1
|
Shanmugaraj C, Kamil D, Parimalan R, Singh PK, Shashank PR, Iquebal MA, Hussain Z, Das A, Gogoi R, Nishmitha K. Deciphering the defense response in tomato against Sclerotium rolfsii by Trichoderma asperellum strain A10 through gene expression analysis. 3 Biotech 2024; 14:210. [PMID: 39188534 PMCID: PMC11344752 DOI: 10.1007/s13205-024-04040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Biological control agents are preferred over chemicals for managing plant diseases, with Trichoderma species being particularly effective against soil-borne pathogens. This study examines the use of a highly antagonistic strain, Trichoderma asperellum A10, and a virulent strain, Sclerotium rolfsii Sr38, identified and confirmed through ITS, β-tubulin (T. asperellum), TEF 1α, and RPB2 (S. rolfsii) sequences. In vitro and in planta experiments compared the antagonistic potential of A10 with other antagonistic fungi and fungicides against S. rolfsii. A10 achieved 94.66% inhibition of S. rolfsii in dual culture assays. In greenhouse trials with tomato variety Pusa Ruby, A10 showed significant pre- and post-inoculation effectiveness, with disease inhibition of 86.17 and 80.60%, respectively, outperforming T. harzianum, Propiconazole, and Carbendazim. Additionally, microbial priming with A10 was explored to enhance plant defense responses. Pre-treatment of tomato plants with T. asperellum A10 led to significant upregulation of several defense-related genes, including PR1, PR2, PR3, PR5, PR12, thioredoxin peroxidase, catalase, polyphenol oxidase, phenylalanine ammonia lyase, isochorismate synthase, laccase, prosystemin, multicystatin, WRKY31, MYC2, lipoxygenase A, lipoxygenase C, proteinase inhibitor I, proteinase inhibitor II, and ethylene response 1 associated with various signaling pathways such as salicylic acid (SA)-mediated and jasmonic acid/ethylene (JA/ET)-mediated responses. This upregulation was particularly evident at 48 h post-inoculation in A10-primed plants challenged with S. rolfsii, inducing resistance against collar rot disease. This study underscores the effectiveness of T. asperellum A10 in controlling collar rot and highlights its potential for inducing resistance in plants through microbial priming, providing valuable insights into sustainable disease management strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04040-4.
Collapse
Affiliation(s)
- C. Shanmugaraj
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - R. Parimalan
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, New Delhi, 110012 India
| | - Praveen Kumar Singh
- Division of Centre for Protected Cultivation Technology (CPCT), ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - P. R. Shashank
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - M. A. Iquebal
- Center for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Zakir Hussain
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Amrita Das
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Robin Gogoi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - K. Nishmitha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
2
|
Hamidi SM, Meshram S, Kumar A, Singh A, Yadav R, Gogoi R. Biochemical and Molecular Basis of Chemically Induced Defense Activation in Maize against Banded Leaf and Sheath Blight Disease. Curr Issues Mol Biol 2024; 46:3063-3080. [PMID: 38666922 PMCID: PMC11048768 DOI: 10.3390/cimb46040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Maize is the third most vital global cereal, playing a key role in the world economy and plant genetics research. Despite its leadership in production, maize faces a severe threat from banded leaf and sheath blight, necessitating the urgent development of eco-friendly management strategies. This study aimed to understand the resistance mechanisms against banded leaf and sheath blight (BLSB) in maize hybrid "Vivek QPM-9". Seven fungicides at recommended doses (1000 and 500 ppm) and two plant defense inducers, salicylic acid (SA) and jasmonic acid (JA) at concentrations of 50 and 100 ppm, were applied. Fungicides, notably Azoxystrobin and Trifloxystrobin + Tebuconazole, demonstrated superior efficacy against BLSB, while Pencycuron showed limited effectiveness. Field-sprayed Azoxystrobin exhibited the lowest BLSB infection, correlating with heightened antioxidant enzyme activity (SOD, CAT, POX, β-1,3-glucanase, PPO, PAL), similar to the Validamycin-treated plants. The expression of defense-related genes after seed priming with SA and JA was assessed via qRT-PCR. Lower SA concentrations down-regulated SOD, PPO, and APX genes but up-regulated CAT and β-1,3-glucanase genes. JA at lower doses up-regulated CAT and APX genes, while higher doses up-regulated PPO and β-1,3-glucanase genes; SOD gene expression was suppressed at both JA doses. This investigation elucidates the effectiveness of certain fungicides and plant defense inducers in mitigating BLSB in maize hybrids and sheds light on the intricate gene expression mechanisms governing defense responses against this pathogen.
Collapse
Affiliation(s)
- Shah Mahmood Hamidi
- Indian Council of Agricultural Research—Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (S.M.H.); (A.K.)
| | - Shweta Meshram
- Department of Plant Pathology, School of Agriculture, Lovely Professional University, Phagwara 144402, Punjab, India
| | - Aundy Kumar
- Indian Council of Agricultural Research—Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (S.M.H.); (A.K.)
| | - Archana Singh
- Indian Council of Agricultural Research—Biochemistry, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Rajbir Yadav
- Indian Council of Agricultural Research—Genetics, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Robin Gogoi
- Indian Council of Agricultural Research—Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (S.M.H.); (A.K.)
| |
Collapse
|
3
|
Meshram S, Gogoi R, Bashyal BM, Mandal PK, Hossain F, Kumar A. Investigation on comparative transcriptome profiling of resistant and susceptible non-CMS maize genotypes during Bipolaris maydis race O infection. Heliyon 2024; 10:e26538. [PMID: 38434297 PMCID: PMC10907655 DOI: 10.1016/j.heliyon.2024.e26538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Maydis leaf blight is a significant disease of maize caused by Bipolaris maydis race T, O and C. Molecular mechanisms regulating defense responses in non-CMS maize towards race O fungus are not fully known. In the present investigation, comparative transcriptome profiling was conducted on a highly resistant maize genotype SC-7-2-1-2-6-1 against a standard susceptible variety CM 119 at 48 h post inoculation (h PI) along with non-infected control. mRNA sequencing generated 38.4 Gb data, where 9349602 reads were mapped uniquely in SC-7, whereas 2714725 reads were mapped uniquely in CM-119. In inoculated SC-7, the total number of differentially expressed genes (DEGs) against control was 1413, where 1011 were up-regulated, and 402 were down-regulated. In susceptible inoculated genotype CM 119, the number of DEGs against control was 2902, where 1703 were up-, and 1199 were down-regulated. DEGs between inoculated resistant and susceptible genotypes were 10745, where 5343 were up-, and 5402 were down-regulated. The RNA-seq data were validated using RT-qPCR. The key findings are that SC-7 poses a robust plant signaling system mainly induced by oxidation-reduction process and calcium-mediated signaling. It regulates its fitness-related genes efficiently, viz., aldolase 2 gene, isopropanoid, phyto hormones, P450 cytochrome, amino acid synthesis, nitrogen assimilation genes etc. These findings showed more transcriptional changes in the SC-7 genotype, which contains many defence-related genes. They can be explored in future crop development programmes to combat multiple maize diseases. The current finding provides information to elucidate molecular and cellular processes occurring in maize during B. maydis race O infection.
Collapse
Affiliation(s)
| | - Robin Gogoi
- Division of Plant Pathology, New Delhi 110 012, India
| | | | - Pranab Kumar Mandal
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- ICAR- National Institute for Plant Biotechnology, New Delhi 110 012, India
| | | | - Aundy Kumar
- Division of Plant Pathology, New Delhi 110 012, India
| |
Collapse
|
4
|
Meddya S, Meshram S, Sarkar D, S R, Datta R, Singh S, Avinash G, Kumar Kondeti A, Savani AK, Thulasinathan T. Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3380. [PMID: 37836120 PMCID: PMC10574665 DOI: 10.3390/plants12193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Stomata are crucial structures in plants that play a primary role in the infection process during a pathogen's attack, as they act as points of access for invading pathogens to enter host tissues. Recent evidence has revealed that stomata are integral to the plant defense system and can actively impede invading pathogens by triggering plant defense responses. Stomata interact with diverse pathogen virulence factors, granting them the capacity to influence plant susceptibility and resistance. Moreover, recent studies focusing on the environmental and microbial regulation of stomatal closure and opening have shed light on the epidemiology of bacterial diseases in plants. Bacteria and fungi can induce stomatal closure using pathogen-associated molecular patterns (PAMPs), effectively preventing entry through these openings and positioning stomata as a critical component of the plant's innate immune system; however, despite this defense mechanism, some microorganisms have evolved strategies to overcome stomatal protection. Interestingly, recent research supports the hypothesis that stomatal closure caused by PAMPs may function as a more robust barrier against pathogen infection than previously believed. On the other hand, plant stomatal closure is also regulated by factors such as abscisic acid and Ca2+-permeable channels, which will also be discussed in this review. Therefore, this review aims to discuss various roles of stomata during biotic and abiotic stress, such as insects and water stress, and with specific context to pathogens and their strategies for evading stomatal defense, subverting plant resistance, and overcoming challenges faced by infectious propagules. These pathogens must navigate specific plant tissues and counteract various constitutive and inducible resistance mechanisms, making the role of stomata in plant defense an essential area of study.
Collapse
Affiliation(s)
- Sandipan Meddya
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Shweta Meshram
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Deepranjan Sarkar
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, India;
| | - Rakesh S
- Department of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736165, India;
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Sachidanand Singh
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar 384315, India;
| | - Gosangi Avinash
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141027, India;
| | - Arun Kumar Kondeti
- Department of Agronomy, Acharya N.G. Ranga Agricultural University, Regional Agricultural Research Station, Nandyal 518502, India;
| | - Ajit Kumar Savani
- Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India;
| | - Thiyagarajan Thulasinathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
5
|
Saldaña-Mendoza SA, Pacios-Michelena S, Palacios-Ponce AS, Chávez-González ML, Aguilar CN. Trichoderma as a biological control agent: mechanisms of action, benefits for crops and development of formulations. World J Microbiol Biotechnol 2023; 39:269. [PMID: 37532771 DOI: 10.1007/s11274-023-03695-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Currently, the food and economic losses generated by the attack of phytopathogens on the agricultural sector constitute a severe problem. Conventional crop protection techniques based on the application of synthetic pesticides to combat these undesirable microorganisms have also begun to represent an inconvenience since the excessive use of these substances is associated with contamination problems and severe damage to the health of farmers, consumers, and communities surrounding the fields, as well as the generation of resistance by the phytopathogens to be combated. Using biocontrol agents such as Trichoderma to mitigate the attack of phytopathogens represents an alternative to synthetic pesticides, safe for health and the environment. This work explains the mechanisms of action through which Trichoderma exerts biological control, some of the beneficial aspects that it confers to the development of crops through its symbiotic interaction with plants, and the bioremedial effects that it presents in fields contaminated by synthetic pesticides. Also, detail the production of spore-based biopesticides through fermentation processes and formulation development.
Collapse
Affiliation(s)
- Salvador A Saldaña-Mendoza
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México
| | - Sandra Pacios-Michelena
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México
| | - Arturo S Palacios-Ponce
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Mónica L Chávez-González
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México
| | - Cristóbal N Aguilar
- Food Research Department, School of Chemistry, Autonomous University of Coahuila, Venustiano Carranza S/N, República Oriente, C.P.25280, Saltillo, Coahuila, México.
| |
Collapse
|
6
|
De Palma M, Scotti R, D’Agostino N, Zaccardelli M, Tucci M. Phyto-Friendly Soil Bacteria and Fungi Provide Beneficial Outcomes in the Host Plant by Differently Modulating Its Responses through (In)Direct Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:2672. [PMID: 36297696 PMCID: PMC9612229 DOI: 10.3390/plants11202672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Sustainable agricultural systems based on the application of phyto-friendly bacteria and fungi are increasingly needed to preserve soil fertility and microbial biodiversity, as well as to reduce the use of chemical fertilizers and pesticides. Although there is considerable attention on the potential applications of microbial consortia as biofertilizers and biocontrol agents for crop management, knowledge on the molecular responses modulated in host plants because of these beneficial associations is still incomplete. This review provides an up-to-date overview of the different mechanisms of action triggered by plant-growth-promoting microorganisms (PGPMs) to promote host-plant growth and improve its defense system. In addition, we combined available gene-expression profiling data from tomato roots sampled in the early stages of interaction with Pseudomonas or Trichoderma strains to develop an integrated model that describes the common processes activated by both PGPMs and highlights the host's different responses to the two microorganisms. All the information gathered will help define new strategies for the selection of crop varieties with a better ability to benefit from the elicitation of microbial inoculants.
Collapse
Affiliation(s)
- Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Riccardo Scotti
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Massimo Zaccardelli
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| |
Collapse
|
7
|
Sulfur Induces Resistance against Canker Caused by Pseudomonas syringae pv. actinidae via Phenolic Components Increase and Morphological Structure Modification in the Kiwifruit Stems. Int J Mol Sci 2021; 22:ijms222212185. [PMID: 34830066 PMCID: PMC8625120 DOI: 10.3390/ijms222212185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has led to considerable losses in all major kiwifruit-growing areas. There are no commercial products in the market to effectively control this disease. Therefore, the defense resistance of host plants is a prospective option. In our previous study, sulfur could improve the resistance of kiwifruit to Psa infection. However, the mechanisms of inducing resistance remain largely unclear. In this study, disease severity and protection efficiency were tested after applying sulfur, with different concentrations in the field. The results indicated that sulfur could reduce the disease index by 30.26 and 31.6 and recorded high protection efficiency of 76.67% and 77.00% after one and two years, respectively, when the concentration of induction treatments was 2.0 kg/m3. Ultrastructural changes in kiwifruit stems after induction were demonstrated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO), and the accumulation of lignin were determined by biochemical analyses. Our results showed that the morphological characteristics of trichomes and lenticels of kiwifruit stem were in the best defensive state respectively when the sulfur concentration was 3.0 kg/m3 and 1.5 kg/m3. Meanwhile, in the range of 0.5 to 2.0 kg/m3, the sulfur could promote the chloroplast and mitochondria of kiwifruit stems infected with Psa to gradually return to health status, increasing the thickness of the cell wall. In addition, sulfur increased the activities of PAL, POD and PPO, and promoted the accumulation of lignin in kiwifruit stems. Moreover, the sulfur protection efficiency was positively correlated with PPO activity (p < 0.05) and lignin content (p < 0.01), which revealed that the synergistic effect of protective enzyme activity and the phenolic metabolism pathway was the physiological effect of sulfur-induced kiwifruit resistance to Psa. This evidence highlights the importance of lignin content in kiwifruit stems as a defense mechanism in sulfur-induced resistance. These results suggest that sulfur enhances kiwifruit canker resistance via an increase in phenolic components and morphology structure modification in the kiwifruit stems. Therefore, this study could provide insights into sulfur to control kiwifruit canker caused by Psa.
Collapse
|
8
|
Soil pathogen, Fusarium oxysporum induced wilt disease in chickpea: a review on its dynamicity and possible control strategies. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00030-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Mukherjee A, Singh BK, Verma JP. Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiol Res 2020; 237:126469. [DOI: 10.1016/j.micres.2020.126469] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/25/2022]
|
10
|
Aamir M, Kashyap SP, Zehra A, Dubey MK, Singh VK, Ansari WA, Upadhyay RS, Singh S. Trichoderma erinaceum Bio-Priming Modulates the WRKYs Defense Programming in Tomato Against the Fusarium oxysporum f. sp. lycopersici ( Fol) Challenged Condition. FRONTIERS IN PLANT SCIENCE 2019; 10:911. [PMID: 31428107 PMCID: PMC6689972 DOI: 10.3389/fpls.2019.00911] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 06/27/2019] [Indexed: 05/03/2023]
Abstract
The beneficial association and interaction of rhizocompetent microorganisms are widely used for plant biofertilization and amelioration of stress-induced damage in plants. To explore the regulatory mechanism involved in plant defense while associating with beneficial microbial species, and their interplay when co-inoculated with pathogens, we evaluated the response of tomato defense-related WRKY gene transcripts. The present study was carried out to examine the qRT-PCR-based relative quantification of differentially expressed defense-related genes in tomato (Solanum lycopersicum L.; variety S-22) primed with Trichoderma erinaceum against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici). The tissue-specific and time-bound expression profile changes under the four different treatments "(unprimed, Fol challenged, T. erinaceum primed and Fol+ T. erinaceum)" revealed that the highest upregulation was observed in the transcript profile of SlWRKY31 (root) and SlWRKY37 (leaf) in T. erinaceum bioprimed treated plants at 24 h with 16.51- and 14.07-fold increase, respectively. In contrast, SlWRKY4 showed downregulation with the highest repression in T. erinaceum bioprimed root (24 h) and leaf (48 h) tissue samples with 0.03 and 0.08 fold decrease, respectively. Qualitative expression of PR proteins (chitinases and glucanases) was found elicited in T. erinaceum primed plants. However, the antioxidative activity of tomato superoxide dismutase and catalase increased with the highest upregulation of SOD and SlGPX1 in Fol + T. erinaceum treatments. We observed that these expression changes were accompanied by 32.06% lesser H2O2 production in T. erinaceum bioprimed samples. The aggravated defense response in all the treated conditions was also reflected by an increased lignified stem tissues. Overall, we conclude that T. erinaceum bio-priming modulated the defense transcriptome of tomato after the Fol challenged conditions, and were accompanied by enhanced accumulation of defense-related WRKY transcripts, increased antioxidative enzyme activities, and the reinforcements through a higher number of lignified cell layers.
Collapse
Affiliation(s)
- Mohd Aamir
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- *Correspondence: Mohd Aamir,
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement and Biotechnology, Indian Institute of Vegetable Research, Indian Council of Agricultural Research, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Andleeb Zehra
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Manish Kumar Dubey
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Waquar Akhtar Ansari
- Division of Crop Improvement and Biotechnology, Indian Institute of Vegetable Research, Indian Council of Agricultural Research, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ram S. Upadhyay
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Singh
- Laboratory of Mycopathology and Microbial Technology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|