1
|
Melissa B, Elisa B, Gabriella C, Maurizio A, Ombretta DA, Andrea DC, Eckert EM, Flavia M. Bacterial Diversity of Marine Biofilm Communities in Terra Nova Bay (Antarctica) by Culture-Dependent and -Independent Approaches. Environ Microbiol 2025; 27:e70045. [PMID: 39895061 PMCID: PMC11788576 DOI: 10.1111/1462-2920.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Applying both culture-independent and -dependent approaches, bacterial diversity of marine biofilm communities colonising polyvinyl chloride panels submerged in Terra Nova Bay (Ross Sea, Antarctica) was investigated. Panels were deployed in two sites subjected to a different degree of anthropogenic impact (Road Bay [RB] impacted site and Punta Stocchino [PTS] control site). Biofilm samples were collected after 3 or 12 months to evaluate both short- and long-term microbial colonisation. Taxonomic composition of the microbial community was studied by 16S rRNA gene amplicon sequencing. Proteobacteria was the predominant phylum, followed by Bacteroidetes, Actinobacteria, Verrucomicrobia and Firmicutes. Impacted RB biofilms were found to contain a relevant fraction of potentially pathogenic bacterial genera, accounting for 27.49% of the whole community. A total of 86 psychrotolerant bacterial strains were isolated from the biofilm samples using culture-dependent techniques designed to enrich in Actinobacteria. These strains were assigned to three different phyla: Actinobacteria (54.65%), Firmicutes (32.56%) and Proteobacteria (12.79%). 2.73% of genera identified by metabarcoding were recovered also through cultivation, while 11 additional genera were uniquely yielded by cultivation. Functional screening of the isolates revealed their hydrolytic and oxidative enzyme activity patterns, giving new insights into the metabolic and biotechnological potential of microbial biofilm communities in Terra Nova Bay seawater.
Collapse
Affiliation(s)
- Bisaccia Melissa
- Department of Biotechnology and Life Sciences (DBSV)University of InsubriaVareseItaly
| | - Binda Elisa
- Department of Biotechnology and Life Sciences (DBSV)University of InsubriaVareseItaly
| | - Caruso Gabriella
- National Research CouncilInstitute of Polar Sciences (ISP)MessinaItaly
| | - Azzaro Maurizio
- National Research CouncilInstitute of Polar Sciences (ISP)MessinaItaly
| | - Dell' Acqua Ombretta
- Department of Sciences of the Earth, Environment and Life (DISTAV)University of GenoaGenoaItaly
| | - Di Cesare Andrea
- National Research CouncilWater Research Institute (IRSA)VerbaniaItaly
| | | | - Marinelli Flavia
- Department of Biotechnology and Life Sciences (DBSV)University of InsubriaVareseItaly
| |
Collapse
|
2
|
Buschi E, Dell’Anno A, Tangherlini M, Candela M, Rampelli S, Turroni S, Palladino G, Esposito E, Martire ML, Musco L, Stefanni S, Munari C, Fiori J, Danovaro R, Corinaldesi C. Resistance to freezing conditions of endemic Antarctic polychaetes is enhanced by cryoprotective proteins produced by their microbiome. SCIENCE ADVANCES 2024; 10:eadk9117. [PMID: 38905343 PMCID: PMC11192080 DOI: 10.1126/sciadv.adk9117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.
Collapse
Affiliation(s)
- Emanuela Buschi
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luigi Musco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sergio Stefanni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Cristina Munari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
3
|
Bydalek F, Webster G, Barden R, Weightman AJ, Kasprzyk-Hordern B, Wenk J. Microbial community and antimicrobial resistance niche differentiation in a multistage, surface flow constructed wetland. WATER RESEARCH 2024; 254:121408. [PMID: 38442607 DOI: 10.1016/j.watres.2024.121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Free-living (FL) and particulate-associated (PA) communities are distinct bacterioplankton lifestyles with different mobility and dissemination routes. Understanding spatio-temporal dynamics of PA and FL fractions will allow improvement to wastewater treatment processes including pathogen and AMR bacteria removal. In this study, PA, FL and sediment community composition and antimicrobial resistance gene (ARG; tetW, ermB, sul1, intI1) dynamics were investigated in a full-scale municipal wastewater free-water surface polishing constructed wetland. Taxonomic composition of PA and FL microbial communities shifted towards less diverse communities (Shannon, Chao1) at the CW effluent but retained a distinct fraction-specific composition. Wastewater treatment plant derived PA communities introduced the bulk of AMR load (70 %) into the CW. However, the FL fraction was responsible for exporting over 60 % of the effluent AMR load given its high mobility and the effective immobilization (1-3 log removal) of PA communities. Strong correlations (r2>0.8, p < 0.05) were observed between the FL fraction, tetW and emrB dynamics, and amplicon sequence variants (ASVs) of potentially pathogenic taxa, including Bacteroides, Enterobacteriaceae, Aeromonadaceae, and Lachnospiraceae. This study reveals niche differentiation of microbial communities and associated AMR in CWs and shows that free-living bacteria are a primary escape route of pathogenic and ARG load from CWs under low-flow hydraulic conditions.
Collapse
Affiliation(s)
- Franciszek Bydalek
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; GW4 NERC CDT in Freshwater Biosciences and Sustainability, Cardiff University, Cardiff CF10 3AX, UK; Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | - Gordon Webster
- Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Andrew J Weightman
- Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | - Barbara Kasprzyk-Hordern
- Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
4
|
Han D, Park KT, Kim H, Kim TH, Jeong MK, Nam SI. Interaction between phytoplankton and heterotrophic bacteria in Arctic fjords during the glacial melting season as revealed by eDNA metabarcoding. FEMS Microbiol Ecol 2024; 100:fiae059. [PMID: 38621717 PMCID: PMC11067963 DOI: 10.1093/femsec/fiae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024] Open
Abstract
The hydrographic variability in the fjords of Svalbard significantly influences water mass properties, causing distinct patterns of microbial diversity and community composition between surface and subsurface layers. However, surveys on the phytoplankton-associated bacterial communities, pivotal to ecosystem functioning in Arctic fjords, are limited. This study investigated the interactions between phytoplankton and heterotrophic bacterial communities in Svalbard fjord waters through comprehensive eDNA metabarcoding with 16S and 18S rRNA genes. The 16S rRNA sequencing results revealed a homogenous community composition including a few dominant heterotrophic bacteria across fjord waters, whereas 18S rRNA results suggested a spatially diverse eukaryotic plankton distribution. The relative abundances of heterotrophic bacteria showed a depth-wise distribution. By contrast, the dominant phytoplankton populations exhibited variable distributions in surface waters. In the network model, the linkage of phytoplankton (Prasinophytae and Dinophyceae) to heterotrophic bacteria, particularly Actinobacteria, suggested the direct or indirect influence of bacterial contributions on the fate of phytoplankton-derived organic matter. Our prediction of the metabolic pathways for bacterial activity related to phytoplankton-derived organic matter suggested competitive advantages and symbiotic relationships between phytoplankton and heterotrophic bacteria. Our findings provide valuable insights into the response of phytoplankton-bacterial interactions to environmental changes in Arctic fjords.
Collapse
Affiliation(s)
- Dukki Han
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Ki-Tae Park
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Haryun Kim
- East Sea Research Institute, Korea Institute of Ocean Science & Technology, Uljin 36315, Republic of Korea
| | - Tae-Hoon Kim
- Department of Oceanography, Faculty of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Man-Ki Jeong
- Department of Smart Fisheries Resources Management, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Seung-Il Nam
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
5
|
Lian C, Xiang J, Cai H, Ke J, Ni H, Zhu J, Zheng Z, Lu K, Yang W. Microalgae Inoculation Significantly Shapes the Structure, Alters the Assembly Process, and Enhances the Stability of Bacterial Communities in Shrimp-Rearing Water. BIOLOGY 2024; 13:54. [PMID: 38275730 PMCID: PMC10813777 DOI: 10.3390/biology13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Intensive shrimp farming may lead to adverse environmental consequences due to discharged water effluent. Inoculation of microalgae can moderate the adverse effect of shrimp-farming water. However, how bacterial communities with different lifestyles (free-living (FL) and particle-attached (PA)) respond to microalgal inoculation is unclear. In the present study, we investigated the effects of two microalgae (Nannochloropsis oculata and Thalassiosira weissflogii) alone or in combination in regulating microbial communities in shrimp-farmed water and their potential applications. PERMANOVA revealed significant differences among treatments in terms of time and lifestyle. Community diversity analysis showed that PA bacteria responded more sensitively to different microalgal treatments than FL bacteria. Redundancy analysis (RDA) indicated that the bacterial community was majorly influenced by environmental factors, compared to microalgal direct influence. Moreover, the neutral model analysis and the average variation degree (AVD) index indicated that the addition of microalgae affected the bacterial community structure and stability during the stochastic process, and the PA bacterial community was the most stable with the addition of T. weissflogii. Therefore, the present study revealed the effects of microalgae and nutrient salts on bacterial communities in shrimp aquaculture water by adding microalgae to control the process of community change. This study is important for understanding the microbial community assembly and interpreting complex interactions among zoo-, phyto-, and bacterioplankton in shrimp aquaculture ecosystems. Additionally, these findings may contribute to the sustainable development of shrimp aquaculture and ecosystem conservation.
Collapse
Affiliation(s)
- Chen Lian
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jie Xiang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Huifeng Cai
- Fishery Technical Management Service Station of Yinzhou District, Ningbo 315100, China;
| | - Jiangdong Ke
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Heng Ni
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Kaihong Lu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Wen Yang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| |
Collapse
|
6
|
Venkatachalam S, Gopinath A, Krishnan KP. Fjords of the western and northern regions of Svalbard harbour distinct bacterioplankton community structures. World J Microbiol Biotechnol 2022; 39:57. [PMID: 36572813 DOI: 10.1007/s11274-022-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
Fjords are highly dynamic ecosystems that are known to be sentinels to climate change due to increased glaciomarine interactions. The convergence and mixing of warm Atlantic water (AtW) and cold Arctic water (ArW) is known to influence the hydrodynamics and ecology of the Arctic fjords. However, most past studies were limited to single-fjord ecosystems, determining the baseline knowledge of inter-fjord comparison on bacterioplankton diversity and distribution patterns. In the present study, we investigated the bacterial diversity and community composition across three Arctic fjords located in the western and northern regions of Svalbard. Our observations show that the bacterial community structure varied significantly among the fjords, while abundant Operational Taxonomic Units (OTUs) were widespread (n = 100) between all the samples and rare OTUs (n = 2221) mainly contributed to these differences. Phylogenetic classification revealed that Alpha (27.3-55%) and Gamma-proteobacteria (16-51.3%), followed by Bacteroidota (17-35.7%) were dominant in the St.Jonsfjorden and Magdalenefjorden, while Verrucomicrobiota (up to 84.19%) and Actinobacteriota (up to 76.5%) were predominant in the Raudfjorden. Temperature, dissolved inorganic phosphate (DIP) and depth were found to significantly influence the community composition of abundant bacterial groups, whereas the rare bacterial groups were affected by temperature, DIP, dissolved inorganic nitrate (DIN), ammonium and depth. A comparative meta-analysis along with Kongsfjorden and Krossfjorden also showed that each fjord had a significantly different bacterioplankton community structure.
Collapse
Affiliation(s)
- Siddarthan Venkatachalam
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Anu Gopinath
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies (KUFOS), Madavana, Kerala, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India.
| |
Collapse
|
7
|
Jacquemot L, Vigneron A, Tremblay JÉ, Lovejoy C. Contrasting sea ice conditions shape microbial food webs in Hudson Bay (Canadian Arctic). ISME COMMUNICATIONS 2022; 2:104. [PMID: 37938285 PMCID: PMC9723562 DOI: 10.1038/s43705-022-00192-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
The transition from ice-covered to open water is a recurring feature of the Arctic and sub-Arctic, but microbial diversity and cascading effects on the microbial food webs is poorly known. Here, we investigated microbial eukaryote, bacterial and archaeal communities in Hudson Bay (sub-Arctic, Canada) under sea-ice cover and open waters conditions. Co-occurrence networks revealed a <3 µm pico‒phytoplankton-based food web under the ice and a >3 µm nano‒microphytoplankton-based food web in the open waters. The ice-edge communities were characteristic of post-bloom conditions with high proportions of the picophytoplankton Micromonas and Bathycoccus. Nano‒ to micro‒phytoplankton and ice associated diatoms were detected throughout the water column, with the sympagic Melosira arctica exclusive to ice-covered central Hudson Bay and Thalassiosira in open northwestern Hudson Bay. Heterotrophic microbial eukaryotes and prokaryotes also differed by ice-state, suggesting a linkage between microbes at depth and surface phytoplankton bloom state. The findings suggest that a longer open water season may favor the establishment of a large phytoplankton-based food web at the subsurface chlorophyll maxima (SCM), increasing carbon export from pelagic diatoms to deeper waters and affect higher trophic levels in the deep Hudson Bay.
Collapse
Affiliation(s)
- Loïc Jacquemot
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
| | - Adrien Vigneron
- Département de Biologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | | | - Connie Lovejoy
- Département de Biologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Zhang Q, Fu L, Gui Y, Miao J, Li J. Complete genome sequence of Polaribacter sejongensis NJDZ03 exhibiting diverse macroalgal polysaccharide-degrading activity. Mar Genomics 2022; 61:100913. [DOI: 10.1016/j.margen.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
|
9
|
Han D, Son M, Eom KH, Park YT, Choi M, Kim J, Kim TH. Distribution of dissolved organic carbon linked to bacterial community composition during the summer melting season in Arctic fjords. Polar Biol 2022. [DOI: 10.1007/s00300-021-02995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Jain A, Balmonte JP, Singh R, Bhaskar PV, Krishnan KP. Spatially resolved assembly, connectivity and structure of particle-associated and free-living bacterial communities in a high Arctic fjord. FEMS Microbiol Ecol 2021; 97:fiab139. [PMID: 34626180 PMCID: PMC8536490 DOI: 10.1093/femsec/fiab139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
The assembly processes that underlie the composition and connectivity of free-living (FL) and particle-associated (PA) bacterial communities from surface to deep waters remain little understood. Here, using phylogenetic null modeling, we quantify the relative influence of selective and stochastic mechanisms that assemble FL and PA bacterial communities throughout the water column in a high Arctic fjord. We demonstrate that assembly processes acting on FL and PA bacterial communities are similar in surface waters, but become increasingly distinct in deep waters. As depth increases, the relative influence of homogeneous selection increases for FL but decreases for PA communities. In addition, dispersal limitation and variable selection increase with depth for PA, but not for FL communities, indicating increased residence time of taxa on particles and less frequent decolonization. As a consequence, beta diversity of PA communities is greater in bottom than in surface waters. The limited connectivity between these communities with increasing depth leads to highly distinct FL and PA bacterial communities in bottom waters. Finally, depth-related trends for FL and PA beta diversity and connectivity in this study are consistent with previous observations in the open ocean, suggesting that assembly processes for FL and PA bacterial communities may also be distinct in other aquatic environments.
Collapse
Affiliation(s)
- Anand Jain
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama 403 804, Goa, India
| | - John Paul Balmonte
- Department of Ecology and Genetics, Uppsala University, Uppsala 752 36, Sweden
- HADAL and NordCEE, Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Richa Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India
| | - Parli Venkateswaran Bhaskar
- Ocean Science Group, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama 403 804, Goa, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama 403 804, Goa, India
| |
Collapse
|
11
|
Byappanahalli MN, Nevers MB, Shively D, Nakatsu CH, Kinzelman JL, Phanikumar MS. Influence of Filter Pore Size on Composition and Relative Abundance of Bacterial Communities and Select Host-Specific MST Markers in Coastal Waters of Southern Lake Michigan. Front Microbiol 2021; 12:665664. [PMID: 34335496 PMCID: PMC8319913 DOI: 10.3389/fmicb.2021.665664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Water clarity is often the primary guiding factor in determining whether a prefiltration step is needed to increase volumes processed for a range of microbial endpoints. In this study, we evaluate the effect of filter pore size on the bacterial communities detected by 16S rRNA gene sequencing and incidence of two host-specific microbial source tracking (MST) markers in a range of coastal waters from southern Lake Michigan, using two independent data sets collected in 2015 (bacterial communities) and 2016–2017 (MST markers). Water samples were collected from river, shoreline, and offshore areas. For bacterial communities, each sample was filtered through a 5.0-μm filter, followed by filtration through a 0.22-μm filter, resulting in 70 and 143 filter pairs for bacterial communities and MST markers, respectively. Following DNA extraction, the bacterial communities were compared using 16S rRNA gene amplicons of the V3–V4 region sequenced on a MiSeq Illumina platform. Presence of human (Bacteroides HF183) and gull (Gull2, Catellicoccus marimammalium) host-specific MST markers were detected by qPCR. Actinobacteriota, Bacteroidota, and Proteobacteria, collectively represented 96.9% and 93.9% of the relative proportion of all phyla in the 0.22- and 5.0-μm pore size filters, respectively. There were more families detected in the 5.0-μm pore size filter (368) than the 0.22-μm (228). There were significant differences in the number of taxa between the two filter sizes at all levels of taxonomic classification according to linear discriminant analysis (LDA) effect size (LEfSe) with as many as 986 taxa from both filter sizes at LDA effect sizes greater than 2.0. Overall, the Gull2 marker was found in higher abundance on the 5.0-μm filter than 0.22 μm with the reverse pattern for the HF183 marker. This discrepancy could lead to problems with identifying microbial sources of contamination. Collectively, these results highlight the importance of analyzing pre- and final filters for a wide range of microbial endpoints, including host-specific MST markers routinely used in water quality monitoring programs. Analysis of both filters may increase costs but provides more complete genomic data via increased sample volume for characterizing microbial communities in coastal waters.
Collapse
Affiliation(s)
| | - Meredith B Nevers
- U.S. Geological Survey, Great Lakes Science Center, Chesterton, IN, United States
| | - Dawn Shively
- U.S. Geological Survey, Great Lakes Science Center, Chesterton, IN, United States.,Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Mantha S Phanikumar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Sinha RK, Krishnan KP. Genomic insights into the molecular mechanisms of a Pseudomonas strain significant in its survival in Kongsfjorden, an Arctic fjord. Mol Genet Genomics 2021; 296:893-903. [PMID: 33909166 DOI: 10.1007/s00438-021-01788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Whole-genome sequence of Pseudomonas sp. Kongs-67 retrieved from Kongsfjorden, an Arctic fjord, has been investigated to understand the molecular machinery required for microbial association and survival in a polar fjord. The genome size of Kongs-67 was 4.5 Mb and was found to be closely related to the Antarctic P. pelagia strain CL-AP6. This genome encodes for chemotaxis response regulator proteins (CheABB1RR2VWYZ), chemoreceptors (methyl-accepting chemotaxis proteins), and flagellar system proteins (FliCDEFGOPMN, FlhABF, FlgBCDEFGHIJKL, and MotAB proteins) vital in cellular interactions in the dynamic fjord environment. A high proportion of genes were assigned to biofilm formation (pgaABCD operon) and signal transduction protein categories (EnvZ/OmpR, CpxA/CpxR, PhoR/PhoB, PhoQ) indicating that the biofilm formation in Kongs-67 could be tightly regulated in response to the availability of signalling-metabolites. The genome of Kongs-67 encoded for HemBCD, CbiA, CobABNSTOQCDP, and BtuBFR proteins involved in cobalamin biosynthesis and transport along with proteins for siderophore-mediated iron channelling (PchR, Fur protein, FpvA); crucial in a microbial association. The genomes of Arctic strain Kongs-67 and Antarctic strain CL-AP6 were similar which is indicative of retainment of the core genes in the polar Pseudomonas strains that could be vital in conferring evolutionary adaptation for its survival in a polar fjord. Thus, our study contributes to the knowledge on the genetics of a polar Pseudomonas member exhibiting biosynthetic potentials and suggest Pseudomonas sp. Kongs-67 as a suitable candidate for the investigation of functional aspects of molecular adaptations in the polar marine environment.
Collapse
Affiliation(s)
- Rupesh Kumar Sinha
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, 403804, Goa, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, 403804, Goa, India.
| |
Collapse
|
13
|
Han D, Richter-Heitmann T, Kim IN, Choy E, Park KT, Unno T, Kim J, Nam SI. Survey of Bacterial Phylogenetic Diversity During the Glacier Melting Season in an Arctic Fjord. MICROBIAL ECOLOGY 2021; 81:579-591. [PMID: 33067657 DOI: 10.1007/s00248-020-01616-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
To understand bacterial biogeography in response to the hydrographic impact of climate change derived from the Arctic glacier melting, we surveyed bacterial diversity and community composition using bacterial 16S rRNA gene metabarcoding in the seawaters of Kongsfjorden, Svalbard, during summer 2016. In the present study, bacterial biogeography in the Kongsfjorden seawaters showed distinct habitat patterns according to water mass classification and habitat transition between Atlantic and fjord surface waters. Moreover, we estimated phylogenetic diversity of bacterial communities using the net relatedness, nearest taxon, and beta nearest taxon indices. We found the influence of freshwater input from glacier melting in shaping bacterial assemblage composition through the stochastic model. We further evaluated bacterial contributions to phytoplankton-derived dimethylsulfoniopropionate (DMSP) using a quantitative PCR (qPCR) measurement with demethylation (dmdA) and cleavage (dddP) genes of two fundamentally different processes. Our qPCR results imply that bacterial DMSP degradation follows the Atlantic inflow during summer in Kongsfjorden. These findings suggest that the Atlantic inflow and glacial melting influence bacterial community composition and assembly processes and thus affect the degradation of phytoplankton-derived organic matter in an Arctic fjord.
Collapse
Affiliation(s)
- Dukki Han
- Jeju National University, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea.
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eunjung Choy
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Ki-Tae Park
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Tatsuya Unno
- Jeju National University, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Jungman Kim
- Research Institute for Basic Sciences, Jeju National University, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Seung-Il Nam
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| |
Collapse
|
14
|
Jain A, Krishnan KP. Marine Group-II archaea dominate particle-attached as well as free-living archaeal assemblages in the surface waters of Kongsfjorden, Svalbard, Arctic Ocean. Antonie van Leeuwenhoek 2021; 114:633-647. [PMID: 33694023 PMCID: PMC7945612 DOI: 10.1007/s10482-021-01547-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
Marine archaea are a significant component of the global oceanic ecosystems, including the polar oceans. However, only a few attempts have been made to study archaea in the high Arctic fjords. Given the importance of Archaea in carbon and nitrogen cycling, it is imperative to explore their diversity and community composition in the high Arctic fjords, such as Kongsfjorden (Svalbard). In the present study, we evaluated archaeal diversity and community composition in the size-fractionated microbial population, viz-a-viz free-living (FL; 0.2-3 μm) and particle-attached (PA; > 3 μm) using archaeal V3-V4 16S rRNA gene amplicon sequencing. Our results indicate that the overall archaeal community in the surface water of Kongsfjorden was dominated by the members of the marine group-II (MGII) archaea, followed by the MGI group members, including Nitrosopumilaceae and Nitrososphaeraceae. Although a clear niche partitioning between PA and FL archaeal communities was not observed, 2 OTUs among 682 OTUs, and 3 ASVs out of 1932 ASVs were differentially abundant among the fractions. OTU001/ASV0002, classified as MGIIa, was differentially abundant in the PA fraction. OTU006/ASV0006/ASV0010 affiliated with MGIIb were differentially abundant in the FL fraction. Particulate organic nitrogen and C:N ratio were the most significant variables (P < 0.05) explaining the observed variation in the FL and PA archaeal communities, respectively. These results indicate an exchange between archaeal communities or a generalist lifestyle switching between FL and PA fractions. Besides, the particles' elemental composition (carbon and nitrogen) seems to play an essential role in shaping the PA archaeal communities in the surface waters of Kongsfjorden.
Collapse
Affiliation(s)
- Anand Jain
- Arctic Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa, India.
| | | |
Collapse
|
15
|
Delpech LM, Vonnahme TR, McGovern M, Gradinger R, Præbel K, Poste AE. Terrestrial Inputs Shape Coastal Bacterial and Archaeal Communities in a High Arctic Fjord (Isfjorden, Svalbard). Front Microbiol 2021; 12:614634. [PMID: 33717004 PMCID: PMC7952621 DOI: 10.3389/fmicb.2021.614634] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
The Arctic is experiencing dramatic changes including increases in precipitation, glacial melt, and permafrost thaw, resulting in increasing freshwater runoff to coastal waters. During the melt season, terrestrial runoff delivers carbon- and nutrient-rich freshwater to Arctic coastal waters, with unknown consequences for the microbial communities that play a key role in determining the cycling and fate of terrestrial matter at the land-ocean interface. To determine the impacts of runoff on coastal microbial (bacteria and archaea) communities, we investigated changes in pelagic microbial community structure between the early (June) and late (August) melt season in 2018 in the Isfjorden system (Svalbard). Amplicon sequences of the 16S rRNA gene were generated from water column, river and sediment samples collected in Isfjorden along fjord transects from shallow river estuaries and glacier fronts to the outer fjord. Community shifts were investigated in relation to environmental gradients, and compared to river and marine sediment microbial communities. We identified strong temporal and spatial reorganizations in the structure and composition of microbial communities during the summer months in relation to environmental conditions. Microbial diversity patterns highlighted a reorganization from rich communities in June toward more even and less rich communities in August. In June, waters enriched in dissolved organic carbon (DOC) provided a niche for copiotrophic taxa including Sulfitobacter and Octadecabacter. In August, lower DOC concentrations and Atlantic water inflow coincided with a shift toward more cosmopolitan taxa usually associated with summer stratified periods (e.g., SAR11 Clade Ia), and prevalent oligotrophic marine clades (OM60, SAR92). Higher riverine inputs of dissolved inorganic nutrients and suspended particulate matter also contributed to spatial reorganizations of communities in August. Sentinel taxa of this late summer fjord environment included taxa from the class Verrucomicrobiae (Roseibacillus, Luteolibacter), potentially indicative of a higher fraction of particle-attached bacteria. This study highlights the ecological relevance of terrestrial runoff for Arctic coastal microbial communities and how its impacts on biogeochemical conditions may make these communities susceptible to climate change.
Collapse
Affiliation(s)
- Lisa-Marie Delpech
- Department of Biology, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France.,Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian Institute for Water Research (NIVA), Tromsø, Norway
| | - Tobias R Vonnahme
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maeve McGovern
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian Institute for Water Research (NIVA), Tromsø, Norway
| | - Rolf Gradinger
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Amanda E Poste
- Norwegian Institute for Water Research (NIVA), Tromsø, Norway
| |
Collapse
|
16
|
Zeng Y, Luo W, Li H, Yu Y. High diversity of planktonic prokaryotes in Arctic Kongsfjorden seawaters in summer 2015. Polar Biol 2021. [DOI: 10.1007/s00300-020-02791-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic). WATER 2020. [DOI: 10.3390/w12113098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial communities promptly respond to the environmental perturbations, especially in the Arctic and sub-Arctic systems that are highly impacted by climate change, and fluctuations in the diversity level of microbial assemblages could give insights on their expected response. 16S rRNA gene amplicon sequencing was applied to describe the bacterial community composition in water and sediment through the sub-Arctic Pasvik River. Our results showed that river water and sediment harbored distinct communities in terms of diversity and composition at genus level. The distribution of the bacterial communities was mainly affected by both salinity and temperature in sediment samples, and by oxygen in water samples. Glacial meltwaters and runoff waters from melting ice probably influenced the composition of the bacterial community at upper and middle river sites. Interestingly, marine-derived bacteria consistently accounted for a small proportion of the total sequences and were also more prominent in the inner part of the river. Results evidenced that particular conditions occurring at sampling sites (such as algal blooms, heavy metal contamination and anaerobiosis) may select species at local scale from a shared bacterial pool, thus favoring certain bacterial taxa. Conversely, the few phylotypes specifically detected in some sites are probably due to localized external inputs introducing allochthonous microbial groups.
Collapse
|
18
|
Thomas FA, Sinha RK, Krishnan KP. Bacterial community structure of a glacio-marine system in the Arctic (Ny-Ålesund, Svalbard). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:135264. [PMID: 31848061 DOI: 10.1016/j.scitotenv.2019.135264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The bacterial community composition of a valley glacier in Svalbard, its pro-glacial channels, and the associated downstream fjord ecosystem was investigated so as to figure out the degree to which downslope transport of microbes from the glacier systems along a hydrological continuum impose an effect on the patterns of diversity in the fjord system. A combination of culture based and high-throughput amplicon sequencing approach was followed which resulted in significant variation (R = 0.873, p = 0.001) in the bacterial community structure between these ecosystems. Dominance of sequences belonging to class β-Proteobacteria was seen in the glacier snow, ice and melt waters (MW) while a relatively higher abundance of OTUs belonging to α-Proteobacteria and Verrucomicrobiae demarcated the fjord waters. Similarity percentage (SIMPER) analysis of the Operational Taxonomic Units (OTUs) showed that OTU 1,105,280 (9.15%) and OTU 331 (6.5%) belonging to Burkholderiaceae (β-proteobacteria) and OTU 101,660 (5.76%) and OTU 520 (5.07%) belonging to Rhodobacteraceae (α-proteobacteria) contributed maximum to the overall dissimilarity between the sampling sites. The bacterial community from the MWs were found to be true signatures of the glacier ecosystem while the Kongsfjorden bacterial fraction mostly represented heterotrophic marine taxa influenced by warm Atlantic waters and presence of organic matter. Significant presence of unknown taxa in the MWs suggests the need to study such unexplored, transient niches for a better understanding of the associated microbial processes. Among the various environmental parameters measured, nutrients (NO3- and SiO42-) were found to exhibit strong association with the MW bacterial community while temperature, trace metals, Cl- and SO42- ions were found to influence the fjord bacterial community. The significant differences in the bacterial community composition between the glacier and the fjord ecosystem suggest the unique nature of these systems which in turn is influenced by the associated environmental parameters.
Collapse
Affiliation(s)
- Femi Anna Thomas
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau Goa 403206, India
| | - Rupesh Kumar Sinha
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India.
| |
Collapse
|
19
|
Hu Y, Xie G, Jiang X, Shao K, Tang X, Gao G. The Relationships Between the Free-Living and Particle-Attached Bacterial Communities in Response to Elevated Eutrophication. Front Microbiol 2020; 11:423. [PMID: 32269552 PMCID: PMC7109266 DOI: 10.3389/fmicb.2020.00423] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Exploring the relationships between free-living (FL) and particle-attached (PA) bacterial communities can provide insight into their connectivity and the partitioning of biogeochemical processes, which is crucial to understanding the elemental cycles and metabolic pathways in aquatic ecosystems. However, there is still intense debate about that whether FL and PA fractions have the same assemblage. To address this issue, we investigated the extent of similarity between FL and PA bacterial communities along the environmental gradients in Lake Wuli, China. Our results revealed that the west Lake Wuli was slightly eutrophic and the east lake was moderately and highly eutrophic. The alpha-diversity of the FL bacterial communities was significantly lower than that of the PA fraction in the west lake, whereas the alpha-diversity of the two fractions was comparable in the east lake. The beta-diversity of both communities significantly differed in the west lake, whereas it resembled that in the east lake. Moreover, functional prediction analysis highlighted the significantly larger differences of metabolic functions between the FL and PA fractions in the west lake than in the east lake. Suspended particles and carbon resource promote the similarity between the FL and PA fractions. Collectively, our result reveals a convergent succession of aquatic communities along the eutrophic gradient, highlighting that the connectivity between FL and PA bacterial communities is nutrient related.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guijuan Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing, China
| | - Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
20
|
Jain A, Krishnan KP, Begum N, Singh A, Thomas FA, Gopinath A. Response of bacterial communities from Kongsfjorden (Svalbard, Arctic Ocean) to macroalgal polysaccharide amendments. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104874. [PMID: 31975691 DOI: 10.1016/j.marenvres.2020.104874] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Macroalgae are abundant in coastal Arctic habitats and contain a large amount of polysaccharides. Increased macroalgal productivity due to warmer temperatures and reduced sea-ice cover contribute a significant amount of polysaccharide-rich detritus in the region. To study bacterial degradation of macroalgal polysaccharides and their potential impact on biogeochemical processes we studied the response of bacterial communities from Kongsfjorden, Svalbard (Arctic Ocean) to alginate (AL) and agarose (AG) amendments, using an ex-situ microcosm experiment. Our results show that bacterial communities responded to the increased availability of macroalgal polysaccharides and community shift was congruent with a significant decline in nutrient concentrations. Initially-rare bacterial taxa affiliated with Gammaproteobacteria and Bacteroidia responded to the polysaccharide addition. Each polysaccharide addition incited the growth of certain distinct bacteria taxa. Compared to the un-amended control microcosms (CM), Polaribacter, Colwellia, Pseudoalteromonas, and unclassified Gammaproteobacteria responded to AL addition, whereas Paraglaciecola, Lentimonas, Colwellia, unclassified Gammaproteobacteria, unclassified Alteromonadales, and unclassified Alteromonadaceae responded to the AG addition. These results suggest that polysaccharides shift bacterial community composition towards copiotrophic bacterial taxa, with implications for carbon and nutrient cycling in coastal Svalbard.
Collapse
Affiliation(s)
- Anand Jain
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India.
| | | | - Nazira Begum
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
| | - Archana Singh
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
| | - Femi Anna Thomas
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
| | - Anu Gopinath
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
21
|
Latitudinal Distributions and Controls of Bacterial Community Composition during the Summer of 2017 in Western Arctic Surface Waters (from the Bering Strait to the Chukchi Borderland). Sci Rep 2019; 9:16822. [PMID: 31727995 PMCID: PMC6856522 DOI: 10.1038/s41598-019-53427-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/27/2019] [Indexed: 11/30/2022] Open
Abstract
The western Arctic Ocean is experiencing some of the most rapid environmental changes in the Arctic. However, little is known about the microbial community response to these changes. Employing observations from the summer of 2017, this study investigated latitudinal variations in bacterial community composition in surface waters between the Bering Strait and Chukchi Borderland and the factors driving the changes. Results indicate three distinctive communities. Southern Chukchi bacterial communities are associated with nutrient rich conditions, including genera such as Sulfitobacter, whereas the northern Chukchi bacterial community is dominated by SAR clades, Flavobacterium, Paraglaciecola, and Polaribacter genera associated with low nutrients and sea ice conditions. The frontal region, located on the boundary between the southern and northern Chukchi, is a transition zone with intermediate physical and biogeochemical properties; however, bacterial communities differed markedly from those found to the north and south. In the transition zone, Sphingomonas, with as yet undetermined ecological characteristics, are relatively abundant. Latitudinal distributions in bacterial community composition are mainly attributed to physical and biogeochemical characteristics, suggesting that these communities are susceptible to Arctic environmental changes. These findings provide a foundation to improve understanding of bacterial community variations in response to a rapidly changing Arctic Ocean.
Collapse
|
22
|
Cao S, Zhang F, He J, Ji Z, Zhou Q. Water masses influence bacterioplankton community structure in summer Kongsfjorden. Extremophiles 2019; 24:107-120. [PMID: 31679078 DOI: 10.1007/s00792-019-01139-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
To ascertain the saying "Everything is everywhere, but the environment selects", it was imperative to find out the main factor influencing bacterioplankton composition at genus level of Kongsfjorden where was influenced both by glacier melting water and Atlantic water. Thus, bacterioplankton diversity was investigated using pyrosequencing. In addition, nutrients, chlorophyll a, in situ temperature and salinity were measured. There were seventeen of 33 identified genera with relative abundance > 0.1%. Redundancy analysis showed that 73.02% of bacterioplankton community variance could be explained by environmental parameters. Furthermore, most of the abundant genera demonstrated significant correlation with environment parameters revealed by correlation analysis. Moreover, phosphate, nitrate and Chl a concentration, and the abundance of top nine identified genera varied with water mass significantly as shown by analysis of variance. Our results supported the notion that environmental factors, especially water mass had significant effect on bacterioplankton distribution at genus level. Considering the high sensitivity to environmental change and low error rate in identification, bacterioplankton at genus level could be potential bio-markers for monitoring environmental changes.
Collapse
Affiliation(s)
- Shunan Cao
- Key Laboratory for Polar Science SOA, Polar Research Institute of China, No. 451 JinQiao Road, Pudong Avenue, Shanghai, 200136, China
| | - Fang Zhang
- Key Laboratory for Polar Science SOA, Polar Research Institute of China, No. 451 JinQiao Road, Pudong Avenue, Shanghai, 200136, China
| | - Jianfeng He
- Key Laboratory for Polar Science SOA, Polar Research Institute of China, No. 451 JinQiao Road, Pudong Avenue, Shanghai, 200136, China.
| | - Zhongqiang Ji
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Qiming Zhou
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, China.,ChosenMed Technology (Beijing) Company Limited, Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| |
Collapse
|
23
|
Steiner PA, Sintes E, Simó R, De Corte D, Pfannkuchen DM, Ivančić I, Najdek M, Herndl GJ. Seasonal dynamics of marine snow-associated and free-living demethylating bacterial communities in the coastal northern Adriatic Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:699-707. [PMID: 31286686 PMCID: PMC6771949 DOI: 10.1111/1758-2229.12783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/07/2019] [Indexed: 05/15/2023]
Abstract
The extent of DMSP demethylation has been hypothesized to depend on DMSP availability and bacterial sulfur demand, which might lead to niche differentiation of the demethylating bacterial community. In this study, we determined DMSP concentrations in marine snow and the ambient water over a seasonal cycle and linked DMSP concentrations to the abundance of bacteria harbouring the demethylation dmdA gene in the Adriatic Sea. In marine snow, DMSP concentrations were up to four times higher than in the ambient water and three times higher in marine snow in summer than in winter. The average dmdA:recA gene ratio over the sampling period was 0.40 ± 0.24 in marine snow and 0.48 ± 0.21 in the ambient water. However, at the subclade level, differences in the demethylating bacterial community of marine snow and the ambient water were apparent. Seasonal patterns of potentially demethylating bacteria were best visible at the oligotype level. In the ambient water, the SAR116 and the OM60/NOR5 clade were composed of oligotypes that correlated to high DMSP concentrations, while oligotypes of the Rhodospirillales correlated to low DMSP concentrations. Our results revealed a pronounced seasonal variability and spatial heterogeneity in DMSP concentrations and the associated demethylating bacterial community.
Collapse
Affiliation(s)
- Paul A. Steiner
- Limnology and Bio‐Oceanography, Center of Functional EcologyUniversity of Vienna, Althanstrasse 141090ViennaAustria
| | - Eva Sintes
- Limnology and Bio‐Oceanography, Center of Functional EcologyUniversity of Vienna, Althanstrasse 141090ViennaAustria
| | - Rafel Simó
- Institut de Ciències del Mar, ICM‐CSIC, Pg Marítim de la Barceloneta 37‐4908003BarcelonaCataloniaSpain
| | - Daniele De Corte
- Department of Subsurface Geobiological Analysis and ResearchJapan Agency for Marine‐Earth Science and Technology, Natushima 2‐15YokosukaKanagawaJapan
| | | | - Ingrid Ivančić
- Center for Marine ResearchRuder Boskovic Institute, G. Paliaga 552210RovinjCroatia
| | - Mirjana Najdek
- Center for Marine ResearchRuder Boskovic Institute, G. Paliaga 552210RovinjCroatia
| | - Gerhard J. Herndl
- Limnology and Bio‐Oceanography, Center of Functional EcologyUniversity of Vienna, Althanstrasse 141090ViennaAustria
- NIOZ, Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, Utrecht University, PO Box 59, AlbertaDen Burg1790The Netherlands
| |
Collapse
|
24
|
Bacterial community pattern along the sediment seafloor of the Arctic fjorden (Kongsfjorden, Svalbard). Antonie van Leeuwenhoek 2019; 112:1121-1136. [PMID: 30783849 DOI: 10.1007/s10482-019-01245-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
The Arctic region has been the focus of increasing attention as an ecosystem that is highly sensitive to changes associated with global warming. Although it was assumed to be vulnerable to changes in climate, a limited number of studies have been conducted on the surface sediment bacteria of Arctic fjorden. This study assessed the diversity and distribution pattern of bacterial communities in eight marine sediments along the seafloor in a high Arctic fjorden (Kongsfjorden, Svalbard). A total of 822 operational taxonomic units (OTUs) were identified by Illumina MiSeq sequencing, targeting the V3-V4 hypervariable regions of the 16S rRNA gene. In these surface marine sediments, more than half of the sequences belonged to the phylum Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, Actinobacteria, Chloroflexi and Lentisphaerae. The bacterial genera Marinicella, Desulfobulbus, Lutimonas, Sulfurovum and clade SEEP-SRB4 were dominant in all samples. Analysis of similarity indicated that bacterial communities were significantly different among the inner, central and outer basins (r2 = 0.5, P = 0.03 < 0.05). Canonical correspondence analysis and permutation tests revealed that location depth (r2 = 0.87, P < 0.01), temperature (r2 = 0.88, P < 0.01) and salinity (r2 = 0.88, P < 0.05) were the most significant factors that correlated with the bacterial communities in the sediments. 28 differentially abundant taxonomic clades in the inner and outer basin with an LDA score higher than 2.0 were found by the LEfSe method. The Spearman correlation heat map revealed different degrees of correlation between most major OTUs and environmental factors, while some clades have an inverse correlation with environmental factors. The spatial patterns of bacterial communities along the Kongsfjorden may offer insight into the ecological responses of prokaryotes to climate change in the Arctic ecosystem, which makes it necessary to continue with monitoring.
Collapse
|
25
|
Alfiansah YR, Hassenrück C, Kunzmann A, Taslihan A, Harder J, Gärdes A. Bacterial Abundance and Community Composition in Pond Water From Shrimp Aquaculture Systems With Different Stocking Densities. Front Microbiol 2018; 9:2457. [PMID: 30405548 PMCID: PMC6200860 DOI: 10.3389/fmicb.2018.02457] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
In shrimp aquaculture, farming systems are carefully managed to avoid rearing failure due to stress, disease, or mass mortality, and to achieve optimum shrimp production. However, little is known about how shrimp farming systems affect biogeochemical parameters and bacterial communities in rearing water, whether high stocking densities (intensive system) will increase the abundance of pathogenic bacteria. In this study, we characterized bacterial communities in shrimp ponds with different population densities. Water quality, such as physical parameters, inorganic nutrient concentrations, and cultivable heterotrophic bacterial abundances, including potential pathogenic Vibrio, were determined in moderate density/semi-intensive (40 post-larvae m-3) and high density/intensive shrimp ponds (90 post-larvae m-3), over the shrimp cultivation time. Free-living and particle-attached bacterial communities were characterized by amplicon sequencing of the 16S rRNA gene. Suspended particulate matter (SPM), salinity, chlorophyll a, pH, and dissolved oxygen differed significantly between semi-intensive and intensive systems. These variations contrasted with the equal abundance of cultivable heterotrophic bacteria and inorganic nutrient concentrations. Bacterial communities were dominated by Gammaproteobacteria, Alphaproteobacteria, Flavobacteriia, Bacilli, and Actinobacteria. Halomonas and Psychrobacter were the most dominant genera in the particle-attached fractions, while Salegentibacter, Sulfitobacter, and Halomonas were found in the free-living fractions of both systems. Redundancy analysis indicated that among the observed environmental parameters, salinity was best suited to explain patterns in the composition of both free-living and particle-attached bacterial communities (R2: 15.32 and 12.81%, respectively), although a large fraction remained unexplained. Based on 16S rRNA gene sequences, aggregated particles from intensive ponds loaded a higher proportion of Vibrio than particles from semi-intensive ponds. In individual ponds, sequence proportions of Vibrio and Halomonas displayed an inverse relationship that coincided with changes in pH. Our observations suggest that high pH-values may suppress Vibrio populations and eventually pathogenic Vibrio. Our study showed that high-density shrimp ponds had a higher prevalence of Vibrio, increased amounts of SPM, and higher phytoplankton abundances. To avoid rearing failure, these parameters have to be managed carefully, for example by providing adequate feed, maintaining pH level, and removing organic matter deposits regularly.
Collapse
Affiliation(s)
- Yustian Rovi Alfiansah
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.,Laboratory of Marine Microbiology, Research Center for Oceanography, Indonesian Institute of Sciences, Jakarta, Indonesia
| | | | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Arief Taslihan
- Balai Besar Pengembangan Budidaya Air Payau, Jepara, Indonesia
| | - Jens Harder
- Department of Microbiology, Max Planck Institute for Marine Microbiology (MPI), Bremen, Germany
| | - Astrid Gärdes
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| |
Collapse
|
26
|
Ribicic D, Netzer R, Winkler A, Brakstad OG. Microbial communities in seawater from an Arctic and a temperate Norwegian fjord and their potentials for biodegradation of chemically dispersed oil at low seawater temperatures. MARINE POLLUTION BULLETIN 2018; 129:308-317. [PMID: 29680553 DOI: 10.1016/j.marpolbul.2018.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 05/20/2023]
Abstract
Biodegradation of chemically dispersed oil at low temperature (0-2 °C) was compared in natural seawater from Arctic (Svalbard) and a temperate (Norway) fjords. The oil was premixed with a dispersant (Corexit 9500) and small-droplet oil dispersions prepared. Faster biotransformation of n-alkanes in the Arctic than in the temperate seawater were associated with the initially higher abundance of the alkane-degrading genus Oleispira in the Arctic than the temperate seawater. Comparable transformation of aromatic hydrocarbons was further associated with the late emergences Cycloclasticus in both seawater sources. The results showed that chemically dispersed oil may be rapidly biodegraded by microbial communities in Arctic seawater. Compared to oil biodegradation studies at higher seawater temperatures, longer lag-periods were experienced here, and may be attributed to both microbial and oil properties at these low seawater temperatures.
Collapse
Affiliation(s)
- Deni Ribicic
- The Norwegian University of Science and Technology, Dept. Cancer Research and Molecular Medicine, 7491 Trondheim, Norway
| | - Roman Netzer
- SINTEF Ocean, Dept. Environmental Technology, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Anika Winkler
- Bielefeld University, Centre for Biotechnology (CeBiTec), 33501 Bielefeld, Germany
| | - Odd Gunnar Brakstad
- SINTEF Ocean, Dept. Environmental Technology, Brattørkaia 17C, 7010 Trondheim, Norway.
| |
Collapse
|