second largest renewable biomass resource in nature, it can be enzymatically degraded into high-value chitin oligosaccharides (CHOSs) by chitinases. In this study, a chitinase (ChiC8-1) was purified and biochemically characterized, its structure was analyzed by molecular modeling. ChiC8-1 had a molecular mass of approximately 96 kDa, exhibited its optimal activity at pH 6.0 and 50 °C. The Km and Vmax values of ChiC8-1 towards colloidal chitin were 10.17 mg mL-1 and 13.32 U/mg, respectively. Notably, ChiC8-1 showed high chitin-binding capacity, which may be related to the two chitin binding domains in the N-terminal. Based on the unique properties of ChiC8-1, a modified affinity chromatography method, which combines protein purification with chitin hydrolysis process, was developed to purify ChiC8-1 while hydrolyzing chitin. In this way, 9.36 ± 0.18 g CHOSs powder was directly obtained by hydrolyzing 10 g colloidal chitin with crude enzyme solution. The CHOSs were composed of 14.77-2.83 % GlcNAc and 85.23-97.17 % (GlcNAc)2 at different enzyme-substrate ratio. This process simplifies the tedious purification and separation steps, and may enable its potential application in the field of green production of chitin oligosaccharides.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyu Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
5
|
Thakur D, Chauhan A, Jhilta P, Kaushal R, Dipta B. Microbial chitinases and their relevance in various industries. Folia Microbiol (Praha) 2023; 68:29-53. [PMID: 35972681 DOI: 10.1007/s12223-022-00999-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023]
Abstract
Chitin, the second most abundant biopolymer on earth after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) units. It is widely distributed in nature, especially as a structural polysaccharide in the cell walls of fungi, the exoskeletons of crustaceans, insects, and nematodes. However, the principal commercial source of chitin is the shells of marine or freshwater invertebrates. Microbial chitinases are largely responsible for chitin breakdown in nature, and they play an important role in the ecosystem's carbon and nitrogen balance. Several microbial chitinases have been characterized and are gaining prominence for their applications in various sectors. The current review focuses on chitinases of microbial origin, their diversity, and their characteristics. The applications of chitinases in several industries such as agriculture, food, the environment, and pharmaceutical sectors are also highlighted.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Prakriti Jhilta
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Rajesh Kaushal
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| |
Collapse
|
6
|
Zhang Y, Guan F, Xu G, Liu X, Zhang Y, Sun J, Yao B, Huang H, Wu N, Tian J. A novel thermophilic chitinase directly mined from the marine metagenome using the deep learning tool Preoptem. BIORESOUR BIOPROCESS 2022; 9:54. [PMID: 38647756 PMCID: PMC10991277 DOI: 10.1186/s40643-022-00543-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/27/2022] [Indexed: 12/27/2022] Open
Abstract
Chitin is abundant in nature and its degradation products are highly valuable for numerous applications. Thermophilic chitinases are increasingly appreciated for their capacity to biodegrade chitin at high temperatures and prolonged enzyme stability. Here, using deep learning approaches, we developed a prediction tool, Preoptem, to screen thermophilic proteins. A novel thermophilic chitinase, Chi304, was mined directly from the marine metagenome. Chi304 showed maximum activity at 85 ℃, its Tm reached 89.65 ± 0.22℃, and exhibited excellent thermal stability at 80 and 90 °C. Chi304 had both endo- and exo-chitinase activities, and the (GlcNAc)2 was the main hydrolysis product of chitin-related substrates. The product yields of colloidal chitin degradation reached 97% within 80 min, and 20% over 4 days of reaction with crude chitin powder. This study thus provides a method to mine the novel thermophilic chitinase for efficient chitin biodegradation.
Collapse
Affiliation(s)
- Yan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoshun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huoqing Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Wang C, Chen X, Zhou N, Chen Y, Zhang A, Chen K, Ouyang P. Property and Function of a Novel Chitinase Containing Dual Catalytic Domains Capable of Converting Chitin Into N-Acetyl-D-Glucosamine. Front Microbiol 2022; 13:790301. [PMID: 35283860 PMCID: PMC8908422 DOI: 10.3389/fmicb.2022.790301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
A novel multifunctional chitinase (CmChi3)-encoding gene was cloned from Chitinolyticbacter meiyuanensis and actively expressed in Escherichia coli. Sequence analysis showed that CmChi3 contains two glycoside hydrolase family 18 (GH18) catalytic domains and exhibited low identity with well-characterized chitinases. The optimum pH and temperature of purified recombinant CmChi3 were 6.0 and 50°C, respectively. CmChi3 exhibited strict substrate specificity of 4.1 U/mg toward colloidal chitin (CC) and hydrolyzed it to yield N-acetyl-D-glucosamine (GlcNAc) as the sole end product. An analysis of the hydrolysis products toward N-acetyl chitooligosaccharides (N-acetyl COSs) and CC substrates revealed that CmChi3 exhibits endochitinase, N-acetyl-β-d-glucosaminidase (NAGase), and transglycosylase (TGase) activities. Further studies revealed that the N-terminal catalytic domain of CmChi3 exhibited endo-acting and NAGase activities, while the C-terminal catalytic domain showed exo-acting and TGase activities. The hydrolytic properties and favorable environmental adaptations indicate that CmChi3 holds potential for commercial GlcNAc production from chitin.
Collapse
Affiliation(s)
- Chengyong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xueman Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
8
|
Li HP, Gan YN, Yue LJ, Han QQ, Chen J, Liu QM, Zhao Q, Zhang JL. Newly Isolated Paenibacillus monticola sp. nov., a Novel Plant Growth-Promoting Rhizobacteria Strain From High-Altitude Spruce Forests in the Qilian Mountains, China. Front Microbiol 2022; 13:833313. [PMID: 35250949 PMCID: PMC8895201 DOI: 10.3389/fmicb.2022.833313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022] Open
Abstract
Species in the genus Paenibacillus from special habitats have attracted great attention due to their plant growth-promoting traits. A novel plant growth-promoting rhizobacteria (PGPR) species in the genus Paenibacillus was isolated from spruce forest at the height of 3,150 m in the Qilian Mountains, Gansu province, China. The phylogenetic analysis based on 16S rRNA, rpoB, and nifH gene sequences demonstrated that strain LC-T2T was affiliated in the genus Paenibacillus and exhibited the highest sequence similarity with Paenibacillus donghaensis KCTC 13049T (97.4%). Average nucleotide identity (ANIb and ANIm) and digital DNA–DNA hybridization (dDDH) between strain LC-T2T and P. donghaensis KCTC 13049T were 72.6, 83.3, and 21.2%, respectively, indicating their genetic differences at the species level. These differences were further verified by polar lipids profiles, major fatty acid contents, and several distinct physiological characteristics. Meanwhile, the draft genome analysis provided insight into the genetic features to support its plant-associated lifestyle and habitat adaptation. Subsequently, the effects of volatile organic compound (VOC) emitted from strain LC-T2T on the growth of Arabidopsis were evaluated. Application of strain LC-T2T significantly improved root surface area, root projection area, and root fork numbers by 158.3, 158.3, and 241.2%, respectively, compared to control. Also, the effects of LC-T2T on the growth of white clover (Trifolium repens L.) were further assessed by pot experiment. Application of LC-T2T also significantly improved the growth of white clover with root fresh weight increased over three-folds compared to control. Furthermore, the viable bacterial genera of rhizosphere soil were detected in each treatment. The number of genera from LC-T2T-inoculated rhizosphere soil was 1.7-fold higher than that of control, and some isolates were similar to strain LC-T2T, indicating that LC-T2T inoculation was effective in the rhizosphere soil of white clover. Overall, strain LC-T2T should be attributed to a novel PGPR species within the genus Paenibacillus based on phylogenetic relatedness, genotypic features, and phenotypic and inoculation experiment, for which the name Paenibacillus monticola sp. nov. is proposed.
Collapse
Affiliation(s)
- Hui-Ping Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Ya-Nan Gan
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Li-Jun Yue
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Qing-Qing Han
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Jia Chen
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Qiong-Mei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Qi Zhao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- *Correspondence: Qi Zhao,
| | - Jin-Lin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Jin-Lin Zhang,
| |
Collapse
|
9
|
Bacterial chitinase biochemical properties, immobilization on zinc oxide (ZnO) nanoparticle and its effect on Sitophilus zeamais as a potential insecticide. World J Microbiol Biotechnol 2021; 37:173. [PMID: 34519907 DOI: 10.1007/s11274-021-03138-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
It has been planned to minimize the yield and quality impairment of the seed corn, which is strategically important in the world, by pests under storage conditions with a biological product produced with a biotechnological approach. In this context, the present study aimed to control the maize weevil Sitophilus zeamais, known as a warehouse pest, using a nanoformulation. In the study, the chitinase enzyme from Lactobacillus coryniformis was purified first using ammonium sulfate precipitation and then by using the HiTrap Capto DEAE column, and the molecular mass of the purified enzyme was determined to be ~ 33 kDa, and the optimum pH and the values as pH 6.0 and 65-75 °C, respectively. Five different doses of nanoformulation (2, 4, 6, 8 and 10 mg/L) were applied to corn grains by the spraying method with three repetitions so that the insect can ingest the formulation through feeding. The effects of the applications on the death rate and mean time of death of Sitophilus zeamais were determined. According to these findings, it was concluded that the best practice was nanoformulation with 6 mg/L, considering both the mortality rate (100%) and the average death time (2.4 days). Chitinase from L. coryniformis is a promising candidate for corn lice control and management.
Collapse
|
10
|
Doan CT, Tran TN, Wang SL. Production of Thermophilic Chitinase by Paenibacillus sp. TKU052 by Bioprocessing of Chitinous Fishery Wastes and Its Application in N-acetyl-D-glucosamine Production. Polymers (Basel) 2021; 13:3048. [PMID: 34577952 PMCID: PMC8471714 DOI: 10.3390/polym13183048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/15/2023] Open
Abstract
The bioprocessing of chitinous fishery wastes (CFWs) to chitinases through fermentation approaches has gained importance owing to its great benefits in reducing the enzyme production cost, and utilizing chitin waste. In this work, our study of the chitinase production of Paenibacillus sp. TKU052 in the presence of different kinds of CFWs revealed a preference for demineralized crab shells powder (deCSP); furthermore, a 72 kDa chitinase was isolated from the 0.5% deCSP-containing medium. The Paenibacillus sp. TKU052 chitinase displayed maximum activity at 70 °C and pH 4-5, while Zn2+, Fe3+, Triton X-100, Tween 40, and SDS exerted a negative effect on its activity, whereas Mn2+ and 2-mercaptoethanol were found to potentially enhance the activity. Among various kinds of polysaccharide, Paenibacillus sp. TKU052 chitinase exhibited the best catalytic activity on colloidal chitin (CC) with Km = 9.75 mg/mL and Vmax = 2.43 μmol/min. The assessment of the hydrolysis of CC and N-acetyl chitooligosaccharides revealed that Paenibacillus sp. TKU052 chitinase possesses multiple catalytic functions, including exochitinase, endochitinase, and N-acetyl-β-D-glucosaminidase activities. Finally, the combination of Paenibacillus sp. TKU052 chitinase and Streptomyces speibonae TKU048 N-acetyl-β-D-glucosaminidase could efficiently convert CC to N-acetyl-D-glucosamine (GlcNAc) with a production yield of 94.35-98.60% in 12-24 h.
Collapse
Affiliation(s)
- Chien Thang Doan
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Thi Ngoc Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (C.T.D.); (T.N.T.)
- Doctoral Program in Applied Sciences, College of Science, Tamkang University, New Taipei City 25137, Taiwan
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
11
|
Zhang W, Ma J, Yan Q, Jiang Z, Yang S. Biochemical characterization of a novel acidic chitinase with antifungal activity from Paenibacillus xylanexedens Z2-4. Int J Biol Macromol 2021; 182:1528-1536. [PMID: 34022308 DOI: 10.1016/j.ijbiomac.2021.05.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
A chitinase gene (PxChi52) from Paenibacillus xylanexedens Z2-4 was cloned and heterologously expressed in Escherichia coli BL21 (DE3). PxChi52 shared the highest identity of 91% with a glycoside hydrolase family 18 chitinase (ChiD) from Bacillus circulans. The recombinant enzyme (PxChi52) was purified and biochemically characterized. PxChi52 had a molecular mass of 52.8 kDa. It was most active at pH 4.5 and 65 °C, respectively, and stable in a wide pH range of 4.0-13.0 and up to 50 °C. The enzyme exhibited the highest specific activity of 16.0 U/mg towards colloidal chitin, followed by ethylene glycol chitin (5.4 U/mg) and ball milled chitin (0.4 U/mg). The Km and Vmax values of PxChi52 towards colloidal chitin were determined to be 3.06 mg/mL and 71.38 U/mg, respectively, PxChi52 hydrolyzed colloidal chitin and chitooligosaccharides with degree of polymerization 2-5 to release mainly N-acetyl chitobiose. In addition, PxChi52 displayed inhibition effects on the growth of some phytopathogenic fungi, including Alternaria alstroemeriae, Botrytis cinerea, Rhizoctonia solani, Sclerotinia sclerotiorum and Valsa mali. The unique properties of PxChi52 may enable it potential application in agriculture field as a biocontrol agent.
Collapse
Affiliation(s)
- Wenjiao Zhang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junwen Ma
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
12
|
Characterization of chitinase from Shewanella inventionis HE3 with bio-insecticidal effect against granary weevil, Sitophilus granarius Linnaeus (Coleoptera: Curculionidae). Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Biochemical and molecular characterization of an acido-thermostable endo-chitinase from Bacillus altitudinis KA15 for industrial degradation of chitinous waste. Carbohydr Res 2020; 495:108089. [PMID: 32807357 DOI: 10.1016/j.carres.2020.108089] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022]
Abstract
This paper reports the isolation and identification of an acido-thermostable chitinase (ChiA-Ba43) which was purified, from the culture liquid of Bacillus altitudinis strain KA15, and characterized. Purification of ChiA-Ba43 produced a 69.6-fold increase in the specific activity (120,000 U/mg) of the chitinase, with a yield of 51% using colloidal chitin as substrate. ChiA-Ba43 was found to be a monomeric protein with a molecular mass of 43,190.05 Da as determined by MALDI-TOF/MS. N-terminal sequence of the first 27 amino-acids (aa) of ChiA-Ba43 displayed homology to chitinases from other Bacillus species. Interestingly, ChiA-Ba43 exhibited optimum pH and temperature of 4-5.5 and 85 °C, respectively. Thin-layer chromatography (TLC) showed that the final hydrolyzed products of the enzyme from chitin-oligosaccharides and colloidal chitin are a mixture of (GlcNAc)2, (GlcNAc)3, (GlcNAc)4, and (GlcNAc)5, which indicates that ChiA-Ba43 possesses an endo-acting function. More interestingly, compared to ChiA-Mt45, ChiA-Hh59, Chitodextrinase®, N-acetyl-β-glucosaminidase®, and ChiA-65, ChiA-Ba43 demonstrated a high level of catalytic efficiency and outstanding tolerance towards various organic solvents. The chiA-Ba43 gene (1332 bp) encoding ChiA-Ba43 (409 aa) was cloned, sequenced, and expressed in Escherichia coli strain HB101. The biochemical properties of the recombinant chitinase (rChiA-Ba43) were equivalent to those of the natively expressed enzyme. These properties make ChiA-Ba43 an ideal candidate for industrial bioconversion of chitinous waste.
Collapse
|
14
|
Doan CT, Tran TN, Nguyen VB, Tran TD, Nguyen AD, Wang SL. Bioprocessing of Squid Pens Waste into Chitosanase by Paenibacillus sp. TKU047 and Its Application in Low-Molecular Weight Chitosan Oligosaccharides Production. Polymers (Basel) 2020; 12:polym12051163. [PMID: 32438616 PMCID: PMC7284385 DOI: 10.3390/polym12051163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan oligosaccharide (COS) has become of great interest in recent years because of its worthy biological activities. This study aims to produce COS using the enzymatic method, and investigates Paenibacillus sp. TKU047, a chitinolytic-producing strain, in terms of its chitosanase productivity on several chitinous material-containing mediums from fishery process wastes. The highest amount of chitosanase was produced on the medium using 2% (w/v) squid pens powder (0.60 U/mL) as the single carbon and nitrogen (C/N) source. The molecular mass of TKU047 chitosanase, which could be the smallest one among chitinases/chitosanases from the Paenibacillus genus, was approximately 23 kDa according to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) method. TKU047 chitosanase possessed the highest activity at 60 °C, pH 7, and toward chitosan solution with a higher degree of deacetylation (DDA) value. Additionally, the hydrolysis products of 98% DDA chitosan catalyzed by TKU047 chitosanase showed the degree of polymerization (DP) ranging from 2 to 9, suggesting that it was an endo-type activity chitosanase. The free radical scavenging activity of the obtained chitosan oligosaccharide (COS) was determined. The result showed that COS produced with Paenibacillus sp. TKU047 chitosanase expressed a higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than that from the commercial COSs with maximum activity and IC50 values of 81.20% and 1.02 mg/mL; 18.63% and 15.37 mg/mL; and 15.96% and 15.16 mg/mL, respectively. As such, Paenibacillus sp. TKU047 may have potential use in converting squid pens waste to produce chitosanase as an enzyme for bio-activity COS preparation.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
| | - Trung Dung Tran
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
15
|
Liu C, Shen N, Wu J, Jiang M, Shi S, Wang J, Wei Y, Yang L. Cloning, expression and characterization of a chitinase from Paenibacillus chitinolyticus strain UMBR 0002. PeerJ 2020; 8:e8964. [PMID: 32411515 PMCID: PMC7207210 DOI: 10.7717/peerj.8964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background Chitinases are enzymes which degrade β-1,4-glycosidid linkages in chitin. The enzymatic degradation of shellfish waste (containing chitin) to chitooligosaccharides is used in industrial applications to generate high-value-added products from such waste. However, chitinases are currently produced with low efficiency and poor tolerance, limiting the industrial utility. Therefore, identifying chitinases with higher enzymatic activity and tolerance is of great importance. Methods Primers were designed using the genomic database of Paenibacillus chitinolyticus NBRC 15660. An exochitinase (CHI) was cloned into the recombinant plasmid pET-22b (+) to form pET-22b (+)-CHI, which was transformed into Escherichia coli TOP10 to construct a genomic library. Transformation was confirmed by colony-polymerase chain reaction and electrophoresis. The target sequence was verified by sequencing. Recombinant pET-22b (+)-CHI was transformed into E. coli Rosetta-gami B (DE3) for expression of chitinase. Recombinant protein was purified by Ni-NTA affinity chromatography and enzymatic analysis was carried out. Results The exochitinase CHI from P. chitinolyticus strain UMBR 0002 was successfully cloned and heterologously expressed in E. coli Rosetta-gami B (DE3). Purification yielded a 13.36-fold enrichment and recovery yield of 72.20%. The purified enzyme had a specific activity of 750.64 mU mg-1. The optimum pH and temperature for degradation of colloidal chitin were 5.0 and 45 °C, respectively. The enzyme showed high stability, retaining >70% activity at pH 4.0-10.0 and 25-45 °C (maximum of 90 min). The activity of CHI strongly increased with the addition of Ca2+, Mn2+, Tween 80 and urea. Conversely, Cu2+, Fe3+, acetic acid, isoamyl alcohol, sodium dodecyl sulfate and β-mercaptoethanol significantly inhibited enzyme activity. The oligosaccharides produced by CHI from colloidal chitin exhibited a degree of polymerization, forming N-acetylglucosamine (GlcNAc) and (GlcNAc)2 as products. Conclusions This is the first report of the cloning, heterologous expression and purification of a chitinase from P. chitinolyticus strain UMBR 0002. The results highlight CHI as a good candidate enzyme for green degradation of chitinous waste.
Collapse
Affiliation(s)
- Cong Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Naikun Shen
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Jiafa Wu
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Songbiao Shi
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Jinzi Wang
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Yanye Wei
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Lifang Yang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
16
|
Du J, Duan S, Miao J, Zhai M, Cao Y. Purification and characterization of chitinase from Paenibacillus sp. . Biotechnol Appl Biochem 2020; 68:30-40. [PMID: 31957084 DOI: 10.1002/bab.1889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/15/2020] [Indexed: 11/10/2022]
Abstract
The chitinase-producing bacteria Paenibacillus sp. was isolated from soil samples. The chitinase was purified successively by ammonia sulfate fractional precipitation followed by chromatography on DEAE 52-cellulose column and then on Sephadex G-75 column. The chitinase has a molecular weight of ca. 30 kDa as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis. Its optimum pH is 4.5, and its optimum temperature is 50 °C with colloidal chitin as a substrate. The enzyme is stable below 45 °C and in pH ranges between 4.5 and 5.5. It is activated by glucosamine, glucose, N-acetylglucosamine, and metal ions including Ca2+ , Fe2+ , Fe3+ , and Ni2+ . It is inhibited by SDS, H2 O2 , ascorbic acid, Cu2+ , Mg2+ , Ba2+ , Sn2+ , Cr3+ , and K+ . With colloidal chitin as substrate, the Km and the Vmax of the chitinase are 4.28 mg/mL and 14.29 μg/(Min·mL), respectively, whereas the end products of the enzymatic hydrolysis are 14.33% monomer and 85.67% dimer of N-acetylglucosamine. The viscosity of carboxymethyl chitin decreased rapidly at the initial stages when subjected to chitinase hydrolysis, which indicates that the chitinase acts in an endosplitting pattern.
Collapse
Affiliation(s)
- Jinghe Du
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China.,Guangdong Ke Long Biotechnology Co., Ltd., Jingmen, People's Republic of China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| | - Miaomiao Zhai
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Yahiaoui M, Laribi-Habchi H, Bouacem K, Asmani KL, Mechri S, Harir M, Bendif H, Aïssani-El Fertas R, Jaouadi B. Purification and biochemical characterization of a new organic solvent-tolerant chitinase from Paenibacillus timonensis strain LK-DZ15 isolated from the Djurdjura Mountains in Kabylia, Algeria. Carbohydr Res 2019; 483:107747. [DOI: 10.1016/j.carres.2019.107747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 10/26/2022]
|
18
|
Doan CT, Tran TN, Nguyen VB, Nguyen AD, Wang SL. Production of a Thermostable Chitosanase from Shrimp Heads via Paenibacillus mucilaginosus TKU032 Conversion and its Application in the Preparation of Bioactive Chitosan Oligosaccharides. Mar Drugs 2019; 17:md17040217. [PMID: 30974812 PMCID: PMC6520834 DOI: 10.3390/md17040217] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Chitosanase has attracted great attention due to its potential applications in medicine, agriculture, and nutraceuticals. In this study, P. mucilaginosus TKU032, a bacterial strain isolated from Taiwanese soil, exhibited the highest chitosanase activity (0.53 U/mL) on medium containing shrimp heads as the sole carbon and nitrogen (C/N) source. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, a chitosanase isolated from P. mucilaginosus TKU032 cultured on shrimp head medium was determined at approximately 59 kDa. The characterized chitosanase showed interesting properties with optimal temperature and thermal stability up to 70 °C. Three chitosan oligosaccharide (COS) fractions were isolated from hydrolyzed colloidal chitosan that was catalyzed by TKU032 chitosanase. Of these, fraction I showed the highest α-glucosidase inhibitor (aGI) activity (65.86% at 20 mg/mL); its inhibitory mechanism followed the mixed noncompetitive inhibition model. Fractions II and III exhibited strong 2,2-diphenyl1-picrylhydrazyl (DPPH) radical scavenging activity (79.00% at 12 mg/mL and 73.29% at 16 mg/mL, respectively). In summary, the COS fractions obtained by hydrolyzing colloidal chitosan with TKU032 chitosanase may have potential use in medical or nutraceutical fields due to their aGI and antioxidant activities.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
19
|
Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2. J Microbiol 2019; 57:372-380. [PMID: 30806979 DOI: 10.1007/s12275-019-8469-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Chitin is the most abundant biopolymer in marine environments. To facilitate its utilization, our laboratory screened marine-derived fungal strains for chitinolytic activity. One chitinolytic strain isolated from seawater, designated YS2-2, was identified as Acremonium species based on morphological and phylogenetic analyses. Acremonium species are cosmopolitan fungi commonly isolated from both terrestrial and marine environments, but their chitinolytic activity is largely unknown. The extracellular crude enzyme of YS2-2 exhibited optimum chitinolytic activity at pH 6.0-7.6, 23-45°C, and 1.5% (w/v) NaCl. Degenerate PCR revealed the partial cDNA sequence of a putative chitinase gene, chiA, in YS2-2. The expression of chiA was dramatically induced in response to 1% (w/v) colloidal chitin compared to levels under starvation, chitin powder, and glucose conditions. Moreover, the chiA transcript levels were positively correlated with chitinolytic activities under various colloidal chitin concentrations, suggesting that ChiA mediates chitinolytic activity in this strain. Our results provide a basis for additional studies of marinederived chitinolytic fungi aimed at improving industrial applications.
Collapse
|
20
|
Mohamed S, Bouacem K, Mechri S, Addou NA, Laribi-Habchi H, Fardeau ML, Jaouadi B, Bouanane-Darenfed A, Hacène H. Purification and biochemical characterization of a novel acido-halotolerant and thermostable endochitinase from Melghiribacillus thermohalophilus strain Nari2AT. Carbohydr Res 2019; 473:46-56. [DOI: 10.1016/j.carres.2018.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
|
21
|
Doan CT, Tran TN, Nguyen VB, Nguyen AD, Wang SL. Reclamation of Marine Chitinous Materials for Chitosanase Production via Microbial Conversion by Paenibacillus macerans. Mar Drugs 2018; 16:E429. [PMID: 30400216 PMCID: PMC6265764 DOI: 10.3390/md16110429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/21/2023] Open
Abstract
Chitinous materials from marine byproducts elicit great interest among biotechnologists for their potential biomedical or agricultural applications. In this study, four kinds of marine chitinous materials (squid pens, shrimp heads, demineralized shrimp shells, and demineralized crab shells) were used to screen the best source for producing chitosanase by Paenibacillus macerans TKU029. Among them, the chitosanase activity was found to be highest in the culture using the medium containing squid pens as the sole carbon/nitrogen (C/N) source. A chitosanase which showed molecular weights at 63 kDa was isolated from P. macerans cultured on a squid pens medium. The purified TKU029 chitosanase exhibited optimum activity at 60 °C and pH 7, and was stable at temperatures under 50 °C and pH 3-8. An analysis by MALDI-TOF MS revealed that the chitosan oligosaccharides (COS) obtained from the hydrolysis of water-soluble chitosan by TKU029 crude enzyme showed various degrees of polymerization (DP), varying from 3⁻6. The obtained COS enhanced the growth of four lactic acid bacteria strains but exhibited no effect on the growth of E. coli. By specialized growth enhancing effects, the COS produced from hydrolyzing water soluble chitosan with TKU029 chitinolytic enzymes could have potential for use in medicine or nutraceuticals.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| |
Collapse
|
22
|
Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean? Appl Microbiol Biotechnol 2018; 102:9937-9948. [PMID: 30276711 DOI: 10.1007/s00253-018-9385-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Chitinolytic enzymes are capable to catalyze the chitin hydrolysis. Due to their biomedical and biotechnological applications, nowadays chitinolytic enzymes have attracted worldwide attention. Chitinolytic enzymes have provided numerous useful materials in many different industries, such as food, pharmaceutical, cosmetic, or biomedical industry. Marine enzymes are commonly employed in industry because they display better operational properties than animal, plant, or bacterial homologs. In this mini-review, we want to describe marine chitinolytic enzymes as versatile enzymes in different biotechnological fields. In this regard, interesting comments about their biological role, reaction mechanism, production, functional characterization, immobilization, and biotechnological application are shown in this work.
Collapse
|
23
|
Aktuganov GE, Galimzianova NF, Gilvanova EA, Kuzmina LY, Boyko TF, Safina VR, Melentiev AI. Characterization of Chitinase Produced by the Alkaliphilic Bacillus mannanilyticus IB-OR17 B1 Strain. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818050022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Zhang A, He Y, Wei G, Zhou J, Dong W, Chen K, Ouyang P. Molecular characterization of a novel chitinase CmChi1 from Chitinolyticbacter meiyuanensis SYBC-H1 and its use in N-acetyl-d-glucosamine production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:179. [PMID: 29983742 PMCID: PMC6020246 DOI: 10.1186/s13068-018-1169-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/12/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND N-acetyl-d-glucosamine (GlcNAc) possesses many bioactivities that have been used widely in many fields. The enzymatic production of GlcNAc is eco-friendly, with high yields and a mild production process compared with the traditional chemical process. Therefore, it is crucial to discover a better chitinase for GlcNAc production from chitin. RESULTS A novel chitinase gene (Cmchi1) cloned from Chitinolyticbacter meiyuanensis SYBC-H1 and expressed in Escherichia coli BL21(DE3) cells. The recombinant enzyme (CmChi1) contains a glycosyl hydrolase family 18 catalytic module that shows low identity (12-27%) with the corresponding domain of the well-characterized chitinases. CmChi1 was purified with a recovery yield of 89% by colloidal chitin affinity chromatography, whereupon it had a specific activity of up to 15.3 U/mg. CmChi1 had an approximate molecular mass of 70 kDa after the sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its optimum activity for colloidal chitin (CC) hydrolysis occurred at pH 5.2 and 50 °C. Furthermore, CmChi1 exhibited kcat/Km values of 7.8 ± 0.11 mL/s/mg and 239.1 ± 2.6 mL/s/μmol toward CC and 4-nitrophenol N,N'-diacetyl-β-d-chitobioside [p-NP-(GlcNAc)2], respectively. Analysis of the hydrolysis products revealed that CmChi1 exhibits exo-acting, endo-acting and N-acetyl-β-d-glucosaminidase activities toward N-acetyl chitooligosaccharides (N-acetyl CHOS) and CC substrates, behavior that makes it different from typical reported chitinases. As a result, GlcNAc could be produced by hydrolyzing CC using recombinant CmChi1 alone with a yield of nearly 100% and separated simply from the hydrolysate with a high purity of 98%. CONCLUSION The hydrolytic properties and good environmental adaptions indicate that CmChi1 has excellent potential in commercial GlcNAc production. This is the first report on exo-acting, endo-acting and N-acetyl-β-d-glucosaminidase activities from Chitinolyticbacter species.
Collapse
Affiliation(s)
- Alei Zhang
- College of Biotechnology and Pharmaceutical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
| | - Yumei He
- College of Biotechnology and Pharmaceutical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
| | - Guoguang Wei
- College of Biotechnology and Pharmaceutical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
| | - Jie Zhou
- College of Biotechnology and Pharmaceutical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, NanjingTech University, Nanjing, 211800 People’s Republic of China
| |
Collapse
|
25
|
Passera A, Marcolungo L, Casati P, Brasca M, Quaglino F, Cantaloni C, Delledonne M. Hybrid genome assembly and annotation of Paenibacillus pasadenensis strain R16 reveals insights on endophytic life style and antifungal activity. PLoS One 2018; 13:e0189993. [PMID: 29351296 PMCID: PMC5774705 DOI: 10.1371/journal.pone.0189993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/06/2017] [Indexed: 01/27/2023] Open
Abstract
Bacteria of the Paenibacillus genus are becoming important in many fields of science, including agriculture, for their positive effects on the health of plants. However, there are little information available on this genus compared to other bacteria (such as Bacillus or Pseudomonas), especially when considering genomic information. Sequencing the genomes of plant-beneficial bacteria is a crucial step to identify the genetic elements underlying the adaptation to life inside a plant host and, in particular, which of these features determine the differences between a helpful microorganism and a pathogenic one. In this study, we have characterized the genome of Paenibacillus pasadenensis, strain R16, recently investigated for its antifungal activities and plant-associated features. An hybrid assembly approach was used integrating the very precise reads obtained by Illumina technology and long fragments acquired with Oxford Nanopore Technology (ONT) sequencing. De novo genome assembly based solely on Illumina reads generated a relatively fragmented assembly of 5.72 Mbp in 99 ungapped sequences with an N50 length of 544 Kbp; hybrid assembly, integrating Illumina and ONT reads, improved the assembly quality, generating a genome of 5.75 Mbp, organized in 6 contigs with an N50 length of 3.4 Mbp. Annotation of the latter genome identified 4987 coding sequences, of which 1610 are hypothetical proteins. Enrichment analysis identified pathways of particular interest for the endophyte biology, including the chitin-utilization pathway and the incomplete siderophore pathway which hints at siderophore parasitism. In addition the analysis led to the identification of genes for the production of terpenes, as for example farnesol, that was hypothesized as the main antifungal molecule produced by the strain. The functional analysis on the genome confirmed several plant-associated, plant-growth promotion, and biocontrol traits of strain R16, thus adding insights in the genetic bases of these complex features, and of the Paenibacillus genus in general.
Collapse
Affiliation(s)
- Alessandro Passera
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Luca Marcolungo
- Department of Biotechnologies, Università degli Studi di Verona, Verona, Italy
| | - Paola Casati
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Chiara Cantaloni
- Department of Biotechnologies, Università degli Studi di Verona, Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnologies, Università degli Studi di Verona, Verona, Italy
| |
Collapse
|
26
|
Bouacem K, Laribi-Habchi H, Mechri S, Hacene H, Jaouadi B, Bouanane-Darenfed A. Biochemical characterization of a novel thermostable chitinase from Hydrogenophilus hirschii strain KB-DZ44. Int J Biol Macromol 2017; 106:338-350. [PMID: 28827133 DOI: 10.1016/j.ijbiomac.2017.08.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 11/19/2022]
Abstract
An extracellular acido-thermostable endo-chitinase (called ChiA-Hh59) from thermophilic Hydrogenophilus hirschii strain KB-DZ44, was purified and characterized. The maximum chitinase activity recorded after 36-h of incubation at 60°C was 3000U/ml. Pure enzyme was obtained after heat and acidic treatment, precipitation by ammonium sulphate and acetone, respectively, followed by sequential column chromatographies on Sephacryl S-200 and Mono Q-Sepharose. Based on Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 59103.12-Da. The 22 residue NH2-terminal sequence of the enzyme showed high homology with family-18 bacterial chitinases. The optimum pH and temperature values for chitinase activity were pH 5.0 and 85°C, respectively. The pure enzyme was completely inhibited by p-chloromercuribenzoic acid (p-CMB) and N-ethylmaleimide (NEM). The obtained results suggest that ChiA-Hh59 might be an endo-chitinase. The studied chitinase exhibited high activity towards colloidal chitin, chitin azure, glycol chitin, while it did not hydrolyse chitibiose and amylose. Its Km and kcat values were 0.298mg colloidal chitin/ml and 14400s-1, respectively. Its catalytic efficiency was higher than those of chitodextrinase and ChiA-65. Additionally, Thin-layer chromatography (TLC) analysis from chitin-oligosaccharides showed that ChiA-Hh59 acted as an endo-splitting enzyme. In conclusion, this chitinase may have great potential for the enzymatic degradation of chitin.
Collapse
Affiliation(s)
- Khelifa Bouacem
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria; Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| | - Hassiba Laribi-Habchi
- Laboratory of Functional Analysis of Chemical Processes (LFACP), Process Engineering Department, Faculty of Technology, University of Blida 1, Road of Soumaâ, PO Box 270, 09000 Blida, Algeria.
| | - Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia
| | - Hocine Hacene
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia.
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria.
| |
Collapse
|
27
|
Passera A, Venturini G, Battelli G, Casati P, Penaca F, Quaglino F, Bianco PA. Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent. Microbiol Res 2017; 198:16-26. [DOI: 10.1016/j.micres.2017.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
|
28
|
Rishad KS, Rebello S, Shabanamol PS, Jisha MS. Biocontrol potential of Halotolerant bacterial chitinase from high yielding novel Bacillus Pumilus MCB-7 autochthonous to mangrove ecosystem. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:36-41. [PMID: 28364802 DOI: 10.1016/j.pestbp.2016.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 06/07/2023]
Abstract
The multifaceted role of chitinase in medicine, agriculture, environmental remediation and various other industries greatly demands the isolation of high yielding chitinase producing microorganisms with improved properties. The current study aimed to investigate the isolation, characterization and biocontrol prospective of chitinase producing bacterial strains autochthonous to the extreme conditions of mangrove ecosystems. Among the 51 bacterial isolates screened, Bacillus pumilus MCB-7 with highest chitinase production potential was identified and confirmed by 16S rDNA typing. Chitinase enzyme of MCB-7 was purified; the chitin degradation was evaluated by SEM and LC-MS. Unlike previously reported B.pumilus isolates, MCB-7 exhibited highest chitinase activity of 3.36U/mL, active even at high salt concentrations and temperature up to 60°C. The crude as well as purified enzyme showed significant antimycotic activity against agricultural pathogens such as Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Ceratorhiza hydrophila and Fusarium oxysporum. The enzyme also exhibited biopesticidal role against larvae of Scirpophaga incertulas (Walker). [Lep.: Pyralidae], a serious agricultural pest of rice. The high chitinolytic and antimycotic potential of MCB-7 increases the prospects of the isolate as an excellent biocontrol agent. To the best of our knowledge, this is the first report of high chitinase yielding Bacillus pumilus strain from mangrove ecosystem with a biocontrol role against phytopathogenic fungi and insect larval pests.
Collapse
Affiliation(s)
- K S Rishad
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | | - P S Shabanamol
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India.
| |
Collapse
|
29
|
Guo X, Xu P, Zong M, Lou W. Purification and characterization of alkaline chitinase from Paenibacillus pasadenensis CS0611. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62787-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Alhasawi A, D. Appanna V. Enhanced extracellular chitinase production in <em>Pseudomonas fluorescens</em>: biotechnological implications. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.3.366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Seo DJ, Lee YS, Kim KY, Jung WJ. Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Collectotrichum gloeosporioides in vitro. Microb Pathog 2016; 96:10-4. [PMID: 27133265 DOI: 10.1016/j.micpath.2016.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 11/16/2022]
Abstract
To investigate the expression patterns of chitinase on SDS-PAGE gel, Paenibacillus ehimensis MA2012 was incubated in gelatin-chitin medium (GCM) at 30 °C for 7 days. Six major bands (Ch3, Ch4, Ch5, Ch6, Ch7, and Ch8) of chitinase isozymes in GC medium appeared on SDS-PAGE gel during the incubation period. Chitinase activity staining of P. ehimensis MA2012 was detected on 2-DE with different pI values (4-11). After DEAE-Sephadex chromatography, eight bands (Ch1 to Ch8) of chitinase isozymes were stained strongly with Calcofluor white M2R at fraction 45. After Sephadex G-75 gel filtration, six bands (Ch3 to Ch8) of chitinase isozymes were stained with Calcofluor white M2R at fractions of 11-12. The specific activity of the purified chitinase was 3.8 units mg(-1) protein with a purification factor of 0.27. Inhibition rate of the conidial germination of Colletotrichum gloeosporioides was 87% in partial purified chitinase treatment compared with control.
Collapse
Affiliation(s)
- Dong-Jun Seo
- Fermented Food Science Division, Department of Agrofood Resources, National Academy of Agricultural Science, Rural Development Administration, Jeollabuk-do, 55365, South Korea
| | - Yong-Sung Lee
- Department of Agriculture Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agricultural and Life Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Kil-Yong Kim
- Department of Agriculture Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agricultural and Life Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Woo-Jin Jung
- Department of Agriculture Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agricultural and Life Science, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
32
|
Yang S, Fu X, Yan Q, Guo Y, Liu Z, Jiang Z. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chem 2016; 192:1041-8. [DOI: 10.1016/j.foodchem.2015.07.092] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/23/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
33
|
Jankiewicz U, Brzezinska MS. Purification, characterization, and gene cloning of a chitinase fromStenotrophomonas maltophiliaN4. J Basic Microbiol 2015; 55:709-17. [DOI: 10.1002/jobm.201400717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/09/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Urszula Jankiewicz
- Department of Biochemistry; Warsaw University of Life Sciences; SGGW Warsaw Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology; Institute of Ecology and Environmental Protection; Nicolaus Copernicus University; Torun Poland
| |
Collapse
|
34
|
Affiliation(s)
- Hisashi Kimoto
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Takafumi Itoh
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Takao Hibi
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | | | | |
Collapse
|
35
|
Fu X, Yan Q, Yang S, Yang X, Guo Y, Jiang Z. An acidic, thermostable exochitinase with β-N-acetylglucosaminidase activity from Paenibacillus barengoltzii converting chitin to N-acetyl glucosamine. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:174. [PMID: 25550712 PMCID: PMC4280004 DOI: 10.1186/s13068-014-0174-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/19/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND N-acetyl-β-D-glucosamine (GlcNAc) is widely used as a valuable pharmacological agent and a functional food additive. The traditional chemical process for GlcNAc production has some problems such as high production cost, low yield, and acidic pollution. Hence, to identify a novel chitinase that is suitable for bioconversion of chitin to GlcNAc is of great value. RESULTS A novel chitinase gene (PbChi74) from Paenibacillus barengoltzii was cloned and heterologously expressed in Escherichia coli as an intracellular soluble protein. The gene has an open reading frame (ORF) of 2,163 bp encoding 720 amino acids. The recombinant chitinase (PbChi74) was purified to apparent homogeneity with a purification fold of 2.2 and a recovery yield of 57.9%. The molecular mass of the purified enzyme was estimated to be 74.6 kDa and 74.3 kDa by SDS-PAGE and gel filtration, respectively. PbChi74 displayed an acidic pH optimum of 4.5 and a temperature optimum of 65°C. The enzyme showed high activity toward colloidal chitin, glycol chitin, N-acetyl chitooligosaccharides, and p-nitrophenyl N-acetyl β-glucosaminide. PbChi74 hydrolyzed colloidal chitin to yield N-acetyl chitobiose [(GlcNAc)2] at the initial stage, which was further converted to its monomer N-acetyl glucosamine (GlcNAc), suggesting that it is an exochitinase with β-N-acetylglucosaminidase activity. The purified PbChi74 coupled with RmNAG (β-N-acetylglucosaminidase from Rhizomucor miehei) was used to convert colloidal chitin to GlcNAc, and GlcNAc was the sole end product at a concentration of 27.8 mg mL(-1) with a conversion yield of 92.6%. These results suggest that PbChi74 may have great potential in chitin conversion. CONCLUSIONS The excellent thermostability and hydrolytic properties may give the exochitinase great potential in GlcNAc production from chitin. This is the first report on an exochitinase with N-acetyl-β-D-glucosaminidase activity from Paenibacillus species.
Collapse
Affiliation(s)
- Xing Fu
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Qiaojuan Yan
- />Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Shaoqing Yang
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Xinbin Yang
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Yu Guo
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| | - Zhengqiang Jiang
- />Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083 China
| |
Collapse
|