1
|
İspirli H, Korkmaz K, Arioglu-Tuncil S, Bozkurt F, Sağdıç O, Tunçil YE, Narbad A, Dertli E. Utilisation of an active branching sucrase from Lactobacillus kunkeei AP-37 to produce techno-functional poly-oligosaccharides. Int J Biol Macromol 2023; 236:123967. [PMID: 36906201 DOI: 10.1016/j.ijbiomac.2023.123967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/13/2023]
Abstract
Glucansucrase AP-37 was extracted from the culture supernatant of Lactobacillus kunkeei AP-37 and characteristics of the glucan produced by the active glucansucrase in terms of structural and functional roles were determined in this study. A molecular weight around 300 kDa was observed for glucansucrase AP-37 and its acceptor reactions with maltose, melibiose and mannose were also conducted to unveil the prebiotic potential of the poly-oligosaccharides formed via these reactions. The core structure of glucan AP-37 was determined by 1H and 13C NMR and GC/MS analysis which revealed that glucan AP-37 was a highly branched dextran composing of high levels of (1 → 3)-linked α-d-glucose units with low levels of (1 → 2)-linked α-d-glucose units. The structural features of the glucan formed, demonstrated that glucansucrase AP-37 was an α-(1 → 3) branching sucrase. Dextran AP-37 was further characterised by FTIR analysis and XRD analysis demonstrated its amorphous nature. A fibrous compact morphology was observed for dextran AP-37 with SEM analysis whereas TGA and DSC analysis revealed its high stability as no degradation was observed up to 312 °C. Finally, the prebiotic potential of the dextran AP-37 and the gluco-oligosaccharides produced with the acceptor reaction of α-(1 → 3) branching sucrase AP-37 were determined and promising results were found for the gluco-oligosaccharides to act as prebiotics.
Collapse
Affiliation(s)
- Hümeyra İspirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Kader Korkmaz
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, İstanbul, Turkey
| | - Seda Arioglu-Tuncil
- Nutrition and Dietetics Department, Nezahat Keleşoğlu Health Science Faculty, Necmettin Erbakan University, Konya 42090, Turkey
| | - Fatih Bozkurt
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, İstanbul, Turkey
| | - Osman Sağdıç
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, İstanbul, Turkey
| | - Yunus Emre Tunçil
- Food Engineering Department, Engineering Faculty, Necmettin Erbakan University, Konya 42090, Turkey
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich NR4 7UA, UK
| | - Enes Dertli
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, İstanbul, Turkey.
| |
Collapse
|
2
|
Yilmaz MT, İspirli H, Alidrisi H, Taylan O, Dertli E. Characterisation of dextran AP-27 produced by bee pollen isolate Lactobacillus kunkeei AP-27. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
3
|
Investigation of the probiotic and metabolic potential of Fructobacillus tropaeoli and Apilactobacillus kunkeei from apiaries. Arch Microbiol 2022; 204:432. [PMID: 35759032 DOI: 10.1007/s00203-022-03000-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/28/2022]
Abstract
Honeybee products have been among important consumer products throughout history. Microbiota has attracted attention in recent years due to both their probiotic value and industrial potential. Fructophilic lactic acid bacteria (FLAB), whose field of study has been expanding rapidly in the last 20 years, are among the groups that can be isolated from the bee gut. This study aimed to isolate FLAB from the honeybees of two different geographic regions in Turkey and investigate their probiotic, metabolic and anti-quorum sensing (anti-QS) potential. Metabolic properties were investigated based on fructose toleration and acid and diacetyl production while the probiotic properties of the isolates were determined by examining pH, pepsin, pancreatin resistance, antimicrobial susceptibility, and antimicrobial activity. Anti-QS activities were also evaluated with the Chromobacterium violaceum biosensor strain. Two FLAB members were isolated and identified by the 16S rRNA analysis as Fructobacillus tropaeoli and Apilactobacillus kunkeei, which were found to be tolerant to high fructose, low pH, pepsin, pancreatin, and bile salt environments. Both isolates showed anti-QS activity against the C. violaceum biosensor strain and no diacetyl production. The daily supernatants of the isolates inhibited the growth of Enterococcus faecalis ATCC 29212 among the selected pathogens. The isolates were found resistant to kanamycin, streptomycin, erythromycin, and clindamycin. In the evaluation of the probiotic potential of these species, the negative effect of antibiotics and other chemicals to which honeybees are directly or indirectly exposed draws attention within the scope of the "One Health" approach.
Collapse
|
4
|
Yilmaz MT, İspirli H, Taylan O, Bilgrami AL, Dertli E. Structural and bioactive characteristics of a dextran produced by Lactobacillus kunkeei AK1. Int J Biol Macromol 2022; 200:293-302. [PMID: 35016972 DOI: 10.1016/j.ijbiomac.2022.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/05/2022]
Abstract
In this study, structural and techno-functional characteristics of an exopolysaccharide (EPS) produced by Lactobacillus kunkeei AK1 were determined. High-performance liquid chromatography (HPLC) analysis demonstrated that EPS AK1 was composed of only glucose units. 1H and 13C Nuclear magnetic resonance (NMR) analysis revealed that EPS AK1 was a dextran type EPS containing 4.78% (1 → 4)-linked α-d-glucose branches. The molecular weight of EPS AK1 was determined to be 45 kDa by Gel Permeation Chromatography (GPC) analysis. A high level of thermal stability up to 280 °C was determined for dextran AK1 detected by Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). Dextran AK1 appeared as regular spheres with compact morphology and as irregular particles in the solution with no clear cross-linking between the chains of the polysaccharide observed by Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) analysis, respectively. X-ray diffraction analysis (XRD) analysis demonstrated that dextran AK1 had a crystalline structure. A relatively strong antioxidant activity was observed for dextran AK1 determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging and cupric reducing antioxidant capacity (CUPRAC) tests. Finally, only a digestion ratio of 3.1% was observed for dextran AK1 following the in vitro simulated gastric digestion test.
Collapse
Affiliation(s)
- Mustafa Tahsin Yilmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hümeyra İspirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey.
| | - Osman Taylan
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Faculty of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
5
|
Molina M, Cioci G, Moulis C, Séverac E, Remaud-Siméon M. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure-Function Relationship Studies and Engineering. Microorganisms 2021; 9:microorganisms9081607. [PMID: 34442685 PMCID: PMC8398850 DOI: 10.3390/microorganisms9081607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/12/2023] Open
Abstract
Glucansucrases and branching sucrases are classified in the family 70 of glycoside hydrolases. They are produced by lactic acid bacteria occupying very diverse ecological niches (soil, buccal cavity, sourdough, intestine, dairy products, etc.). Usually secreted by their producer organisms, they are involved in the synthesis of α-glucans from sucrose substrate. They contribute to cell protection while promoting adhesion and colonization of different biotopes. Dextran, an α-1,6 linked linear α-glucan, was the first microbial polysaccharide commercialized for medical applications. Advances in the discovery and characterization of these enzymes have remarkably enriched the available diversity with new catalysts. Research into their molecular mechanisms has highlighted important features governing their peculiarities thus opening up many opportunities for engineering these catalysts to provide new routes for the transformation of sucrose into value-added molecules. This article reviews these different aspects with the ambition to show how they constitute the basis for promising future developments.
Collapse
|
6
|
Zeid AAA, Khattaby AM, El-Khair IAA, Gouda HIA. Detection Bioactive Metabolites of Fructobacillus fructosus Strain HI-1 Isolated from Honey Bee's Digestive Tract Against Paenibacillus larvae. Probiotics Antimicrob Proteins 2021; 14:476-485. [PMID: 34216360 DOI: 10.1007/s12602-021-09812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/19/2022]
Abstract
American foulbrood is a devastating disease of honey bee, causing economic loss in the beekeeping industry. The disease mainly causes reduction in honey bee populations which negatively affect the honey bee's major role as natural pollinators of significant crops and wildflowers. Thus, it is crucial to develop safe efficient strategies to control the disease and to improve bee colony health. Using lactic acid bacteria (LAB) as an alternative to chemical treatments is a promising novel technique for tackling honey bee diseases and improving their immunity. The endogenous LAB isolates were recovered from honey bee gut samples collected from different apiaries in two Egyptian governorates and screened for antagonistic activities against Paenibacillus larvae (pathogen of AFB disease). The results showed that 53.3% of tested LAB isolates (n = 120) exhibited antagonistic activities against P. larvae. The minimum inhibitory concentration and minimum bactericidal concentration of the most potent LAB isolate (with an inhibition zone of 44 mm) were 100 and 125 µL/mL, respectively. 16S rRNA sequencing identified the most potent isolate as Fructobacillus fructosus HI-1. The bioactive metabolites of F. fructosus were extracted with ethyl acetate and fractionated on thin-layer chromatography (TLC); also, bioactive fractions were detected. Heptyl 2-methylbutyrate, di-isobutyl phthalate, D-turanose, heptakis (trimethylsilyl), di-isooctyl phthalate, and hyodeoxycholic acid compounds were identified in the bioactive fractions. The result explores the promising administration of probiotic metabolites to control honey bee AFB disease, as a natural tool to substitute antibiotics and chemicals in disease-controlling strategies.
Collapse
Affiliation(s)
- Azza A Abou Zeid
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed M Khattaby
- Honey Bee Research Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | | | - Hend I A Gouda
- Honey Bee Research Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt.
| |
Collapse
|
7
|
Bivolarski V, Iliev I, Ivanova I, Nikolova M, Salim A, Mihaylova G, Vasileva T. Characterization of structure/prebiotic potential correlation of glucans and oligosaccharides synthetized by glucansucrases from fructophilic lactic acid bacteria from honey bee Apis mellifera. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1911683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Veselin Bivolarski
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Iskra Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Mariana Nikolova
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| | - Ayshe Salim
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University of Varna, Varna, Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria
| |
Collapse
|
8
|
Ispirli H, Dertli E. Detection of fructophilic lactic acid bacteria (FLAB) in bee bread and bee pollen samples and determination of their functional roles. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hümeyra Ispirli
- Central Research Laboratory Bayburt University Bayburt Turkey
| | - Enes Dertli
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Yildiz Technical University Istanbul Turkey
| |
Collapse
|
9
|
Iorizzo M, Lombardi SJ, Ganassi S, Testa B, Ianiro M, Letizia F, Succi M, Tremonte P, Vergalito F, Cozzolino A, Sorrentino E, Coppola R, Petrarca S, Mancini M, De Cristofaro A. Antagonistic Activity against Ascosphaera apis and Functional Properties of Lactobacillus kunkeei Strains. Antibiotics (Basel) 2020; 9:E262. [PMID: 32443465 PMCID: PMC7277644 DOI: 10.3390/antibiotics9050262] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
: Lactic acid bacteria (LAB) are an important group of honeybee gut microbiota. These bacteria are involved in food digestion, stimulate the immune system, and may antagonize undesirable microorganisms in the gastrointestinal tract. Lactobacillus kunkeei is a fructophilic lactic acid bacterium (FLAB) most frequently found in the gastrointestinal tracts of honeybees. Ascosphaera apis is an important pathogenic fungus of honeybee larvae; it can colonize the intestine, especially in conditions of nutritional or environmental stress that cause microbial dysbiosis. In this work, some functional properties of nine selected L. kunkeei strains were evaluated. The study focused on the antifungal activity of these strains against A. apis DSM 3116, using different matrices: cell lysate, broth culture, cell-free supernatant, and cell pellet. The cell lysate showed the highest antifungal activity. Moreover, the strains were shown to possess good cell-surface properties (hydrophobicity, auto-aggregation, and biofilm production) and a good resistance to high sugar concentrations. These L. kunkeei strains were demonstrated to be functional for use in "probiotic syrup", useful to restore the symbiotic communities of the intestine in case of dysbiosis and to exert a prophylactic action against A. apis.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Silvia Jane Lombardi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Sonia Ganassi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Bruno Testa
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Mario Ianiro
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Francesco Letizia
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Mariantonietta Succi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Patrizio Tremonte
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Franca Vergalito
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Autilia Cozzolino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Elena Sorrentino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Raffaele Coppola
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Sonia Petrarca
- CONAPROA, Consorzio Nazionale Produttori Apistici, 86100 Campobasso, Italy;
| | - Massimo Mancini
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| | - Antonio De Cristofaro
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (S.J.L.); (S.G.); (M.I.); (F.L.); (M.S.); (P.T.); (F.V.); (A.C.); (E.S.); (R.C.); (M.M.); (A.D.C.)
| |
Collapse
|
10
|
Zhao B, Du R, Wang J, Xu M, Han Y, Han X, Zhou Z. Purification and biochemical characterization of a novel glucansucrase from Leuconostoc citreum B-2. Biotechnol Lett 2020; 42:1535-1545. [DOI: 10.1007/s10529-020-02881-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/31/2020] [Indexed: 01/02/2023]
|
11
|
Ramos OY, Basualdo M, Libonatti C, Vega MF. Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies. J Appl Microbiol 2019; 128:1248-1260. [PMID: 31566847 DOI: 10.1111/jam.14469] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/13/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Lactic acid bacteria (LAB) are widely distributed in nature and, due to their beneficial effects on the host, are used as probiotics. This review describes the applications of LAB in animal production systems such as beekeeping, poultry, swine and bovine production, particularly as probiotics used to improve health, enhance growth and reproductive performance. Given the importance of honeybees in nature and the beekeeping industry as a producer of healthy food worldwide, the focus of this review is on the coexistence of LAB with honeybees, their food and environment. The main LAB species isolated from the beehive and their potential technological use are described. Evidence is provided that 43 LAB bacteria species have been isolated from beehives, of which 20 showed inhibition against 28 species of human and animal pathogens, some of which are resistant to antibiotics. Additionally, the presence of LAB in the beehive and their relationship with antibacterial properties of honey and pollen is discussed. Finally, we describe the use of lactic bacteria from bee colonies and their antimicrobial effect against foodborne pathogens and human health. This review broadens knowledge by highlighting the importance of honeybee colonies as suppliers of LAB and functional food.
Collapse
Affiliation(s)
- O Y Ramos
- PROANVET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina.,Universidad Nacional del Centro de la Provincia de Buenos Aires, CONICET, Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina
| | - M Basualdo
- PROANVET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - C Libonatti
- PROANVET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - M F Vega
- PROANVET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| |
Collapse
|
12
|
Du R, Qiao X, Wang Y, Zhao B, Han Y, Zhou Z. Determination of glucansucrase encoding gene in Leuconostoc mesenteroides. Int J Biol Macromol 2019; 137:761-766. [DOI: 10.1016/j.ijbiomac.2019.06.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 01/18/2023]
|
13
|
Filannino P, Di Cagno R, Tlais AZA, Cantatore V, Gobbetti M. Fructose-rich niches traced the evolution of lactic acid bacteria toward fructophilic species. Crit Rev Microbiol 2019; 45:65-81. [PMID: 30663917 DOI: 10.1080/1040841x.2018.1543649] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fructophilic lactic acid bacteria (FLAB) are found in fructose-rich habitats associated with flowers, fruits, fermented foods, and the gastrointestinal tract of several insects having a fructose-based diet. FLAB are heterofermentative lactobacilli that prefer fructose instead of glucose as carbon source, although additional electron acceptor substrates (e.g. oxygen) remarkably enhance their growth on glucose. As a newly discovered bacterial group, FLAB are gaining increasing interest. In this review, the ecological context in which these bacteria exist and evolve was resumed. The wide frequency of isolation of FLAB from fructose feeding insects has been deepened to reveal their ecological significance. Genomic, metabolic data, reductive evolution, and niche specialization of the main FLAB species have been discussed. Findings to date acquired are consistent with a metabolic model in which FLAB display a reliance on environmental niches and the degree of host specificity. In light of FLAB proximity to lactic acid bacteria generally considered to be safe, and due to their peculiar metabolic traits, FLAB may be successfully exploited in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Pasquale Filannino
- a Department of Soil, Plant and Food Science , University of Bari Aldo Moro , Bari , Italy
| | - Raffaella Di Cagno
- b Faculty of Science and Technology , Libera Università di Bolzano , Bolzano , Italy
| | | | - Vincenzo Cantatore
- a Department of Soil, Plant and Food Science , University of Bari Aldo Moro , Bari , Italy
| | - Marco Gobbetti
- b Faculty of Science and Technology , Libera Università di Bolzano , Bolzano , Italy
| |
Collapse
|
14
|
Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. Int J Biol Macromol 2018; 113:45-50. [DOI: 10.1016/j.ijbiomac.2018.02.119] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022]
|